首页 > 最新文献

International Journal of Bifurcation and Chaos最新文献

英文 中文
Bifurcation Regulations Induced by Joint Noise in a Tri-Rhythmic Van Der Pol System 三节奏范德波尔系统中由联合噪声诱发的分岔规则
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-19 DOI: 10.1142/s0218127424500512
Jing Yuan, Lijuan Ning, Ze Li

Tri-rhythmical nature has attracted extensive attention from scholars in describing the dynamical behaviors of self-sustained systems. In this paper, we consider a tri-rhythmic van der Pol system and give a bifurcation analysis of a stochastic tri-rhythmic self-sustained system under joint noise perturbation. Based on an approximate approach, we give the stationary probability density function of amplitudes, and we find that the noise and time-delay feedback, regulating the velocity time-delay feedback strength parameter, may not cause transitions among unimodal, bimodal and trimodal in the tri-rhythmic system. More stochastic bifurcations appear by regulating the time delay in this system. The system, surprisingly, undergoes five times of stochastic bifurcations when the time delay is monotonically increased. It is shown that the time delay is more sensitive to the tri-rhythmic system and a much stronger dependence on the system. From a biological point of view, the reaction rate of biological molecules can be enhanced or diminished by the change of the noise intensity or correlation time of Gaussian colored noise. More surprisingly, an increase in displacement feedback will delay the reaction rate; however, the effect of an increase in velocity feedback on the reaction rate depends on the time delay. A detailed research on the parameter space indicates that time delay and colored noise parameters can effectively control the multirhythmicity of the system. Finally, this paper verifies the effectiveness of the theoretical solution through the numerical results of Monte Carlo simulation of the original system. These results may help to further explore forking bifurcations in real-world applications. This research provides new insight into the understanding of nontrivial effects of joint noise on the tri-rhythmic system.

