Pub Date : 2024-05-10DOI: 10.1142/s0218127424500731
Shengli Chen, Zhiqiang Wu
Phantom attractors in nonlinear systems under additive stochastic excitation have been recently discovered. This paper uncovers the existence of phantom attractors in a single-degree-of-freedom smooth nonlinear equation, which characterizes the vibration of an inextensible beam subjected to lateral stochastic excitation. It also elucidates that the stochastic averaging method, in this context, may lead to qualitatively erroneous probability density functions, identified as one of the reasons why these attractors were previously overlooked. The study then proceeds to analyze the formation process of the phantom attractor and the critical noise intensity associated with it. Subsequently, the key nonlinear term related to the emergence of phantom attractors is identified by observing whether the system still exhibits phantom attractors after the corresponding nonlinear terms are removed. It is revealed that in this system, the presence of phantom attractors is closely linked to the inertia nonlinearity of the hardening type. The system investigated in this paper is simpler compared to previously identified systems capable of generating phantom attractors. This simplicity aids in facilitating research focused on unraveling the general principles behind the formation of phantom attractors.
{"title":"Phantom Attractors in a Single-Degree-of-Freedom Smooth System Under Additive Stochastic Excitation","authors":"Shengli Chen, Zhiqiang Wu","doi":"10.1142/s0218127424500731","DOIUrl":"https://doi.org/10.1142/s0218127424500731","url":null,"abstract":"<p>Phantom attractors in nonlinear systems under additive stochastic excitation have been recently discovered. This paper uncovers the existence of phantom attractors in a single-degree-of-freedom smooth nonlinear equation, which characterizes the vibration of an inextensible beam subjected to lateral stochastic excitation. It also elucidates that the stochastic averaging method, in this context, may lead to qualitatively erroneous probability density functions, identified as one of the reasons why these attractors were previously overlooked. The study then proceeds to analyze the formation process of the phantom attractor and the critical noise intensity associated with it. Subsequently, the key nonlinear term related to the emergence of phantom attractors is identified by observing whether the system still exhibits phantom attractors after the corresponding nonlinear terms are removed. It is revealed that in this system, the presence of phantom attractors is closely linked to the inertia nonlinearity of the hardening type. The system investigated in this paper is simpler compared to previously identified systems capable of generating phantom attractors. This simplicity aids in facilitating research focused on unraveling the general principles behind the formation of phantom attractors.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"155 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1142/s0218127424500767
Hongqiuxue Wu, Zhong Li, Mengxin He
In this paper, we introduce constant-yield prey harvesting into the Holling–Tanner model with generalist predator. We prove that the unique positive equilibrium is a cusp of codimension 4. As the parameter values change, the system exhibits degenerate Bogdanov–Takens bifurcation of codimension 4. Using the resultant elimination method, we show that the positive equilibrium is a weak focus of order 2, and the system undergoes degenerate Hopf bifurcation of codimension 2 and has two limit cycles. By numerical simulations, we demonstrate that the system exhibits homoclinic bifurcation and saddle–node bifurcation of limit cycles as the parameters are varied. The main results show that constant-yield prey harvesting and generalist predator can lead to complex dynamic behavior of the model.
