The title of this Special Issue is “Advanced Dental Materials: From Design to Application” [...]
本期特刊的标题是 "先进的牙科材料:从设计到应用" [...]
{"title":"Advanced Dental Materials: From Design to Application","authors":"Josip Kranjčić, Tina Poklepovic Pericic","doi":"10.3390/ma17153667","DOIUrl":"https://doi.org/10.3390/ma17153667","url":null,"abstract":"The title of this Special Issue is “Advanced Dental Materials: From Design to Application” [...]","PeriodicalId":503043,"journal":{"name":"Materials","volume":"20 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141804101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Bochenek, D. Brzezińska, P. Niemiec, L. Kozielski
This article presents the research results of lead-free Ba1−3/2xLax(Fe0.5Nb0.5)O3 (BFNxLa) ceramic materials doped with La (x = 0.00–0.06) obtained via the solid-state reaction method. The tests of the BFNxLa ceramic samples included structural (X-ray), morphological (SEM, EDS, EPMA), DC electrical conductivity, and dielectric measurements. For all BFNxLa ceramic samples, the X-ray tests revealed a perovskite-type cubic structure with the space group Pm3¯m. In the case of the samples with the highest amount of lanthanum, i.e., for x = 0.04 (BFN4La) and x = 0.06 (BFN6La), the X-ray analysis also showed a small amount of pyrochlore LaNbO4 secondary phase. In the microstructure of BFNxLa ceramic samples, the average grain size decreases with increasing La content, affecting their dielectric properties. The BFN ceramics show relaxation properties, diffusion phase transition, and very high permittivity at room temperature (56,750 for 1 kHz). The admixture of lanthanum diminishes the permittivity values but effectively reduces the dielectric loss and electrical conductivity of the BFNxLa ceramic samples. All BFNxLa samples show a Debye-like relaxation behavior at lower frequencies; the frequency dispersion of the dielectric constant becomes weaker with increasing admixtures of lanthanum. Research has shown that using an appropriate amount of lanthanum introduced to BFN can obtain high permittivity values while decreasing dielectric loss and electrical conductivity, which predisposes them to energy storage applications.
本文介绍了通过固态反应法获得的掺杂 La(x = 0.00-0.06)的无铅 Ba1-3/2xLax(Fe0.5Nb0.5)O3(BFNxLa)陶瓷材料的研究成果。对 BFNxLa 陶瓷样品的测试包括结构(X 射线)、形态(SEM、EDS、EPMA)、直流电导和介电测量。对所有 BFNxLa 陶瓷样品进行的 X 射线测试表明,它们具有空间群为 Pm3¯m 的包晶型立方结构。在镧含量最高的样品中,即 x = 0.04(BFN4La)和 x = 0.06(BFN6La)的样品中,X 射线分析还显示出少量的热绿体 LaNbO4 次生相。在 BFNxLa 陶瓷样品的微观结构中,平均晶粒尺寸随着 La 含量的增加而减小,从而影响了它们的介电性能。BFN 陶瓷显示出弛豫特性、扩散相变和室温下极高的介电常数(1 kHz 时为 56,750 )。镧的掺入降低了 BFNxLa 陶瓷样品的介电系数,但有效降低了介电损耗和导电率。所有 BFNxLa 样品在较低频率下都表现出类似德拜(Debye)的弛豫行为;介电常数的频率分散性随着镧掺量的增加而变弱。研究表明,在 BFN 中加入适量的镧可以获得较高的介电常数,同时降低介电损耗和导电率,这有利于它们在储能方面的应用。
{"title":"The Influence of Lanthanum Admixture on Microstructure and Electrophysical Properties of Lead-Free Barium Iron Niobate Ceramics","authors":"D. Bochenek, D. Brzezińska, P. Niemiec, L. Kozielski","doi":"10.3390/ma17153666","DOIUrl":"https://doi.org/10.3390/ma17153666","url":null,"abstract":"This article presents the research results of lead-free Ba1−3/2xLax(Fe0.5Nb0.5)O3 (BFNxLa) ceramic materials doped with La (x = 0.00–0.06) obtained via the solid-state reaction method. The tests of the BFNxLa ceramic samples included structural (X-ray), morphological (SEM, EDS, EPMA), DC electrical conductivity, and dielectric measurements. For all BFNxLa ceramic samples, the X-ray tests revealed a perovskite-type cubic structure with the space group Pm3¯m. In the case of the samples with the highest amount of lanthanum, i.e., for x = 0.04 (BFN4La) and x = 0.06 (BFN6La), the X-ray analysis also showed a small amount of pyrochlore LaNbO4 secondary phase. In the microstructure of BFNxLa ceramic samples, the average grain size decreases with increasing La content, affecting their dielectric properties. The BFN ceramics show relaxation properties, diffusion phase transition, and very high permittivity at room temperature (56,750 for 1 kHz). The admixture of lanthanum diminishes the permittivity values but effectively reduces the dielectric loss and electrical conductivity of the BFNxLa ceramic samples. All BFNxLa samples show a Debye-like relaxation behavior at lower frequencies; the frequency dispersion of the dielectric constant becomes weaker with increasing admixtures of lanthanum. Research has shown that using an appropriate amount of lanthanum introduced to BFN can obtain high permittivity values while decreasing dielectric loss and electrical conductivity, which predisposes them to energy storage applications.