在描述自持系统的动力学行为时,三节律性引起了学者们的广泛关注。本文考虑了三节律范德尔波尔系统,给出了联合噪声扰动下随机三节律自持系统的分岔分析。基于近似方法,我们给出了振幅的静态概率密度函数,并发现调节速度时延反馈强度参数的噪声和时延反馈可能不会导致三节律系统在单模态、双模态和三模态之间转换。通过调节该系统的时延,会出现更多的随机分岔。令人惊讶的是,当时间延迟单调增加时,系统会出现五次随机分岔。研究表明,时间延迟对三节奏系统更为敏感,对系统的依赖性也更强。从生物学角度来看,生物分子的反应速率可以通过高斯彩色噪声的噪声强度或相关时间的变化而增强或减弱。更令人惊讶的是,位移反馈的增加会延迟反应速率;然而,速度反馈的增加对反应速率的影响取决于时间延迟。对参数空间的详细研究表明,时间延迟和彩色噪声参数可以有效地控制系统的多节奏性。最后,本文通过对原始系统进行蒙特卡罗模拟的数值结果验证了理论解决方案的有效性。这些结果可能有助于在实际应用中进一步探索分叉问题。这项研究为理解联合噪声对三节奏系统的非微观影响提供了新的见解。
{"title":"Bifurcation Regulations Induced by Joint Noise in a Tri-Rhythmic Van Der Pol System","authors":"Jing Yuan, Lijuan Ning, Ze Li","doi":"10.1142/s0218127424500512","DOIUrl":"https://doi.org/10.1142/s0218127424500512","url":null,"abstract":"<p>Tri-rhythmical nature has attracted extensive attention from scholars in describing the dynamical behaviors of self-sustained systems. In this paper, we consider a tri-rhythmic van der Pol system and give a bifurcation analysis of a stochastic tri-rhythmic self-sustained system under joint noise perturbation. Based on an approximate approach, we give the stationary probability density function of amplitudes, and we find that the noise and time-delay feedback, regulating the velocity time-delay feedback strength parameter, may not cause transitions among unimodal, bimodal and trimodal in the tri-rhythmic system. More stochastic bifurcations appear by regulating the time delay in this system. The system, surprisingly, undergoes five times of stochastic bifurcations when the time delay is monotonically increased. It is shown that the time delay is more sensitive to the tri-rhythmic system and a much stronger dependence on the system. From a biological point of view, the reaction rate of biological molecules can be enhanced or diminished by the change of the noise intensity or correlation time of Gaussian colored noise. More surprisingly, an increase in displacement feedback will delay the reaction rate; however, the effect of an increase in velocity feedback on the reaction rate depends on the time delay. A detailed research on the parameter space indicates that time delay and colored noise parameters can effectively control the multirhythmicity of the system. Finally, this paper verifies the effectiveness of the theoretical solution through the numerical results of Monte Carlo simulation of the original system. These results may help to further explore forking bifurcations in real-world applications. This research provides new insight into the understanding of nontrivial effects of joint noise on the tri-rhythmic system.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"2 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Successive Doubly Nested Mixed-Mode Oscillations 连续双嵌套混合模式振荡分析
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-19 DOI: 10.1142/s0218127424500445
Hidetaka Ito, Naohiko Inaba
<p>In previous works [Inaba & Kousaka, 2020; Inaba & Tsubone, 2020; Inaba <i>et al.</i>, 2023], significant bifurcation structures referred to as nested Mixed-Mode Oscillations (MMOs) were found to be present in forced Bonhoeffer–van der Pol (BVP) oscillators. It is well known that unnested Mixed-Mode Oscillation-Incrementing Bifurcations (MMOIBs) can generate <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mo stretchy="false">[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy="false">×</mo><mi>m</mi><mo stretchy="false">]</mo></math></span><span></span> oscillations (i.e. <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> followed by <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> repeated <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mi>m</mi></math></span><span></span> times) for successive values of <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>m</mi></math></span><span></span>, where <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> and <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> are adjacent fundamental simple MMOs, e.g. <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msup></math></span><span></span> and <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mn>1</mn></mrow><mrow><mi>s</mi><mo stretchy="false">+</mo><mn>1</mn></mrow></msup></math></span><span></span>, where <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mi>s</mi></math></span><span></span> is an integer. Furthermore, it has been confirmed that MMOIBs can generate nested MMOs. Let two adjacent unnested MMOIB-generated MMOs be denoted <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy="false">×</mo><mi>m</mi><mo stretchy="false">]</mo><mo stretchy="false">)</mo></math></span><span></span> and <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy="false">(</mo>
在以前的研究中[Inaba & Kousaka, 2020; Inaba & Tsubone, 2020; Inaba et al., 2023],人们发现在强迫邦霍夫-范德波尔(BVP)振荡器中存在重要的分岔结构,即嵌套混合模式振荡(MMOs)。众所周知,未嵌套的混合模式振荡递增分岔(MMOIBs)可在连续的 m 值下产生 [A0,B0×m] 振荡(即 A0 之后 B0 重复 m 次),其中 A0 和 B0 是相邻的基本简单 MMO,例如 A0=1s 和 B0=1s+1 ,其中 s 是整数。此外,已经证实 MMOIB 可以生成嵌套 MMO。让两个相邻的非嵌套 MMOIB 生成的 MMO 分别表示为 A1(=[A0,B0×m])和 B1(=[A0,B0×(m+1)])。然后,单嵌套 MMOIB 可以为连续的 p 值生成 [A1,B1×p],即在 A1 和 B1 生成区域之间,先生成 A1,然后再生成 B1,重复 p 次。以前的工作[Ito et al., 2021]详细研究了单嵌套 MMO 的顺序生成。然而,嵌套 MMO 至少可以是双嵌套的。在本研究中,我们考虑了一个包含理想化二极管的受约束非自主 BVP 振荡器,研究了双嵌套 MMO。基于该系统的观测动力学,我们在一维范围内严格构建了波恩卡莱回归图。因此,我们可以使用嵌套(即双环)分叉法求解连续鞍节点分岔。我们跟踪了 60 个连续的双嵌套 MMOIB,不排除 MMOIB 间隔对应的 58 个缩放常数收敛到统一的可能性。我们注意到,由于我们在求解分岔方程时避免了使用需要仔细选择初始条件的方法(如牛顿-拉斐森),因此我们可以准确地跟踪鞍节点分岔,而不会遗漏任何双嵌套 MMO 序列。
{"title":"Analysis of Successive Doubly Nested Mixed-Mode Oscillations","authors":"Hidetaka Ito, Naohiko Inaba","doi":"10.1142/s0218127424500445","DOIUrl":"https://doi.org/10.1142/s0218127424500445","url":null,"abstract":"&lt;p&gt;In previous works [Inaba &amp; Kousaka, 2020; Inaba &amp; Tsubone, 2020; Inaba &lt;i&gt;et al.&lt;/i&gt;, 2023], significant bifurcation structures referred to as nested Mixed-Mode Oscillations (MMOs) were found to be present in forced Bonhoeffer–van der Pol (BVP) oscillators. It is well known that unnested Mixed-Mode Oscillation-Incrementing Bifurcations (MMOIBs) can generate &lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;×&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; oscillations (i.e. &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; followed by &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; repeated &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; times) for successive values of &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; are adjacent fundamental simple MMOs, e.g. &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is an integer. Furthermore, it has been confirmed that MMOIBs can generate nested MMOs. Let two adjacent unnested MMOIB-generated MMOs be denoted &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;×&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"266 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Parameter Bifurcations and Hidden Attractors in a Class of 3D Linear Filippov Systems 一类三维线性菲利波夫系统中的双参数分岔和隐藏吸引子
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-19 DOI: 10.1142/s0218127424500524
Zhouchao Wei, Fanrui Wang

We take into consideration two different kinds of two-parameter bifurcations in a class of 3D linear Filippov systems, namely pseudo-Bautin bifurcation and boundary equilibrium bifurcations for two scenarios. The bifurcation conditions for generating rich dynamic behaviors are established. The main objective is to investigate the effects of two parameters interacting simultaneously on a variety of dynamic phenomena. In order to analyze the pseudo-Bautin bifurcation, we build the Poincaré map and analyze the number of fixed points whose types are related to the crossing limit cycles. In order to analyze boundary equilibrium bifurcations for two scenarios, we perform an analysis on the existence and admissibility of equilibria. Besides, a comprehensive investigation on hidden attractors induced by boundary equilibrium bifurcations is conducted. The novelty resides in overcoming the constraints of previous studies that solely take into account the dynamics of individual parameter variations. We innovatively characterize the two-parameter bifurcation mechanism of a new class of Filippov systems, and qualitatively demonstrate the coexistence of hidden attractor and stable pseudo-equilibrium.

