Pub Date : 2023-10-21DOI: 10.1142/s021827182350092x
Abhineet Agarwal, Sabit Bekov, Kairat Myrzakulov
In this paper, we consider a model of quintessential inflation based upon inverse hyperbolic potential. We employ curvaton mechanism for reheating which is more efficient than gravitational particle production; the mechanism complies with nucleosynthesis constraint due to relic gravity waves. We obtain a lower bound on the coupling constant [Formula: see text] that governs the interaction of curvaton with matter fields. We study curvaton decay before domination and decay after domination and plot the allowed region in the parameter space in both cases.
{"title":"Quintessential Inflation and curvaton reheating","authors":"Abhineet Agarwal, Sabit Bekov, Kairat Myrzakulov","doi":"10.1142/s021827182350092x","DOIUrl":"https://doi.org/10.1142/s021827182350092x","url":null,"abstract":"In this paper, we consider a model of quintessential inflation based upon inverse hyperbolic potential. We employ curvaton mechanism for reheating which is more efficient than gravitational particle production; the mechanism complies with nucleosynthesis constraint due to relic gravity waves. We obtain a lower bound on the coupling constant [Formula: see text] that governs the interaction of curvaton with matter fields. We study curvaton decay before domination and decay after domination and plot the allowed region in the parameter space in both cases.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135463809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1142/s0218271823500992
Haryanto M. Siahaan
{"title":"Stability and pair production of scalars in the charged Einstein-ModMax black hole spacetime","authors":"Haryanto M. Siahaan","doi":"10.1142/s0218271823500992","DOIUrl":"https://doi.org/10.1142/s0218271823500992","url":null,"abstract":"","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the periapsis shift of a quasi-circular orbit in general static spherically symmetric spacetimes. We derive two formulae in full order with respect to the gravitational field, one in terms of the gravitational mass $m$ and the Einstein tensor and the other in terms of the orbital angular velocity and the Einstein tensor. These formulae reproduce the well-known ones for the forward shift in the Schwarzschild spacetime. In a general case, the shift deviates from that in the vacuum spacetime due to a particular combination of the components of the Einstein tensor at the radius $r$ of the orbit. The formulae give a backward shift due to the extended-mass effect in Newtonian gravity. In general relativity, in the weak-field and diffuse regime, the active gravitational mass density, $rho_{A}=(epsilon+p_{r}+2p_{t})/c^{2}$, plays an important role, where $epsilon$, $p_{r}$, and $p_{t}$ are the energy density, the radial stress, and the tangential stress of the matter field, respectively. We show that the shift is backward if $rho_{A}$ is beyond a critical value $rho_{c}simeq 2.8times 10^{-15} mbox{g}/mbox{cm}^{3} (m/M_{odot})^{2}(r/mbox{au})^{-4}$, while a forward shift greater than that in the vacuum spacetime instead implies $rho_{A}<0$, i.e., the violation of the strong energy condition, and thereby provides evidence for dark energy. We obtain new observational constraints on $rho_{A}$ in the Solar System and the Galactic Centre.
{"title":"General formulae for the periapsis shift of a quasi-circular orbit in static spherically symmetric spacetimes and the active gravitational mass density","authors":"Tomohiro Harada, Takahisa Igata, Hiromi Saida, Yohsuke Takamori","doi":"10.1142/s0218271823500980","DOIUrl":"https://doi.org/10.1142/s0218271823500980","url":null,"abstract":"We study the periapsis shift of a quasi-circular orbit in general static spherically symmetric spacetimes. We derive two formulae in full order with respect to the gravitational field, one in terms of the gravitational mass $m$ and the Einstein tensor and the other in terms of the orbital angular velocity and the Einstein tensor. These formulae reproduce the well-known ones for the forward shift in the Schwarzschild spacetime. In a general case, the shift deviates from that in the vacuum spacetime due to a particular combination of the components of the Einstein tensor at the radius $r$ of the orbit. The formulae give a backward shift due to the extended-mass effect in Newtonian gravity. In general relativity, in the weak-field and diffuse regime, the active gravitational mass density, $rho_{A}=(epsilon+p_{r}+2p_{t})/c^{2}$, plays an important role, where $epsilon$, $p_{r}$, and $p_{t}$ are the energy density, the radial stress, and the tangential stress of the matter field, respectively. We show that the shift is backward if $rho_{A}$ is beyond a critical value $rho_{c}simeq 2.8times 10^{-15} mbox{g}/mbox{cm}^{3} (m/M_{odot})^{2}(r/mbox{au})^{-4}$, while a forward shift greater than that in the vacuum spacetime instead implies $rho_{A}<0$, i.e., the violation of the strong energy condition, and thereby provides evidence for dark energy. We obtain new observational constraints on $rho_{A}$ in the Solar System and the Galactic Centre.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"81 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1142/s0218271823500979
A. Nasser Tawfik, T. F. Dabash
{"title":"Timelike Geodesic Congruence in the Simplest Solutions of General Relativity with Quantum-Improved Metric Tensor","authors":"A. Nasser Tawfik, T. F. Dabash","doi":"10.1142/s0218271823500979","DOIUrl":"https://doi.org/10.1142/s0218271823500979","url":null,"abstract":"","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
By considering Kehagias–Sfetsos black hole in the framework of the Hořava–Lifshitz gravity, we study the optical appearance of such black holes surrounded by spherical accretion flow. For the static/infalling spherical accretion flow, we compute the observed specific intensity as a function of impact parameter. We also investigate the effect of the Hořava parameter and accreting matter on the luminosity of shadows and photon rings. It is found that an increase in the Hořava parameter decreases the shadow size, while the shadows and photon rings luminosities increase. Moreover, we constrain the Hořava parameter from the observational data reported by the Event Horizon Telescope for M87* and Sgr A*.