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Material-extrusion-based 3D printing with polylactic acid (PLA) has transformed the production of lightweight lattice structures with a high strength-to-weight ratio for various industries. While PLA offers advantages such as eco-friendliness, affordability, and printability, its mechanical properties degrade due to environmental factors. This study investigated the impact resistance of PLA lattice structures subjected to material degradation under room temperature, humidity, and natural light exposure. Four lattice core types (auxetic, negative-to-positive (NTP) gradient in terms of Poisson’s ratio, positive-to-negative (PTN) gradient in terms of Poisson’s ratio, and honeycomb) were analyzed for variations in mechanical properties due to declines in yield stress and failure strain. Mechanical testing and numerical simulations at various yield stress and failure strain levels evaluated the degradation effect, using undegraded material as a reference. The results showed that structures with a negative Poisson’s ratio exhibited superior resistance to local crushing despite material weakening. Reducing the material’s brittleness (failure strain) had a greater impact on impact response compared to reducing its yield stress. This study also revealed the potential of gradient cores, which exhibited a balance between strength (maintaining similar peak force to auxetic cores around 800 N) and energy absorption (up to 40% higher than auxetic cores) under moderate degradation (yield strength and failure strain at 60% and 80% of reference values). These findings suggest that gradient structures with varying Poisson’s ratios employing auxetic designs are valuable choices for AM parts requiring both strength and resilience in variable environmental conditions.
基于材料挤压的聚乳酸(PLA)三维打印技术改变了各行各业高强度重量比轻质晶格结构的生产方式。虽然聚乳酸具有环保、经济实惠和可打印等优点,但其机械性能会因环境因素而降低。本研究调查了聚乳酸晶格结构在室温、湿度和自然光照射下材料降解的抗冲击性。研究分析了四种晶格核心类型(辅助型、泊松比负正梯度型(NTP)、泊松比正负梯度型(PTN)和蜂窝型)因屈服应力和破坏应变下降而导致的机械性能变化。以未降解材料为参考,在不同屈服应力和破坏应变水平下进行机械测试和数值模拟,以评估降解效应。结果表明,尽管材料发生了削弱,但具有负泊松比的结构仍表现出卓越的抗局部挤压能力。与降低屈服应力相比,降低材料的脆性(破坏应变)对冲击响应的影响更大。这项研究还揭示了梯度岩心的潜力,在适度降解(屈服强度和破坏应变分别为参考值的 60% 和 80%)的情况下,梯度岩心在强度(保持与辅助岩心相似的峰值力,约为 800 N)和能量吸收(比辅助岩心高出 40%)之间实现了平衡。这些研究结果表明,采用辅助设计的具有不同泊松比的梯度结构对于需要在多变环境条件下同时具有强度和弹性的 AM 部件来说是非常有价值的选择。
{"title":"Effect of Degradation of Polylactic Acid (PLA) on Dynamic Mechanical Response of 3D Printed Lattice Structures","authors":"Reza Hedayati, Melikasadat Alavi, M. Sadighi","doi":"10.3390/ma17153674","DOIUrl":"https://doi.org/10.3390/ma17153674","url":null,"abstract":"Material-extrusion-based 3D printing with polylactic acid (PLA) has transformed the production of lightweight lattice structures with a high strength-to-weight ratio for various industries. While PLA offers advantages such as eco-friendliness, affordability, and printability, its mechanical properties degrade due to environmental factors. This study investigated the impact resistance of PLA lattice structures subjected to material degradation under room temperature, humidity, and natural light exposure. Four lattice core types (auxetic, negative-to-positive (NTP) gradient in terms of Poisson’s ratio, positive-to-negative (PTN) gradient in terms of Poisson’s ratio, and honeycomb) were analyzed for variations in mechanical properties due to declines in yield stress and failure strain. Mechanical testing and numerical simulations at various yield stress and failure strain levels evaluated the degradation effect, using undegraded material as a reference. The results showed that structures with a negative Poisson’s ratio exhibited superior resistance to local crushing despite material weakening. Reducing the material’s brittleness (failure strain) had a greater impact on impact response compared to reducing its yield stress. This study also revealed the potential of gradient cores, which exhibited a balance between strength (maintaining similar peak force to auxetic cores around 800 N) and energy absorption (up to 40% higher than auxetic cores) under moderate degradation (yield strength and failure strain at 60% and 80% of reference values). These findings suggest that gradient structures with varying Poisson’s ratios employing auxetic designs are valuable choices for AM parts requiring both strength and resilience in variable environmental conditions.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"64 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria Goetjes, Jan-Christoph Zarges, Hans-Peter Heim