我们考虑了一类三维线性菲利波夫系统中两种不同的双参数分岔,即两种情况下的伪鲍廷分岔和边界平衡分岔。建立了产生丰富动态行为的分岔条件。主要目的是研究两个参数同时相互作用对各种动态现象的影响。为了分析伪鲍廷分岔,我们建立了波恩卡莱图,并分析了其类型与交叉极限循环相关的固定点数量。为了分析两种情况下的边界平衡分岔,我们对平衡的存在性和可接受性进行了分析。此外,我们还对边界平衡分岔诱发的隐吸引子进行了全面研究。新颖之处在于克服了以往研究中仅考虑单个参数变化动态的局限性。我们创新性地描述了一类新的菲利波夫系统的双参数分岔机制,并定性地证明了隐藏吸引子和稳定伪平衡的共存。
{"title":"Two-Parameter Bifurcations and Hidden Attractors in a Class of 3D Linear Filippov Systems","authors":"Zhouchao Wei, Fanrui Wang","doi":"10.1142/s0218127424500524","DOIUrl":"https://doi.org/10.1142/s0218127424500524","url":null,"abstract":"<p>We take into consideration two different kinds of two-parameter bifurcations in a class of 3D linear Filippov systems, namely pseudo-Bautin bifurcation and boundary equilibrium bifurcations for two scenarios. The bifurcation conditions for generating rich dynamic behaviors are established. The main objective is to investigate the effects of two parameters interacting simultaneously on a variety of dynamic phenomena. In order to analyze the pseudo-Bautin bifurcation, we build the Poincaré map and analyze the number of fixed points whose types are related to the crossing limit cycles. In order to analyze boundary equilibrium bifurcations for two scenarios, we perform an analysis on the existence and admissibility of equilibria. Besides, a comprehensive investigation on hidden attractors induced by boundary equilibrium bifurcations is conducted. The novelty resides in overcoming the constraints of previous studies that solely take into account the dynamics of individual parameter variations. We innovatively characterize the two-parameter bifurcation mechanism of a new class of Filippov systems, and qualitatively demonstrate the coexistence of hidden attractor and stable pseudo-equilibrium.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"23 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Dynamic Analysis and Forecasting of Symmetric Aerostatic Cavities Bearing Systems 对称气静空腔支承系统的非线性动态分析与预测
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-16 DOI: 10.1142/s0218127424300088
Ta-Jen Peng, Ping-Huan Kuo, Wei-Cheng Huang, Cheng-Chi Wang

Symmetric Aerostatic Cavities Bearing (SACB) systems have attracted increasing attention in the field of high-precision machinery, particularly rotational mechanisms applied at ultra-high speeds. In an air bearing system, the air bearing serves as the main support, and the load-carrying capacity is not as high as that of oil film bearings. However, the aero-spindle can operate at considerably high rotational speeds with relatively lower heat generated from rotation compared with that of oil film bearings. In addition, the operating environment of air bearings does not easily cause the rotor to deform. Hence, through adequate design, air pressure systems exhibit a certain level of stability. In general, the pressure distribution function of air bearings exhibits strong nonlinearity when there are changes in the rotor mass or rotational speed, or when the bearing system is inadequately designed. These issues may lead to instabilities in the rotor, such as unpredictable nonperiodic movements, rotor collisions, or even chaotic movements under certain parameters. In this study, rotor oscillation was analyzed using the maximum Lyapunov exponent to identify whether chaotic behavior occurred. Machine learning methods were then used to establish models and predict the rotor behavior. Especially, random forest and extreme gradient boosting were combined to develop a new model and confirm whether this model offered higher prediction performance and more accurate results in predicting tendencies with considerable changes compared with other models. The results can be effectively used to predict the SACB system and prevent nonlinear behavior from occurring.

