Requirement engineering (RE), a systematic process of eliciting, defining, analyzing, and managing requirements, is a vital phase in systems engineering. In RE, requirement traceability establishes the relationship between the artifacts and supports requirement validation, change management, and impact analysis. Establishing requirement traceability is challenging, especially in the early stages of a complex system design, as requirements constantly evolve and change. Moreover, the involvement of distributed stakeholders in system development introduces collaboration and trust issues. This paper outlines a novel blockchain-based requirement traceability framework that includes a data acquisition template and graph-based visualization. The template enables dual-level traceability (artifact and object) in the RE processes. The traceability information acquired through the templates is stored in the blockchain, where traces are embedded in blocks’ metadata and data. Furthermore, the blockchain is represented as a Neo4J property graph where traces can be retrieved using Cypher queries, thus enabling a mechanism to query and examine the history of requirements. The framework’s efficacy is showcased by documenting the RE process of an autonomous automotive system. Our results indicated that the framework can record the history of artifacts with constantly changing requirements and can yield secure decentralized ledgers of requirement artifacts. The proposed distributed traceability framework has shown promise to enhance stakeholder collaboration and trust. However, additional user studies should be conducted to bolster our results.