For the application of poly(lactic acid) (PLA) and PLA/starch composites in technical components such as toys, it is essential to know their degradation behavior under relevant application conditions in a hydrothermal environment. For this purpose, composites made from PLA and native potato starch were produced using twin-screw extruders and then processed into test specimens, which were then subjected to various one-week ageing processes with varying temperatures (23, 50, 70, 90 °C) and humidity levels (10, 50, 75, 90%). This was followed by mechanical characterization (tensile test) and identification of degradation using Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), and Nuclear Magnetic Resonance spectroscopy (NMR). With increasing temperature and humidity, there was a clear degradation of the PLA, which could be reduced or slowed down by adding 50 wt.% starch, due to increased crystallinity. Hydrolysis was identified as the main degradation mechanism for PLA and PLA/starch composites, especially above the glass transition temperature, with thermo-oxidative degradation also playing a subordinate role. Both hydrolytic degradation and thermo-oxidative degradation led to a reduction in mechanical properties such as tensile strength.
{"title":"Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments","authors":"Victoria Goetjes, Jan-Christoph Zarges, Hans-Peter Heim","doi":"10.3390/ma17153683","DOIUrl":"https://doi.org/10.3390/ma17153683","url":null,"abstract":"For the application of poly(lactic acid) (PLA) and PLA/starch composites in technical components such as toys, it is essential to know their degradation behavior under relevant application conditions in a hydrothermal environment. For this purpose, composites made from PLA and native potato starch were produced using twin-screw extruders and then processed into test specimens, which were then subjected to various one-week ageing processes with varying temperatures (23, 50, 70, 90 °C) and humidity levels (10, 50, 75, 90%). This was followed by mechanical characterization (tensile test) and identification of degradation using Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), and Nuclear Magnetic Resonance spectroscopy (NMR). With increasing temperature and humidity, there was a clear degradation of the PLA, which could be reduced or slowed down by adding 50 wt.% starch, due to increased crystallinity. Hydrolysis was identified as the main degradation mechanism for PLA and PLA/starch composites, especially above the glass transition temperature, with thermo-oxidative degradation also playing a subordinate role. Both hydrolytic degradation and thermo-oxidative degradation led to a reduction in mechanical properties such as tensile strength.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"15 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Maziukienė, N. Striūgas, L. Vorotinskienė, R. Skvorčinskienė, M. Urbonavičius
Experiments on specimen cooling dynamics and possible film boiling around a body are very important in various industrial applications, such as nucleate boiling, to decrease drag reduction or achieve better surface properties in coating technologies. The objective of this study was to investigate the interaction between the heat transfer processes and cooling dynamics of a sample in different boundary conditions. This article presents new experimental data on specimens coated with Al–TiO2 film and Leidenfrost phenomenon (LP) formation on the film’s surface. Furthermore, this manuscript presents numerical heat and mass transfer parameter results. The comparative analysis of new experiments on Al–TiO2 film specimens and other coatings such as polished aluminium, Al–MgO, Al–MgH2 and Al–TiH2 provides further detail on oxide and hydride materials. In the experimental cooling dynamics experiments, specimens were heated up to 450 °C, while the sub-cooling water temperatures were 14*‒20 °C (room temperature), 40 °C and 60 °C. The specimens’ cooling dynamics were calculated by applying Newton’s cooling law, and heat transfer was estimated by calculating the heat flux q transferred from the specimens’ surface and the Bi parameter. The metadata results from the performed experiments were used to numerically model the cooling dynamics curves for different material specimens. Approximated polynomial equations are proposed for the polished aluminium, Al–TiO2, Al–MgO, Al–MgH2 and Al–TiH2 materials. The provided comparative analysis makes it possible to see the differences between oxides and hydrides and to choose materials for practical application in the industrial sector. The presented results could also be used in software packages to model heat transfer processes.