在高精密机械领域,尤其是在超高速旋转机构中,对称静压气室轴承(SACB)系统越来越受到关注。在空气轴承系统中,空气轴承作为主要支撑,其承载能力不如油膜轴承高。但是,与油膜轴承相比,空气主轴可以在相当高的转速下运行,且旋转产生的热量相对较低。此外,空气轴承的工作环境不易导致转子变形。因此,通过适当的设计,气压系统具有一定的稳定性。一般来说,当转子质量或转速发生变化,或轴承系统设计不当时,空气轴承的压力分布函数会表现出很强的非线性。这些问题可能会导致转子的不稳定性,如不可预测的非周期性运动、转子碰撞,甚至在特定参数下的混沌运动。在本研究中,我们使用最大 Lyapunov 指数对转子振荡进行了分析,以确定是否发生了混沌行为。然后使用机器学习方法建立模型并预测转子行为。特别是将随机森林和极端梯度提升相结合,建立了一个新的模型,并确认了与其他模型相比,该模型是否具有更高的预测性能和更准确的预测结果。其结果可有效用于预测 SACB 系统,防止非线性行为的发生。
{"title":"Nonlinear Dynamic Analysis and Forecasting of Symmetric Aerostatic Cavities Bearing Systems","authors":"Ta-Jen Peng, Ping-Huan Kuo, Wei-Cheng Huang, Cheng-Chi Wang","doi":"10.1142/s0218127424300088","DOIUrl":"https://doi.org/10.1142/s0218127424300088","url":null,"abstract":"<p>Symmetric Aerostatic Cavities Bearing (SACB) systems have attracted increasing attention in the field of high-precision machinery, particularly rotational mechanisms applied at ultra-high speeds. In an air bearing system, the air bearing serves as the main support, and the load-carrying capacity is not as high as that of oil film bearings. However, the aero-spindle can operate at considerably high rotational speeds with relatively lower heat generated from rotation compared with that of oil film bearings. In addition, the operating environment of air bearings does not easily cause the rotor to deform. Hence, through adequate design, air pressure systems exhibit a certain level of stability. In general, the pressure distribution function of air bearings exhibits strong nonlinearity when there are changes in the rotor mass or rotational speed, or when the bearing system is inadequately designed. These issues may lead to instabilities in the rotor, such as unpredictable nonperiodic movements, rotor collisions, or even chaotic movements under certain parameters. In this study, rotor oscillation was analyzed using the maximum Lyapunov exponent to identify whether chaotic behavior occurred. Machine learning methods were then used to establish models and predict the rotor behavior. Especially, random forest and extreme gradient boosting were combined to develop a new model and confirm whether this model offered higher prediction performance and more accurate results in predicting tendencies with considerable changes compared with other models. The results can be effectively used to predict the SACB system and prevent nonlinear behavior from occurring.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"42 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiparameter Bifurcation Analysis of Power Systems Integrating Large-Scale Solar Photovoltaic and Wind Farms Power Plants 集成大型太阳能光伏发电站和风力发电站的电力系统的多参数分岔分析
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-15 DOI: 10.1142/s0218127424500299
Abdelaziz Salah Saidi, Muneer Parayangat, Mohamed Ali Rakrouki, Saad M. Saad, Naser El Naily

In this paper, we propose a novel codimension-three-parameter bifurcation analysis of equilibria and limit cycles when integrating Renewable Energy Sources (RESs) power plants with an exponential static load model. The study investigates the effect of solar photovoltaic generation margin, wind power generation margin, and loading factor on the local bifurcation of the modified IEEE nine-bus system. The proposed technique considers the real case of the West System Coordination Council (WSCC), the western states of the USA, by using specific models of RES power plants and static loads. The proposed technique helps to create a set of linearly varying parameters for critical operating points of nonlinear systems. The study explores detailed voltage stability analysis through the examination of bifurcation diagrams. The Hopf, limit-induced, and saddle-node bifurcation branches are identified, defining the parameter space’s stable and unstable operational regions. Additionally, the stability regions surrounding the equilibrium points are diligently explored, clarifying the consequences that various bifurcations may exert on these regions. The study offered in this proposed work aids in determining the best ways to monitor and improve these margins while considering system variables and load design.