{"title":"Bifurcation Analysis of a Holling–Tanner Model with Generalist Predator and Constant-Yield Harvesting","authors":"Hongqiuxue Wu, Zhong Li, Mengxin He","doi":"10.1142/s0218127424500767","DOIUrl":"https://doi.org/10.1142/s0218127424500767","url":null,"abstract":"<p>In this paper, we introduce constant-yield prey harvesting into the Holling–Tanner model with generalist predator. We prove that the unique positive equilibrium is a cusp of codimension 4. As the parameter values change, the system exhibits degenerate Bogdanov–Takens bifurcation of codimension 4. Using the resultant elimination method, we show that the positive equilibrium is a weak focus of order 2, and the system undergoes degenerate Hopf bifurcation of codimension 2 and has two limit cycles. By numerical simulations, we demonstrate that the system exhibits homoclinic bifurcation and saddle–node bifurcation of limit cycles as the parameters are varied. The main results show that constant-yield prey harvesting and generalist predator can lead to complex dynamic behavior of the model.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"82 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1142/s0218127424500706
Chunyan Gao, Fangqi Chen, Pei Yu
In this work, a new glucose–insulin model incorporating time delay and obesity is developed to gain insights of its dynamical mechanisms. Through the method of multiple scales, we theoretically demonstrate that time delay can drive the system to yield Hopf bifurcation, thereby producing oscillating solutions that are consistent with the simulation results. Moreover, obesity changes the level of glucose, but cannot induce oscillations. In particular, it is found that under the combined effect of obesity and time delay, obesity delays the appearance of Hopf bifurcation which is induced by time delay. Results show that a low calorie diet can achieve therapeutic effects including reducing blood glucose fluctuations and insulin resistance, which can be used as an adjuvant for the treatment of diabetes. In addition, our results indicate that the delay, together with an optimal rate of model parameters can cause a variety of dynamics and induce glucose oscillations. The result obtained in this paper may help to better understand the obesity, diabetes, and the interaction between glucose and insulin, so that control strategies can be designed to better regulate blood glucose levels and fluctuations and mitigate the occurrence of type-2 diabetes.
{"title":"Dynamics of a New Delayed Glucose–Insulin Model with Obesity","authors":"Chunyan Gao, Fangqi Chen, Pei Yu","doi":"10.1142/s0218127424500706","DOIUrl":"https://doi.org/10.1142/s0218127424500706","url":null,"abstract":"<p>In this work, a new glucose–insulin model incorporating time delay and obesity is developed to gain insights of its dynamical mechanisms. Through the method of multiple scales, we theoretically demonstrate that time delay can drive the system to yield Hopf bifurcation, thereby producing oscillating solutions that are consistent with the simulation results. Moreover, obesity changes the level of glucose, but cannot induce oscillations. In particular, it is found that under the combined effect of obesity and time delay, obesity delays the appearance of Hopf bifurcation which is induced by time delay. Results show that a low calorie diet can achieve therapeutic effects including reducing blood glucose fluctuations and insulin resistance, which can be used as an adjuvant for the treatment of diabetes. In addition, our results indicate that the delay, together with an optimal rate of model parameters can cause a variety of dynamics and induce glucose oscillations. The result obtained in this paper may help to better understand the obesity, diabetes, and the interaction between glucose and insulin, so that control strategies can be designed to better regulate blood glucose levels and fluctuations and mitigate the occurrence of type-2 diabetes.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"47 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1142/s021812742430012x
Wen-Hao Wu, Ze-Zheng Li, Wen-Xu Wang
Complex spatiotemporal patterns in nature significantly challenge reductionism-based modern science. The lack of a paradigm beyond reductionism hinders our understanding of the emergence of complexity. The diversity of countless patterns undermines any notion of universal mechanisms. Here, however, we show that breaking the symmetry of three simple and self-organization rules gives rise to nearly all patterns in nature, such as a wide variety of Turing patterns, fractals, spiral, target and plane waves, as well as chaotic patterns. The symmetry breaking is rooted in the basic physical quantities, such as positive and negative forces, space, time and bounds. Besides reproducing the hallmarks of complexity, we discover some novel phenomena, such as abrupt percolation of Turing patterns, phase transition between fractals and chaos, chaotic edge in traveling waves, etc. Our asymmetric self-organization theory established a simple and unified framework for the origin of complexity in all fields, and unveiled a deep relationship between the first principles of physics and the complex world.