{"title":"The Identification of Leidenfrost Phenomenon Formation on TiO2-Coated Surfaces and the Modelling of Heat Transfer Processes","authors":"M. Maziukienė, N. Striūgas, L. Vorotinskienė, R. Skvorčinskienė, M. Urbonavičius","doi":"10.3390/ma17153687","DOIUrl":"https://doi.org/10.3390/ma17153687","url":null,"abstract":"Experiments on specimen cooling dynamics and possible film boiling around a body are very important in various industrial applications, such as nucleate boiling, to decrease drag reduction or achieve better surface properties in coating technologies. The objective of this study was to investigate the interaction between the heat transfer processes and cooling dynamics of a sample in different boundary conditions. This article presents new experimental data on specimens coated with Al–TiO2 film and Leidenfrost phenomenon (LP) formation on the film’s surface. Furthermore, this manuscript presents numerical heat and mass transfer parameter results. The comparative analysis of new experiments on Al–TiO2 film specimens and other coatings such as polished aluminium, Al–MgO, Al–MgH2 and Al–TiH2 provides further detail on oxide and hydride materials. In the experimental cooling dynamics experiments, specimens were heated up to 450 °C, while the sub-cooling water temperatures were 14*‒20 °C (room temperature), 40 °C and 60 °C. The specimens’ cooling dynamics were calculated by applying Newton’s cooling law, and heat transfer was estimated by calculating the heat flux q transferred from the specimens’ surface and the Bi parameter. The metadata results from the performed experiments were used to numerically model the cooling dynamics curves for different material specimens. Approximated polynomial equations are proposed for the polished aluminium, Al–TiO2, Al–MgO, Al–MgH2 and Al–TiH2 materials. The provided comparative analysis makes it possible to see the differences between oxides and hydrides and to choose materials for practical application in the industrial sector. The presented results could also be used in software packages to model heat transfer processes.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"52 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yameng Wang, Lihua Wang, Wenjing Ye, Fengyi Zhang, Yongdong Pan, Yan Li
Concrete structures frequently manifest diverse defects throughout their manufacturing and usage processes due to factors such as design, construction, environmental conditions and distress mechanisms. In this paper, a multilevel convolutional neural network (CNN) combined with array ultrasonic testing (AUT) is proposed for identifying the locations of hole defects in concrete structures. By refining the detection area layer by layer, AUT is used to collect ultrasonic signals containing hole defect information, and the original echo signal is input to CNN for the classification of hole locations. The advantage of the proposed method is that the corresponding defect location information can be obtained directly from the input ultrasonic signal without manual discrimination. It effectively addresses the issue of traditional methods being insufficiently accurate when dealing with complex structures or hidden defects. The analysis process is as follows. First, COMSOL-Multiphysics finite element software is utilized to simulate the AUT detection process and generate a large amount of ultrasonic echo data. Next, the extracted signal data are trained and learned using the proposed multilevel CNN approach to achieve progressive localization of internal structural defects. Afterwards, a comparative analysis is conducted between the proposed multilevel CNN method and traditional CNN approaches. The results show that the defect localization accuracy of the proposed multilevel CNN approach improved from 85.38% to 95.27% compared to traditional CNN methods. Furthermore, the computation time required for this process is reduced, indicating that the method not only achieves higher recognition precision but also operates with greater efficiency. Finally, a simple experimental verification is conducted; the results show that this method has strong robustness in recognizing noisy ultrasonic signals, provides effective solutions, and can be used as a reference for future defect detection.