本文提出了一种新颖的三参数分岔分析方法,用于分析可再生能源(RES)发电厂与指数静态负载模型整合时的平衡和极限循环。研究探讨了太阳能光伏发电裕量、风力发电裕量和负载系数对修改后的 IEEE 九总线系统局部分岔的影响。所提技术考虑了美国西部各州西部系统协调委员会(WSCC)的实际情况,使用了可再生能源发电厂和静态负载的特定模型。所提出的技术有助于为非线性系统的关键运行点创建一组线性变化参数。该研究通过对分岔图的研究,探索了详细的电压稳定性分析。研究确定了霍普夫分岔、极限诱导分岔和鞍节点分岔分支,定义了参数空间的稳定和不稳定运行区域。此外,还对平衡点周围的稳定区域进行了深入探讨,明确了各种分岔对这些区域可能产生的影响。这项研究有助于在考虑系统变量和负载设计的同时,确定监控和改善这些裕度的最佳方法。
{"title":"Multiparameter Bifurcation Analysis of Power Systems Integrating Large-Scale Solar Photovoltaic and Wind Farms Power Plants","authors":"Abdelaziz Salah Saidi, Muneer Parayangat, Mohamed Ali Rakrouki, Saad M. Saad, Naser El Naily","doi":"10.1142/s0218127424500299","DOIUrl":"https://doi.org/10.1142/s0218127424500299","url":null,"abstract":"<p>In this paper, we propose a novel codimension-three-parameter bifurcation analysis of equilibria and limit cycles when integrating Renewable Energy Sources (RESs) power plants with an exponential static load model. The study investigates the effect of solar photovoltaic generation margin, wind power generation margin, and loading factor on the local bifurcation of the modified IEEE nine-bus system. The proposed technique considers the real case of the West System Coordination Council (WSCC), the western states of the USA, by using specific models of RES power plants and static loads. The proposed technique helps to create a set of linearly varying parameters for critical operating points of nonlinear systems. The study explores detailed voltage stability analysis through the examination of bifurcation diagrams. The Hopf, limit-induced, and saddle-node bifurcation branches are identified, defining the parameter space’s stable and unstable operational regions. Additionally, the stability regions surrounding the equilibrium points are diligently explored, clarifying the consequences that various bifurcations may exert on these regions. The study offered in this proposed work aids in determining the best ways to monitor and improve these margins while considering system variables and load design.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"28 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weak Sensitive Compactness for Linear Operators 线性算子的弱敏感紧凑性
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-12 DOI: 10.1142/s0218127424500160
Quanquan Yao, Peiyong Zhu
<p>Let <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></math></span><span></span> be a linear dynamical system, where <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mi>X</mi></math></span><span></span> is a separable Banach space and <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mi>T</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span><span></span> is a bounded linear operator. We show that if <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></math></span><span></span> is invertible, then <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></math></span><span></span> is weakly sensitive compact if and only if <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></math></span><span></span> is thickly weakly sensitive compact; and that there exists a system <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy="false">×</mo><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span> such that:</p><table border="0" list-type="order" width="95%"><tr><td valign="top">(1)</td><td colspan="5" valign="top"><p><span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy="false">×</mo><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span> is cofinitely weakly sensitive compact;</p></td></tr><tr><td valign="top">(2)</td><td colspan="5" valign="top"><p><span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></math></span><span></span> and <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span> are weakly sensitive compact; and</p></td></tr><tr><td valign="top">(3)</td><td colspan="5" valign="top"><p><span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></math></span><span></span> and <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span> are not syndetically weakly sensitive compact.</p></td></tr></table><p>We also show that if <span><math altimg="eq-00013.gif" display="inline" overflow="scroll"><mo stretchy="false">(
设 (X,T) 是线性动力系统,其中 X 是可分离的巴拿赫空间,T:X→X 是有界线性算子。我们证明,如果(X,T)是可逆的,那么当且仅当(X,T)是厚弱敏感紧凑时,(X,T)才是弱敏感紧凑的;并且存在这样一个系统(X×Y,T×S):(1)(X×Y,T×S)是共弱敏感紧凑的;(2)(X,T)和(Y,S)是弱敏感紧凑的;(3)(X,T)和(Y,S)不是联合弱敏感紧凑的。我们还证明,如果 (X,T) 是弱敏感紧凑的,其中 X 是复巴纳赫空间,那么 T 的谱满足单位圆。
{"title":"Weak Sensitive Compactness for Linear Operators","authors":"Quanquan Yao, Peiyong Zhu","doi":"10.1142/s0218127424500160","DOIUrl":"https://doi.org/10.1142/s0218127424500160","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; be a linear dynamical system, where &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is a separable Banach space and &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is a bounded linear operator. We show that if &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is invertible, then &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is weakly sensitive compact if and only if &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is thickly weakly sensitive compact; and that there exists a system &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;×&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;×&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; such that:&lt;/p&gt;&lt;table border=\"0\" list-type=\"order\" width=\"95%\"&gt;&lt;tr&gt;&lt;td valign=\"top\"&gt;(1)&lt;/td&gt;&lt;td colspan=\"5\" valign=\"top\"&gt;&lt;p&gt;&lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;×&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;×&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is cofinitely weakly sensitive compact;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td valign=\"top\"&gt;(2)&lt;/td&gt;&lt;td colspan=\"5\" valign=\"top\"&gt;&lt;p&gt;&lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; are weakly sensitive compact; and&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td valign=\"top\"&gt;(3)&lt;/td&gt;&lt;td colspan=\"5\" valign=\"top\"&gt;&lt;p&gt;&lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; are not syndetically weakly sensitive compact.&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/table&gt;&lt;p&gt;We also show that if &lt;span&gt;&lt;math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Fear and Group Defense on the Dynamics of a Predator–Prey System 恐惧和群体防御对捕食者-猎物系统动态的影响
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-12 DOI: 10.1142/s0218127424500196
Soumitra Pal, Sarbari Karmakar, Saheb Pal, Nikhil Pal, A. K. Misra, Joydev Chattopadhyay

To reduce the chance of predation, many prey species adopt group defense mechanisms. While it is commonly believed that such defense mechanisms lead to positive feedback on prey density, a closer observation reveals that it may impact the growth rate of species. This is because individuals invest more time and effort in defense rather than reproductive activities. In this study, we delve into a predator–prey system where predator-induced fear influences the birth rate of prey, and the prey species exhibit group defense mechanism. We adopt a nonmonotonic functional response to govern the predator–prey interaction, which effectively captures the group defense mechanism. We present a detailed mathematical analysis, encompassing the determination of feasible equilibria and their stability conditions. Through the analytical approach, we demonstrate the occurrence of Hopf and Bogdanov–Takens (BT) bifurcations. We observe two distinct types of bistabilities in the system: one between interior and predator-free equilibria, and another between limit cycle and predator-free equilibrium. Our findings reveal that the parameters associated with group defense and predator-induced fear play significant roles in the survival and extinction of populations.