{"title":"Symmetry Breaking of Three Self-Organization Rules: A General Theory for the Origin of Complexity","authors":"Wen-Hao Wu, Ze-Zheng Li, Wen-Xu Wang","doi":"10.1142/s021812742430012x","DOIUrl":"https://doi.org/10.1142/s021812742430012x","url":null,"abstract":"<p>Complex spatiotemporal patterns in nature significantly challenge reductionism-based modern science. The lack of a paradigm beyond reductionism hinders our understanding of the emergence of complexity. The diversity of countless patterns undermines any notion of universal mechanisms. Here, however, we show that breaking the symmetry of three simple and self-organization rules gives rise to nearly all patterns in nature, such as a wide variety of Turing patterns, fractals, spiral, target and plane waves, as well as chaotic patterns. The symmetry breaking is rooted in the basic physical quantities, such as positive and negative forces, space, time and bounds. Besides reproducing the hallmarks of complexity, we discover some novel phenomena, such as abrupt percolation of Turing patterns, phase transition between fractals and chaos, chaotic edge in traveling waves, etc. Our asymmetric self-organization theory established a simple and unified framework for the origin of complexity in all fields, and unveiled a deep relationship between the first principles of physics and the complex world.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"185 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1142/s0218127424500743
A. M. Yousef, Sophia R.-J. Jang, A. A. Elsadany
In this paper, we propose a host–parasitoid model with a Holling type-II functional response and incorporate harvest effort. The Holling type-II response leads to saturation in parasitized hosts, creating a potential economic harvesting opportunity. To address overexploitation risks, we integrate a harvest effort function, determining an optimal threshold to prevent depletion. We explore model dynamics and bifurcations, including co-dimension one behaviors such as flip and Neimark–Sacker bifurcations, we provide numerical examples for validation. Our suggested difference-algebraic model, compared to continuous-time models, exhibits rich dynamics within the Nicholson–Bailey host–parasitoid framework.
在本文中,我们提出了一个具有霍林 II 型功能响应的寄主-寄生虫模型,并将收获努力纳入其中。霍林 II 型响应会导致寄生宿主饱和,从而创造潜在的经济收获机会。为了应对过度开发的风险,我们纳入了收获努力函数,以确定防止枯竭的最佳阈值。我们探讨了模型动力学和分岔,包括翻转和 Neimark-Sacker 分岔等共维度一行为,并提供了数值示例进行验证。与连续时间模型相比,我们建议的差分代数模型在尼科尔森-贝利寄主-寄生虫框架内表现出丰富的动态性。
{"title":"Dynamic Complexity of a Nicholson–Bailey Bioeconomic Model with Holling Type-II Functional Response","authors":"A. M. Yousef, Sophia R.-J. Jang, A. A. Elsadany","doi":"10.1142/s0218127424500743","DOIUrl":"https://doi.org/10.1142/s0218127424500743","url":null,"abstract":"<p>In this paper, we propose a host–parasitoid model with a Holling type-II functional response and incorporate harvest effort. The Holling type-II response leads to saturation in parasitized hosts, creating a potential economic harvesting opportunity. To address overexploitation risks, we integrate a harvest effort function, determining an optimal threshold to prevent depletion. We explore model dynamics and bifurcations, including co-dimension one behaviors such as flip and Neimark–Sacker bifurcations, we provide numerical examples for validation. Our suggested difference-algebraic model, compared to continuous-time models, exhibits rich dynamics within the Nicholson–Bailey host–parasitoid framework.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"8 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1142/s0218127424300131
H. T. Moges, M. Katsanikas, P. A. Patsis, M. Hillebrand, Ch. Skokos
We investigate how the phase space structure of a Three-Dimensional (3D) autonomous Hamiltonian system evolves across a series of successive Two-Dimensional (2D) and 3D pitchfork and period-doubling bifurcations, as the transition of the parent families of Periodic Orbits (POs) from stability to simple instability leads to the creation of new stable POs. Our research illustrates the consecutive alterations in the phase space structure near POs as the stability of the main family of POs changes. This process gives rise to new families of POs within the system, either maintaining the same or exhibiting higher multiplicity compared to their parent families. Tracking such a phase space transformation is challenging in a 3D system. By utilizing the color and rotation technique to visualize the Four-Dimensional (4D) Poincaré surfaces of section of the system, i.e. projecting them onto a 3D subspace and employing color to represent the fourth dimension, we can identify distinct structural patterns. Perturbations of parent and bifurcating stable POs result in the creation of tori characterized by a smooth color variation on their surface. Furthermore, perturbations of simple unstable parent POs beyond the bifurcation point, which lead to the birth of new stable families of POs, result in the formation of figure-8 structures of smooth color variations. These figure-8 formations surround well-shaped tori around the bifurcated stable POs, losing their well-defined forms for energies further away from the bifurcation point. We also observe that even slight perturbations of highly unstable POs create a cloud of mixed color points, which rapidly move away from the location of the PO. Our study introduces, for the first time, a systematic visualization of 4D surfaces of section within the vicinity of higher multiplicity POs. It elucidates how, in these cases, the coexistence of regular and chaotic orbits contributes to shaping the phase space landscape.