{"title":"Concrete Defect Localization Based on Multilevel Convolutional Neural Networks","authors":"Yameng Wang, Lihua Wang, Wenjing Ye, Fengyi Zhang, Yongdong Pan, Yan Li","doi":"10.3390/ma17153685","DOIUrl":"https://doi.org/10.3390/ma17153685","url":null,"abstract":"Concrete structures frequently manifest diverse defects throughout their manufacturing and usage processes due to factors such as design, construction, environmental conditions and distress mechanisms. In this paper, a multilevel convolutional neural network (CNN) combined with array ultrasonic testing (AUT) is proposed for identifying the locations of hole defects in concrete structures. By refining the detection area layer by layer, AUT is used to collect ultrasonic signals containing hole defect information, and the original echo signal is input to CNN for the classification of hole locations. The advantage of the proposed method is that the corresponding defect location information can be obtained directly from the input ultrasonic signal without manual discrimination. It effectively addresses the issue of traditional methods being insufficiently accurate when dealing with complex structures or hidden defects. The analysis process is as follows. First, COMSOL-Multiphysics finite element software is utilized to simulate the AUT detection process and generate a large amount of ultrasonic echo data. Next, the extracted signal data are trained and learned using the proposed multilevel CNN approach to achieve progressive localization of internal structural defects. Afterwards, a comparative analysis is conducted between the proposed multilevel CNN method and traditional CNN approaches. The results show that the defect localization accuracy of the proposed multilevel CNN approach improved from 85.38% to 95.27% compared to traditional CNN methods. Furthermore, the computation time required for this process is reduced, indicating that the method not only achieves higher recognition precision but also operates with greater efficiency. Finally, a simple experimental verification is conducted; the results show that this method has strong robustness in recognizing noisy ultrasonic signals, provides effective solutions, and can be used as a reference for future defect detection.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141804182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malgorzata Olender-Skóra, W. Banaś, Marian Turek, Paweł Skóra, A. Gwiazda, K. Foit, A. Sekala, Michał Stawowiak
In connection with the need to obtain a properly made and cut material and the appearance of the surface layer, new manufacturing technologies were used for tests, namely the laser cutting technology. This article describes the laboratory stand built for the purpose of research, as well as the possibility of using laser cutting on several sample materials (polymer films), together with an indication of the results obtained. The idea was to elaborate on the cutting technology that will be proper for manufacturing the desired type of spacers for ion-exchange membranes separating while maintaining the required level of product quality and chemical purity. The latter criterion was the basic one, due to the scope of use of the manufactured elements. This article also describes the problem encountered during the construction of the stand or during the research. The last part of this article describes the further steps of the research that will be carried out in the future along with a discussion and summary of the research performed. It is important from the point of view of the development of production technology, but also because of the characteristics of materials for the production of surface layers and coatings resistant to mechanical or thermal wear used in industry. The introduction of innovative solutions is also aimed at studying the improvement of the economics of the production of materials that are significant, in particular, for small- and medium-sized enterprises.
{"title":"Effects of Using Laser Technology for Cutting Polymer Films","authors":"Malgorzata Olender-Skóra, W. Banaś, Marian Turek, Paweł Skóra, A. Gwiazda, K. Foit, A. Sekala, Michał Stawowiak","doi":"10.3390/ma17153678","DOIUrl":"https://doi.org/10.3390/ma17153678","url":null,"abstract":"In connection with the need to obtain a properly made and cut material and the appearance of the surface layer, new manufacturing technologies were used for tests, namely the laser cutting technology. This article describes the laboratory stand built for the purpose of research, as well as the possibility of using laser cutting on several sample materials (polymer films), together with an indication of the results obtained. The idea was to elaborate on the cutting technology that will be proper for manufacturing the desired type of spacers for ion-exchange membranes separating while maintaining the required level of product quality and chemical purity. The latter criterion was the basic one, due to the scope of use of the manufactured elements. This article also describes the problem encountered during the construction of the stand or during the research. The last part of this article describes the further steps of the research that will be carried out in the future along with a discussion and summary of the research performed. It is important from the point of view of the development of production technology, but also because of the characteristics of materials for the production of surface layers and coatings resistant to mechanical or thermal wear used in industry. The introduction of innovative solutions is also aimed at studying the improvement of the economics of the production of materials that are significant, in particular, for small- and medium-sized enterprises.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"28 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-inspired hydrogel robots have become promising due to their advantage of the interaction safety and comfort between robots and humans, while current hydrogel robots mainly focus on underwater movement due to the hydration–dehydration process of thermo-responsive hydrogels, which greatly limits their practical applications. To expand the motion of the thermo-responsive hydrogel robot to the ground, we constructed a hydrogel robot inspired by a caterpillar, which has an anisotropic double-layered structure by the interfacial diffusion polymerization method. Adding PVA and SA to PNIPAm will cause different conformation transitions. Therefore, sticking the two layers of hydrogel together will form a double-layer anisotropic structure. The ultra-high hydrophilicity of PVA and SA significantly reduces the contact angle of the hydrogel from 53.1° to about 10° and reduces its hydration time. The responsive time for bending 30° of the hydrogel robot has been greatly reduced from 1 h to half an hour through the enhancement of photo-thermal conversion and thermal conductivity via the addition of Fe3O4 nanoparticles. As a result, the fabricated hydrogel robot can achieve a high moving speed of 54.5 mm·h−1 on the ground. Additionally, the fabricated hydrogel has excellent mechanical strength and can endure significant flexibility tests. This work may pave the road for the development of soft robots and expand their applications in industry.