为了减少被捕食的机会,许多猎物物种都采取了群防机制。虽然人们普遍认为这种防御机制会对猎物密度产生正反馈,但仔细观察就会发现,它可能会影响物种的生长速度。这是因为个体将更多的时间和精力投入到防御而非繁殖活动中。在本研究中,我们深入研究了捕食者-猎物系统,在该系统中,捕食者引起的恐惧会影响猎物的出生率,而猎物物种会表现出群体防御机制。我们采用非单调功能响应来控制捕食者与猎物之间的相互作用,从而有效地捕捉到了群体防御机制。我们进行了详细的数学分析,包括可行均衡及其稳定性条件的确定。通过分析方法,我们证明了霍普夫和波格丹诺夫-塔肯斯(BT)分岔的发生。我们在系统中观察到两种不同类型的双稳态:一种是内部平衡和无捕食者平衡之间的双稳态,另一种是极限循环和无捕食者平衡之间的双稳态。我们的研究结果表明,与群体防御和捕食者引起的恐惧相关的参数在种群的生存和灭绝中起着重要作用。
{"title":"Impact of Fear and Group Defense on the Dynamics of a Predator–Prey System","authors":"Soumitra Pal, Sarbari Karmakar, Saheb Pal, Nikhil Pal, A. K. Misra, Joydev Chattopadhyay","doi":"10.1142/s0218127424500196","DOIUrl":"https://doi.org/10.1142/s0218127424500196","url":null,"abstract":"<p>To reduce the chance of predation, many prey species adopt group defense mechanisms. While it is commonly believed that such defense mechanisms lead to positive feedback on prey density, a closer observation reveals that it may impact the growth rate of species. This is because individuals invest more time and effort in defense rather than reproductive activities. In this study, we delve into a predator–prey system where predator-induced fear influences the birth rate of prey, and the prey species exhibit group defense mechanism. We adopt a nonmonotonic functional response to govern the predator–prey interaction, which effectively captures the group defense mechanism. We present a detailed mathematical analysis, encompassing the determination of feasible equilibria and their stability conditions. Through the analytical approach, we demonstrate the occurrence of Hopf and Bogdanov–Takens (BT) bifurcations. We observe two distinct types of bistabilities in the system: one between interior and predator-free equilibria, and another between limit cycle and predator-free equilibrium. Our findings reveal that the parameters associated with group defense and predator-induced fear play significant roles in the survival and extinction of populations.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"23 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bistability and Bifurcations of Tumor Dynamics with Immune Escape and the Chimeric Antigen Receptor T-Cell Therapy 免疫逃逸和嵌合抗原受体 T 细胞疗法带来的肿瘤动态双稳态和分叉现象
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-12 DOI: 10.1142/s0218127424500159
Shaoli Wang, Tengfei Wang, Xiyan Bai, Shaoping Ji, Tianhai Tian

Tumor immune escape refers to the inability of the immune system to clear tumor cells, which is one of the major obstacles in designing effective treatment schemes for cancer diseases. Although clinical studies have led to promising treatment outcomes, it is imperative to design theoretical models to investigate the long-term treatment effects. In this paper, we develop a mathematical model to study the interactions among tumor cells, immune escape tumor cells, and T lymphocyte. The chimeric antigen receptor (CAR) T-cell therapy is also described by the mathematical model. Bifurcation analysis shows that there exists backward bifurcation and saddle-node bifurcation when the immune intensity is used as the bifurcation parameter. The proposed model also exhibits bistability when its parameters are located between the saddle-node threshold and backward bifurcation threshold. Sensitivity analysis is performed to illustrate the effects of different mechanisms on the backward bifurcation threshold and basic immune reproduction number. Simulation studies confirm the bifurcation analysis results and predict various types of treatment outcomes using different CAR T-cell therapy strengths. Analysis and simulation results show that the immune intensity can be used to control the tumor size, but it has no effect on the control of the immune escape tumor size. The introduction of the CAR T-cell therapy will reduce the immune escape tumor size and the treatment effect depends on the CAR T-cell therapy strength.