我们研究了三维(3D)自主哈密顿系统的相空间结构如何在一系列连续的二维(2D)和三维杈形分叉和周期加倍分叉中演变,因为周期轨道(POs)母族从稳定到简单不稳定的转变导致了新稳定 POs 的产生。我们的研究表明,随着周期轨道主族稳定性的变化,周期轨道附近的相空间结构也会发生连续变化。这一过程在系统中产生了新的 POs 族,与其母族相比,这些 POs 要么保持不变,要么表现出更高的多重性。在三维系统中,跟踪这样的相空间转换具有挑战性。通过利用颜色和旋转技术将系统剖面的四维(4D)Poincaré曲面可视化,即把它们投影到三维子空间,并用颜色来表示四维空间,我们可以识别出独特的结构模式。对母波和分叉稳定波的扰动会产生环状结构,其表面具有平滑的颜色变化。此外,对分叉点以外的简单不稳定母波长的扰动会导致新的稳定波长族的诞生,从而形成具有平滑颜色变化的 "8 "字形结构。这些 "8 "字形结构环绕在分叉稳定 PO 周围的形状良好的环状结构周围,当能量进一步远离分叉点时,这些环状结构就会失去其明确的形式。我们还观察到,即使对高度不稳定的 PO 进行轻微扰动,也会产生一团混合色点,并迅速远离 PO 的位置。我们的研究首次对高倍率 PO 附近的 4D 截面进行了系统可视化。它阐明了在这些情况下,规则轨道和混沌轨道的共存是如何塑造相空间景观的。
{"title":"The Evolution of the Phase Space Structure Along Pitchfork and Period-Doubling Bifurcations in a 3D-Galactic Bar Potential","authors":"H. T. Moges, M. Katsanikas, P. A. Patsis, M. Hillebrand, Ch. Skokos","doi":"10.1142/s0218127424300131","DOIUrl":"https://doi.org/10.1142/s0218127424300131","url":null,"abstract":"<p>We investigate how the phase space structure of a Three-Dimensional (3D) autonomous Hamiltonian system evolves across a series of successive Two-Dimensional (2D) and 3D pitchfork and period-doubling bifurcations, as the transition of the parent families of Periodic Orbits (POs) from stability to simple instability leads to the creation of new stable POs. Our research illustrates the consecutive alterations in the phase space structure near POs as the stability of the main family of POs changes. This process gives rise to new families of POs within the system, either maintaining the same or exhibiting higher multiplicity compared to their parent families. Tracking such a phase space transformation is challenging in a 3D system. By utilizing the color and rotation technique to visualize the Four-Dimensional (4D) Poincaré surfaces of section of the system, i.e. projecting them onto a 3D subspace and employing color to represent the fourth dimension, we can identify distinct structural patterns. Perturbations of parent and bifurcating stable POs result in the creation of tori characterized by a smooth color variation on their surface. Furthermore, perturbations of simple unstable parent POs beyond the bifurcation point, which lead to the birth of new stable families of POs, result in the formation of figure-8 structures of smooth color variations. These figure-8 formations surround well-shaped tori around the bifurcated stable POs, losing their well-defined forms for energies further away from the bifurcation point. We also observe that even slight perturbations of highly unstable POs create a cloud of mixed color points, which rapidly move away from the location of the PO. Our study introduces, for the first time, a systematic visualization of 4D surfaces of section within the vicinity of higher multiplicity POs. It elucidates how, in these cases, the coexistence of regular and chaotic orbits contributes to shaping the phase space landscape.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"98 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1142/s0218127424500676
Can Tang, Jiale Chen, Jun Wang