受生物启发的水凝胶机器人因其机器人与人类交互安全、舒适的优势而前景广阔,而目前的水凝胶机器人由于热响应水凝胶的水化-脱水过程,主要集中在水下运动,这极大地限制了其实际应用。为了将热响应水凝胶机器人的运动拓展到地面,我们以毛毛虫为灵感,通过界面扩散聚合法构建了一种具有各向异性双层结构的水凝胶机器人。在 PNIPAm 中添加 PVA 和 SA 会导致不同的构象转变。因此,将两层水凝胶粘在一起就会形成双层各向异性结构。PVA 和 SA 的超高亲水性大大降低了水凝胶的接触角,从 53.1°降至约 10°,并缩短了水合时间。通过添加 Fe3O4 纳米粒子提高光热转换率和热导率,水凝胶机器人弯曲 30° 的响应时间从 1 小时大大缩短到半小时。因此,制成的水凝胶机器人在地面上的移动速度高达 54.5 mm-h-1。此外,制成的水凝胶还具有出色的机械强度,并能经受大量的柔韧性测试。这项工作可能会为软机器人的开发铺平道路,并扩大其在工业领域的应用。
{"title":"Bio-Inspired Double-Layered Hydrogel Robot with Fast Response via Thermo-Responsive Effect","authors":"Yunsong Liu, Xiong Zheng","doi":"10.3390/ma17153679","DOIUrl":"https://doi.org/10.3390/ma17153679","url":null,"abstract":"Bio-inspired hydrogel robots have become promising due to their advantage of the interaction safety and comfort between robots and humans, while current hydrogel robots mainly focus on underwater movement due to the hydration–dehydration process of thermo-responsive hydrogels, which greatly limits their practical applications. To expand the motion of the thermo-responsive hydrogel robot to the ground, we constructed a hydrogel robot inspired by a caterpillar, which has an anisotropic double-layered structure by the interfacial diffusion polymerization method. Adding PVA and SA to PNIPAm will cause different conformation transitions. Therefore, sticking the two layers of hydrogel together will form a double-layer anisotropic structure. The ultra-high hydrophilicity of PVA and SA significantly reduces the contact angle of the hydrogel from 53.1° to about 10° and reduces its hydration time. The responsive time for bending 30° of the hydrogel robot has been greatly reduced from 1 h to half an hour through the enhancement of photo-thermal conversion and thermal conductivity via the addition of Fe3O4 nanoparticles. As a result, the fabricated hydrogel robot can achieve a high moving speed of 54.5 mm·h−1 on the ground. Additionally, the fabricated hydrogel has excellent mechanical strength and can endure significant flexibility tests. This work may pave the road for the development of soft robots and expand their applications in industry.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"70 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The addition of rare earth metals to aluminum alloys can effectively improve their corrosion resistance and has been widely used in the aerospace and military industries. However, the current methods for the preparation of rare earth metals involve long processing steps, high energy consumption, and high carbon emissions, which severely constrains the development of aluminum alloys. Its output is further developed. To this end, this paper reviews mainstream rare earth production processes (precipitation methods, microemulsion methods, roasting-sulfuric acid leaching methods, electrochemical methods, solvent extraction methods, and ion exchange methods) to provide basic information for the green smelting of rare earth metals and help promote the development of green rare earth smelting. Based on the advantages and disadvantages of each process as well as recent research results, the optimal process parameters and production efficiency were summarized. Studies have concluded that the precipitation method is mostly used for the recovery of rare earth elements and related valuable metals from solid waste; the microemulsion method is mostly used for the preparation of nanosized rare earth alloys by doping; the roasting-sulfuric acid leaching method is mostly used for the treatment of raw rare earth ores; and the molten salt electrolysis method is a more specific method. This is a green and environmentally friendly production process. The results of this study can provide direction for the realization of green rare earth smelting and provide a reference for improving the existing rare earth smelting process.