肿瘤免疫逃逸是指免疫系统无法清除肿瘤细胞,这是设计癌症疾病有效治疗方案的主要障碍之一。虽然临床研究取得了可喜的治疗效果,但设计理论模型来研究长期治疗效果也势在必行。本文建立了一个数学模型来研究肿瘤细胞、免疫逃逸肿瘤细胞和 T 淋巴细胞之间的相互作用。数学模型还描述了嵌合抗原受体(CAR)T 细胞疗法。分岔分析表明,当使用免疫强度作为分岔参数时,存在向后分岔和鞍节点分岔。当参数位于鞍节点阈值和向后分叉阈值之间时,所提出的模型也表现出双稳态。通过敏感性分析,说明了不同机制对向后分叉阈值和基本免疫繁殖数的影响。模拟研究证实了分叉分析结果,并预测了使用不同 CAR T 细胞疗法强度的各类治疗结果。分析和模拟结果表明,免疫强度可以用来控制肿瘤大小,但对控制免疫逃逸肿瘤大小没有影响。CAR T 细胞疗法的引入将减少免疫逃逸肿瘤的大小,治疗效果取决于 CAR T 细胞疗法的强度。
{"title":"Bistability and Bifurcations of Tumor Dynamics with Immune Escape and the Chimeric Antigen Receptor T-Cell Therapy","authors":"Shaoli Wang, Tengfei Wang, Xiyan Bai, Shaoping Ji, Tianhai Tian","doi":"10.1142/s0218127424500159","DOIUrl":"https://doi.org/10.1142/s0218127424500159","url":null,"abstract":"<p>Tumor immune escape refers to the inability of the immune system to clear tumor cells, which is one of the major obstacles in designing effective treatment schemes for cancer diseases. Although clinical studies have led to promising treatment outcomes, it is imperative to design theoretical models to investigate the long-term treatment effects. In this paper, we develop a mathematical model to study the interactions among tumor cells, immune escape tumor cells, and T lymphocyte. The chimeric antigen receptor (CAR) T-cell therapy is also described by the mathematical model. Bifurcation analysis shows that there exists backward bifurcation and saddle-node bifurcation when the immune intensity is used as the bifurcation parameter. The proposed model also exhibits bistability when its parameters are located between the saddle-node threshold and backward bifurcation threshold. Sensitivity analysis is performed to illustrate the effects of different mechanisms on the backward bifurcation threshold and basic immune reproduction number. Simulation studies confirm the bifurcation analysis results and predict various types of treatment outcomes using different CAR T-cell therapy strengths. Analysis and simulation results show that the immune intensity can be used to control the tumor size, but it has no effect on the control of the immune escape tumor size. The introduction of the CAR T-cell therapy will reduce the immune escape tumor size and the treatment effect depends on the CAR T-cell therapy strength.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"15 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On–Off Intermittency and Long-Term Reactivity in a Host–Parasitoid Model with a Deterministic Driver 具有确定性驱动因素的寄主-寄生虫模型中的间歇性和长期反应性
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-12 DOI: 10.1142/s021812742450041x
Fasma Diele, Deborah Lacitignola, Angela Monti

Bursting behaviors, driven by environmental variability, can substantially influence ecosystem services and functions and have the potential to cause abrupt population breakouts in host–parasitoid systems. We explore the impact of environment on the host–parasitoid interaction by investigating separately the effect of grazing-dependent habitat variation on the host density and the effect of environmental fluctuations on the average host population growth rate. We hence focus on the discrete host–parasitoid Beddington–Free–Lawton model and show that a more comprehensive mathematical study of the dynamics behind the onset of on–off intermittency in host–parasitoid systems may be achieved by considering a deterministic, chaotic system that represents the dynamics of the environment. To this aim, some of the key model parameters are allowed to vary in time according to an evolution law that can exhibit chaotic behavior. Fixed points and stability properties of the resulting 3D nonlinear discrete dynamical system are investigated and on–off intermittency is found to emerge strictly above the blowout bifurcation threshold. We show, however, that, in some cases, this phenomenon can also emerge in the sub-threshold. We hence introduce the novel concept of long-term reactivity and show that it can be considered as a necessary condition for the onset of on–off intermittency. Investigations in the time-dependent regimes and kurtosis maps are provided to support the above results. Our study also suggests how important it is to carefully monitor environmental variability caused by random fluctuations in natural factors or by anthropogenic disturbances in order to minimize its effects on throphic interactions and protect the potential function of parasitoids as biological control agents.