In recent years, many image encryption schemes have adopted Hilbert curves for encryption. In this approach, the Hilbert curve is used to encrypt grayscale images by traversal scrambling. However, the correlation between pixels has not been fully considered and those algorithms are not safe enough. To solve this problem, a new image encryption algorithm based on a new chaotic system of 2D-LICM (Two-Dimensional Linear-Infinite-Collapse Chaotic Map) and an improved Hilbert curve is proposed in this paper. First, we propose a new 2D-chaotic system to address the shortcoming that the commonly used chaotic systems are too simple in scope and complexity. Then, a new image encryption algorithm is proposed using the newly designed 2D-LICM and the improved Hilbert curve. The proposed algorithm uses Hilbert curve to reduce the correlation between adjacent pixels of the image at the pixel and bit levels and increase the scrambling and diffusion effects. Simulation and security analysis results show that the proposed scheme has high security and is superior to several advanced image encryption algorithms.
{"title":"Image Encryption Algorithm Based on 2D-Linear-Infinite-Collapse Chaotic Map and Improved Hilbert Curve","authors":"Can Tang, Jiale Chen, Jun Wang","doi":"10.1142/s0218127424500676","DOIUrl":"https://doi.org/10.1142/s0218127424500676","url":null,"abstract":"<p>In recent years, many image encryption schemes have adopted Hilbert curves for encryption. In this approach, the Hilbert curve is used to encrypt grayscale images by traversal scrambling. However, the correlation between pixels has not been fully considered and those algorithms are not safe enough. To solve this problem, a new image encryption algorithm based on a new chaotic system of 2D-LICM (Two-Dimensional Linear-Infinite-Collapse Chaotic Map) and an improved Hilbert curve is proposed in this paper. First, we propose a new 2D-chaotic system to address the shortcoming that the commonly used chaotic systems are too simple in scope and complexity. Then, a new image encryption algorithm is proposed using the newly designed 2D-LICM and the improved Hilbert curve. The proposed algorithm uses Hilbert curve to reduce the correlation between adjacent pixels of the image at the pixel and bit levels and increase the scrambling and diffusion effects. Simulation and security analysis results show that the proposed scheme has high security and is superior to several advanced image encryption algorithms.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"8 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1142/s0218127424300106
Antonio Palacios, Visarath In, Mani Amani
Disorder in parameters appears to influence the collective behavior of complex adaptive networks in ways that might seem unconventional. For instance, heterogeneities may, unexpectedly, lead to enhanced regions of existence of stable synchronization states. This behavior is unexpected because synchronization appears, generically, in symmetric networks with homogeneous components. Related works have, however, misidentified cases where disorder seems to play a critical role in enhancing synchronization, where it is actually not the case. Thus, in order to clarify the role of disorder in adaptive networks, we use normal forms to study, mathematically, when and how the presence of disorder can facilitate the emergence of collective patterns. We employ parameter symmetry breaking to study the interplay between disorder and the underlying bifurcations that determine the conditions for the existence and stability of collective behavior. This work provides a rigorous justification for a certain barycentric condition to be imposed on the heterogeneity of the parameters while studying the synchronization state. Theoretical results are accompanied by numerical simulations, which help clarify incorrect claims of disorder purportedly enhancing synchronization states.