{"title":"Shadows and photon rings of a spherically accreting Kehagias-Sfetsos black hole","authors":"Mohaddese Heydari-Fard, Malihe Heydari-Fard, Nematollah Riazi","doi":"10.1142/s0218271823500888","DOIUrl":"https://doi.org/10.1142/s0218271823500888","url":null,"abstract":"By considering Kehagias–Sfetsos black hole in the framework of the Hořava–Lifshitz gravity, we study the optical appearance of such black holes surrounded by spherical accretion flow. For the static/infalling spherical accretion flow, we compute the observed specific intensity as a function of impact parameter. We also investigate the effect of the Hořava parameter and accreting matter on the luminosity of shadows and photon rings. It is found that an increase in the Hořava parameter decreases the shadow size, while the shadows and photon rings luminosities increase. Moreover, we constrain the Hořava parameter from the observational data reported by the Event Horizon Telescope for M87* and Sgr A*.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.1142/s0218271823500876
Tuan Q. Do, Duy H. Nguyen, Tuyen M. Pham
In this paper, we would like to examine whether a novel Starobinsky–Bel–Robinson (SBR) gravity model admits stable exponential inflationary solutions with or without spatial anisotropies. As a result, we are able to derive an exact de Sitter inflationary to this SBR model. Furthermore, we observe that an exact Bianchi type I inflationary solution does not exist in the SBR model. However, we find that a modified SBR model, in which the sign of coefficient of [Formula: see text] term is flipped from positive to negative, can admit the corresponding Bianchi type I inflationary solution. Unfortunately, stability analysis using the dynamical system approach indicates that both of these inflationary solutions turn out to be unstable. Interestingly, we show that a stable de Sitter inflationary solution can be obtained in the modified SBR gravity.
{"title":"Stability investigations of isotropic and anisotropic exponential inflation in the Starobinsky-Bel-Robinson gravity","authors":"Tuan Q. Do, Duy H. Nguyen, Tuyen M. Pham","doi":"10.1142/s0218271823500876","DOIUrl":"https://doi.org/10.1142/s0218271823500876","url":null,"abstract":"In this paper, we would like to examine whether a novel Starobinsky–Bel–Robinson (SBR) gravity model admits stable exponential inflationary solutions with or without spatial anisotropies. As a result, we are able to derive an exact de Sitter inflationary to this SBR model. Furthermore, we observe that an exact Bianchi type I inflationary solution does not exist in the SBR model. However, we find that a modified SBR model, in which the sign of coefficient of [Formula: see text] term is flipped from positive to negative, can admit the corresponding Bianchi type I inflationary solution. Unfortunately, stability analysis using the dynamical system approach indicates that both of these inflationary solutions turn out to be unstable. Interestingly, we show that a stable de Sitter inflationary solution can be obtained in the modified SBR gravity.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"145 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135944968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1142/s0218271823400059
Vitaly A. Beylin, Maxim Yu. Khlopov, Danila O. Sopin
{"title":"Balancing multiple charge particle excess with baryon asymmetry","authors":"Vitaly A. Beylin, Maxim Yu. Khlopov, Danila O. Sopin","doi":"10.1142/s0218271823400059","DOIUrl":"https://doi.org/10.1142/s0218271823400059","url":null,"abstract":"","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"1567 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drake equation of search for extraterrestrial intelligence: a proposal for modification in the light of Dirac's large number hypothesis","authors":"Saibal Ray, Soham Ray, Issa Al-Amri, S.K. Maurya, K.P. Manith Banula","doi":"10.1142/s0218271823500943","DOIUrl":"https://doi.org/10.1142/s0218271823500943","url":null,"abstract":"","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1142/s0218271823420245
Jonathan Oppenheim
Although it's widely believed that gravity should have a quantum nature like every other force, the conceptual obstacles to constructing a quantum theory of gravity compel us to explore other perspectives. Gravity is not like any other force. It alone defines a universal space-time geometry, upon which quantum fields evolve. We feel gravity because matter causes space-time to bend. Time flows at unequal rates at different locations. The rate at which time flows, and the causal structure it provides, may be required to have a classical description in order for quantum theory to be well-formulated. I discuss arguments for this proposition, but ultimately conclude that we must turn to experiment to guide us.