由环境变异驱动的爆发行为会严重影响生态系统的服务和功能,并有可能导致寄主-寄生虫系统中种群的突然爆发。我们分别研究了依赖于放牧的生境变化对寄主密度的影响和环境波动对寄主种群平均增长率的影响,从而探索环境对寄主-寄生虫相互作用的影响。因此,我们将重点放在离散的寄主-寄生虫贝丁顿-弗里-劳顿模型上,并表明通过考虑一个代表环境动态的确定性混沌系统,可以对寄主-寄生虫系统中间歇性发作背后的动力学进行更全面的数学研究。为此,允许一些关键的模型参数根据可表现出混沌行为的演化规律随时间变化。我们对由此产生的三维非线性离散动力系统的定点和稳定性进行了研究,发现在井喷分岔阈值之上会严格出现通断间歇现象。然而,我们发现,在某些情况下,这种现象也可能出现在亚阈值处。因此,我们引入了长期反应性这一新颖概念,并证明它可被视为通断间歇性出现的必要条件。我们还对随时间变化的状态和峰度图进行了研究,以支持上述结果。我们的研究还表明,仔细监测由自然因素的随机波动或人为干扰引起的环境变异,以尽量减少其对营养体相互作用的影响,保护寄生虫作为生物防治剂的潜在功能,是非常重要的。
{"title":"On–Off Intermittency and Long-Term Reactivity in a Host–Parasitoid Model with a Deterministic Driver","authors":"Fasma Diele, Deborah Lacitignola, Angela Monti","doi":"10.1142/s021812742450041x","DOIUrl":"https://doi.org/10.1142/s021812742450041x","url":null,"abstract":"<p>Bursting behaviors, driven by environmental variability, can substantially influence ecosystem services and functions and have the potential to cause abrupt population breakouts in host–parasitoid systems. We explore the impact of environment on the host–parasitoid interaction by investigating separately the effect of grazing-dependent habitat variation on the host density and the effect of environmental fluctuations on the average host population growth rate. We hence focus on the discrete host–parasitoid Beddington–Free–Lawton model and show that a more comprehensive mathematical study of the dynamics behind the onset of on–off intermittency in host–parasitoid systems may be achieved by considering a deterministic, chaotic system that represents the dynamics of the environment. To this aim, some of the key model parameters are allowed to vary in time according to an evolution law that can exhibit chaotic behavior. Fixed points and stability properties of the resulting 3D nonlinear discrete dynamical system are investigated and on–off intermittency is found to emerge strictly above the blowout bifurcation threshold. We show, however, that, in some cases, this phenomenon can also emerge in the sub-threshold. We hence introduce the novel concept of long-term reactivity and show that it can be considered as a necessary condition for the onset of on–off intermittency. Investigations in the time-dependent regimes and kurtosis maps are provided to support the above results. Our study also suggests how important it is to carefully monitor environmental variability caused by random fluctuations in natural factors or by anthropogenic disturbances in order to minimize its effects on throphic interactions and protect the potential function of parasitoids as biological control agents.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"23 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilization of Laminars in Chaos Intermittency 混沌间歇中的层流稳定
IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-12 DOI: 10.1142/s021812742450024x
Michiru Katayama, Kenji Ikeda, Tetsushi Ueta

Chaos intermittency is composed of a laminar regime, which exhibits almost periodic motion, and a burst regime, which exhibits chaotic motion; it is known that in chaos intermittency, switching between these regimes occurs irregularly. In the laminar regime of chaos intermittency, the periodic solution before the saddle node bifurcation is closely related to its generation, and its behavior becomes periodic in a short time; the laminar is not, however, a periodic solution, and there are no unstable periodic solutions nearby. Most chaos control methods cannot be applied to the problem of stabilizing a laminar response to a periodic solution since they refer to information about unstable periodic orbits. In this paper, we demonstrate a control method that can be applied to the control target with laminar phase of a dynamical system exhibiting chaos intermittency. This method records the time series of a periodic solution prior to the saddle node bifurcation as a pseudo-periodic orbit and feeds it back to the control target. We report that when this control method is applied to a circuit model, laminar motion can be stabilized to a periodic solution via control inputs of very small magnitude, for which robust control can be obtained.

混沌间歇由层态和突变态组成,层态表现为几乎周期性的运动,突变态表现为混沌运动;众所周知,在混沌间歇中,这两种态之间的切换是不规则的。在混沌间歇的层态中,鞍节点分岔前的周期解与其产生密切相关,其行为在短时间内变得周期性;然而层态并非周期解,附近也没有不稳定的周期解。大多数混沌控制方法都无法应用于稳定层流响应周期解的问题,因为这些方法参考的是不稳定周期轨道的信息。在本文中,我们展示了一种可应用于表现出混沌间歇性的动态系统层相控制目标的控制方法。该方法将鞍节点分岔前的周期解的时间序列记录为伪周期轨道,并将其反馈给控制目标。我们报告说,当这种控制方法应用于电路模型时,层流运动可通过极小幅度的控制输入稳定为周期解,从而获得稳健控制。
{"title":"Stabilization of Laminars in Chaos Intermittency","authors":"Michiru Katayama, Kenji Ikeda, Tetsushi Ueta","doi":"10.1142/s021812742450024x","DOIUrl":"https://doi.org/10.1142/s021812742450024x","url":null,"abstract":"<p>Chaos intermittency is composed of a laminar regime, which exhibits almost periodic motion, and a burst regime, which exhibits chaotic motion; it is known that in chaos intermittency, switching between these regimes occurs irregularly. In the laminar regime of chaos intermittency, the periodic solution before the saddle node bifurcation is closely related to its generation, and its behavior becomes periodic in a short time; the laminar is not, however, a periodic solution, and there are no unstable periodic solutions nearby. Most chaos control methods cannot be applied to the problem of stabilizing a laminar response to a periodic solution since they refer to information about unstable periodic orbits. In this paper, we demonstrate a control method that can be applied to the control target with laminar phase of a dynamical system exhibiting chaos intermittency. This method records the time series of a periodic solution prior to the saddle node bifurcation as a pseudo-periodic orbit and feeds it back to the control target. We report that when this control method is applied to a circuit model, laminar motion can be stabilized to a periodic solution via control inputs of very small magnitude, for which robust control can be obtained.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"16 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Bifurcation and Chaos
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1