{"title":"Disorder-Induced Dynamics in Complex Networks","authors":"Antonio Palacios, Visarath In, Mani Amani","doi":"10.1142/s0218127424300106","DOIUrl":"https://doi.org/10.1142/s0218127424300106","url":null,"abstract":"<p>Disorder in parameters appears to influence the collective behavior of complex adaptive networks in ways that might seem unconventional. For instance, heterogeneities may, unexpectedly, lead to enhanced regions of existence of stable synchronization states. This behavior is unexpected because synchronization appears, generically, in symmetric networks with homogeneous components. Related works have, however, misidentified cases where disorder seems to play a critical role in enhancing synchronization, where it is actually not the case. Thus, in order to clarify the role of disorder in adaptive networks, we use normal forms to study, mathematically, when and how the presence of disorder can facilitate the emergence of collective patterns. We employ parameter symmetry breaking to study the interplay between disorder and the underlying bifurcations that determine the conditions for the existence and stability of collective behavior. This work provides a rigorous justification for a certain barycentric condition to be imposed on the heterogeneity of the parameters while studying the synchronization state. Theoretical results are accompanied by numerical simulations, which help clarify incorrect claims of disorder purportedly enhancing synchronization states.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"230 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1142/s0218127424500664
Jaume Giné, Jaume Llibre
The Riccati polynomial differential systems are differential systems of the form , , where and for are polynomial functions. We characterize all the Riccati polynomial differential systems having an invariant algebraic curve. We show that the coefficients of the first four highest degree terms of the polynomial in the variable defining the invariant algebraic curve determine completely the Riccati differential system. A similar result is obtained for any Abel polynomial differential system.
Riccati 多项式微分方程系是形式为 x′=c0(x),y′=b0(x)+b1(x)y+b2(x)y2 的微分方程系,其中 i=0,1,2 的 c0 和 bi 是多项式函数。我们描述了所有具有不变代数曲线的 Riccati 多项式微分方程系统。我们证明,定义不变代数曲线的变量 y 的多项式的前四个最高阶项的系数完全决定了 Riccati 微分系统。对于任何阿贝尔多项式微分方程系,都可以得到类似的结果。
{"title":"Characterization of the Riccati and Abel Polynomial Differential Systems Having Invariant Algebraic Curves","authors":"Jaume Giné, Jaume Llibre","doi":"10.1142/s0218127424500664","DOIUrl":"https://doi.org/10.1142/s0218127424500664","url":null,"abstract":"<p>The Riccati polynomial differential systems are differential systems of the form <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mi>y</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><span></span> are polynomial functions. We characterize all the Riccati polynomial differential systems having an invariant algebraic curve. We show that the coefficients of the first four highest degree terms of the polynomial in the variable <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>y</mi></math></span><span></span> defining the invariant algebraic curve determine completely the Riccati differential system. A similar result is obtained for any Abel polynomial differential system.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"258 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1142/s0218127424500640
Rong Wu, Guanrong Chen, Jibin Li
For the optical soliton model in fifth-order weakly nonlocal nonlinear media, to find its exact explicit solutions, the corresponding traveling wave system is formulated as a planar dynamical system with a singular straight line. Then, by using techniques from dynamical systems and singular traveling wave theory developed by [Li & Chen, 2007] to analyze the planar system and find the corresponding phase portraits, the dynamical behavior of the amplitude component can be assessed. Under different parameter conditions, exact explicit solitary wave solutions, periodic wave solutions, kink, and anti-kink wave solutions, compacton solutions, as well as peakons and periodic peakons are found with precise formulations.
{"title":"Bifurcations and Exact Solutions of Optical Soliton Models in Fifth-Order Weakly Nonlocal Nonlinear Media","authors":"Rong Wu, Guanrong Chen, Jibin Li","doi":"10.1142/s0218127424500640","DOIUrl":"https://doi.org/10.1142/s0218127424500640","url":null,"abstract":"<p>For the optical soliton model in fifth-order weakly nonlocal nonlinear media, to find its exact explicit solutions, the corresponding traveling wave system is formulated as a planar dynamical system with a singular straight line. Then, by using techniques from dynamical systems and singular traveling wave theory developed by [Li & Chen, 2007] to analyze the planar system and find the corresponding phase portraits, the dynamical behavior of the amplitude component can be assessed. Under different parameter conditions, exact explicit solitary wave solutions, periodic wave solutions, kink, and anti-kink wave solutions, compacton solutions, as well as peakons and periodic peakons are found with precise formulations.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"61 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}