{"title":"Summary of the Research Progress on Advanced Engineering, Processes, and Process Parameters of Rare Earth Green Metallurgy","authors":"Yingqi Li, Tingan Zhang, Zhihe Dou, Wei Xie, Chuidai Lan, Guangtao Li","doi":"10.3390/ma17153686","DOIUrl":"https://doi.org/10.3390/ma17153686","url":null,"abstract":"The addition of rare earth metals to aluminum alloys can effectively improve their corrosion resistance and has been widely used in the aerospace and military industries. However, the current methods for the preparation of rare earth metals involve long processing steps, high energy consumption, and high carbon emissions, which severely constrains the development of aluminum alloys. Its output is further developed. To this end, this paper reviews mainstream rare earth production processes (precipitation methods, microemulsion methods, roasting-sulfuric acid leaching methods, electrochemical methods, solvent extraction methods, and ion exchange methods) to provide basic information for the green smelting of rare earth metals and help promote the development of green rare earth smelting. Based on the advantages and disadvantages of each process as well as recent research results, the optimal process parameters and production efficiency were summarized. Studies have concluded that the precipitation method is mostly used for the recovery of rare earth elements and related valuable metals from solid waste; the microemulsion method is mostly used for the preparation of nanosized rare earth alloys by doping; the roasting-sulfuric acid leaching method is mostly used for the treatment of raw rare earth ores; and the molten salt electrolysis method is a more specific method. This is a green and environmentally friendly production process. The results of this study can provide direction for the realization of green rare earth smelting and provide a reference for improving the existing rare earth smelting process.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"49 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Double-sided planetary grinding (DSPG) with a fixed abrasive is widely used in sapphire substrate processing. Compared with conventional free abrasive grinding, it has the advantages of high precision, high efficiency, and environmental protection. In this study, we propose a material removal rate (MRR) model specific to the fixed-abrasive DSPG process for sapphire substrates, grounded in the trajectory length of abrasive particles. In this paper, the material removal rate model is obtained after focusing on the theoretical analysis of the effective number of abrasive grains, the indentation depth of a single abrasive grain, the length of the abrasive grain trajectory, and the groove repetition rate. To validate this model, experiments were conducted on sapphire substrates using a DSPG machine. Theoretical predictions of the material removal rate were then juxtaposed with experimental outcomes across varying grinding pressures and rotational speeds. The trends between theoretical and experimental values showed remarkable consistency, with deviations ranging between 0.2% and 39.2%, thereby substantiating the model’s validity. Moreover, leveraging the insights from this model, we optimized the disparity in the material removal rate between two surfaces of the substrate, thereby enhancing the uniformity of the machining process across both surfaces.
{"title":"Modeling of Material Removal Rate for the Fixed-Abrasive Double-Sided Planetary Grinding of a Sapphire Substrate","authors":"Gen Chen, Zhongwei Hu, Lijuan Wang, Yue Chen","doi":"10.3390/ma17153688","DOIUrl":"https://doi.org/10.3390/ma17153688","url":null,"abstract":"Double-sided planetary grinding (DSPG) with a fixed abrasive is widely used in sapphire substrate processing. Compared with conventional free abrasive grinding, it has the advantages of high precision, high efficiency, and environmental protection. In this study, we propose a material removal rate (MRR) model specific to the fixed-abrasive DSPG process for sapphire substrates, grounded in the trajectory length of abrasive particles. In this paper, the material removal rate model is obtained after focusing on the theoretical analysis of the effective number of abrasive grains, the indentation depth of a single abrasive grain, the length of the abrasive grain trajectory, and the groove repetition rate. To validate this model, experiments were conducted on sapphire substrates using a DSPG machine. Theoretical predictions of the material removal rate were then juxtaposed with experimental outcomes across varying grinding pressures and rotational speeds. The trends between theoretical and experimental values showed remarkable consistency, with deviations ranging between 0.2% and 39.2%, thereby substantiating the model’s validity. Moreover, leveraging the insights from this model, we optimized the disparity in the material removal rate between two surfaces of the substrate, thereby enhancing the uniformity of the machining process across both surfaces.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"47 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}