{"title":"Is it time to rethink quantum gravity?","authors":"Jonathan Oppenheim","doi":"10.1142/s0218271823420245","DOIUrl":"https://doi.org/10.1142/s0218271823420245","url":null,"abstract":"Although it's widely believed that gravity should have a quantum nature like every other force, the conceptual obstacles to constructing a quantum theory of gravity compel us to explore other perspectives. Gravity is not like any other force. It alone defines a universal space-time geometry, upon which quantum fields evolve. We feel gravity because matter causes space-time to bend. Time flows at unequal rates at different locations. The rate at which time flows, and the causal structure it provides, may be required to have a classical description in order for quantum theory to be well-formulated. I discuss arguments for this proposition, but ultimately conclude that we must turn to experiment to guide us.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1142/s0218271823500967
Philip D. Mannheim
Second-order-derivative plus fourth-order-derivative gravity is the ultraviolet completion of second-order-derivative quantum Einstein gravity. While it achieves renormalizability through states of negative Dirac norm, the unitarity violation that this would entail can be postponed to Planck energies. As we show in this paper the theory has a different problem, one that occurs at all energy scales, namely that the Dirac norm of the vacuum of the theory is not finite. To establish this we present a procedure for determining the norm of the vacuum in any quantum field theory. With the Dirac norm of the vacuum of the second-order-derivative plus fourth-order-derivative theory not being finite, the Feynman rules that are used to establish renormalizability are not valid, as is the assumption that the theory can be used as an effective theory at energies well below the Planck scale. This lack of finiteness is also manifested in the fact that the Minkowski path integral for the theory is divergent. Because the vacuum Dirac norm is not finite, the Hamiltonian of the theory is not Hermitian. However, it turns out to be $PT$ symmetric. And when one continues the theory into the complex plane and uses the $PT$ symmetry inner product, viz. the overlap of the left-eigenstate of the Hamiltonian with its right-eigenstate, one then finds that for the vacuum this norm is both finite and positive, the Feynman rules now are valid, the Minkowski path integral now is well behaved, and the theory now can serve as a low energy effective theory. Consequently, the theory can now be offered as a fully consistent, unitary and renormalizable theory of quantum gravity.
{"title":"Normalization of the vacuum and the ultraviolet completion of Einstein gravity","authors":"Philip D. Mannheim","doi":"10.1142/s0218271823500967","DOIUrl":"https://doi.org/10.1142/s0218271823500967","url":null,"abstract":"Second-order-derivative plus fourth-order-derivative gravity is the ultraviolet completion of second-order-derivative quantum Einstein gravity. While it achieves renormalizability through states of negative Dirac norm, the unitarity violation that this would entail can be postponed to Planck energies. As we show in this paper the theory has a different problem, one that occurs at all energy scales, namely that the Dirac norm of the vacuum of the theory is not finite. To establish this we present a procedure for determining the norm of the vacuum in any quantum field theory. With the Dirac norm of the vacuum of the second-order-derivative plus fourth-order-derivative theory not being finite, the Feynman rules that are used to establish renormalizability are not valid, as is the assumption that the theory can be used as an effective theory at energies well below the Planck scale. This lack of finiteness is also manifested in the fact that the Minkowski path integral for the theory is divergent. Because the vacuum Dirac norm is not finite, the Hamiltonian of the theory is not Hermitian. However, it turns out to be $PT$ symmetric. And when one continues the theory into the complex plane and uses the $PT$ symmetry inner product, viz. the overlap of the left-eigenstate of the Hamiltonian with its right-eigenstate, one then finds that for the vacuum this norm is both finite and positive, the Feynman rules now are valid, the Minkowski path integral now is well behaved, and the theory now can serve as a low energy effective theory. Consequently, the theory can now be offered as a fully consistent, unitary and renormalizable theory of quantum gravity.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}