首页 > 最新文献

Information Systems最新文献

英文 中文
Storage Management with Multi-Version Partitioned BTrees 多版本分区 BTrees 的存储管理
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-05-15 DOI: 10.1016/j.is.2024.102403
Christian Riegger, Ilia Petrov

Modern persistent Key/Value-Stores operate on updatable datasets — massively exceeding the size of available main memory. Tree-based key/value storage management structures became particularly popular in storage engines. B+-Trees allow constant search performance, however write-heavy workloads yield inefficient write patterns to secondary storage devices and poor performance characteristics. LSM-Trees overcome this issue by horizontal partitioning fractions of data — small enough to fully reside in main memory, but require frequent maintenance to sustain search performance.

To this end, firstly, we propose Multi-Version Partitioned BTrees (MV-PBT) as sole storage and index management structure in key-sorted storage engines like Key/Value-Stores. Secondly, we compare MV-PBT against LSM-Trees. The logical horizontal partitioning in MV-PBT allows leveraging recent advances in modern B+-Tree techniques in a small transparent and memory resident portion of the structure. Structural properties sustain steady read performance, even on historical data, and yield efficient write patterns as well as reduced write-amplification.

We integrate MV-PBT in the WiredTiger key/value storage engine. MV-PBT offers an up to 2x increased steady throughput in comparison to LSM-Trees and several orders of magnitude in comparison to B+-Trees in a YCSB workload. Moreover, MV-PBT exhibits robust time-travel query performance and outperforms LSM-Trees by 20% and B+-Trees by an order of magnitude.

现代持久性键/值存储是在可更新的数据集上运行的,这大大超出了可用主内存的大小。基于树的键/值存储管理结构在存储引擎中尤其流行。B+ 树允许持续的搜索性能,但写入量大的工作负载会导致向二级存储设备的写入模式效率低下,性能特性较差。为此,我们首先提出了多版本分区 BTrees(Multi-Version Partitioned BTrees,MV-PBT),作为键排序存储引擎(如键/值存储引擎)中唯一的存储和索引管理结构。其次,我们将 MV-PBT 与 LSM-Trees 进行了比较。MV-PBT 中的逻辑水平分区允许在结构的一小部分透明和内存驻留中利用现代 B+-Tree 技术的最新进展。结构特性可保持稳定的读取性能(即使是历史数据),并产生高效的写入模式以及减少写入放大。我们将 MV-PBT 集成到 WiredTiger 键/值存储引擎中。在 YCSB 工作负载中,与 LSM-Trees 相比,MV-PBT 的稳定吞吐量最多提高了 2 倍,与 B+-Trees 相比则提高了几个数量级。此外,MV-PBT 还具有强大的时间旅行查询性能,比 LSM-Trees 高出 20%,比 B+-Trees 高出一个数量级。
{"title":"Storage Management with Multi-Version Partitioned BTrees","authors":"Christian Riegger,&nbsp;Ilia Petrov","doi":"10.1016/j.is.2024.102403","DOIUrl":"https://doi.org/10.1016/j.is.2024.102403","url":null,"abstract":"<div><p>Modern persistent Key/Value-Stores operate on updatable datasets — massively exceeding the size of available main memory. Tree-based key/value storage management structures became particularly popular in storage engines. B<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-Trees allow constant search performance, however write-heavy workloads yield inefficient write patterns to secondary storage devices and poor performance characteristics. LSM-Trees overcome this issue by horizontal partitioning fractions of data — small enough to fully reside in main memory, but require frequent maintenance to sustain search performance.</p><p>To this end, firstly, we propose Multi-Version Partitioned BTrees (MV-PBT) as sole storage and index management structure in key-sorted storage engines like Key/Value-Stores. Secondly, we compare MV-PBT against LSM-Trees. The logical horizontal partitioning in MV-PBT allows leveraging recent advances in modern B<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-Tree techniques in a small transparent and memory resident portion of the structure. Structural properties sustain steady read performance, even on historical data, and yield efficient write patterns as well as reduced write-amplification.</p><p>We integrate MV-PBT in the WiredTiger key/value storage engine. MV-PBT offers an up to 2x increased steady throughput in comparison to LSM-Trees and several orders of magnitude in comparison to B<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-Trees in a YCSB workload. Moreover, MV-PBT exhibits robust time-travel query performance and outperforms LSM-Trees by 20% and B<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-Trees by an order of magnitude.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102403"},"PeriodicalIF":3.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000619/pdfft?md5=cd0642883c73bb282d5d3104ee04d813&pid=1-s2.0-S0306437924000619-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognizing task-level events from user interaction data 从用户交互数据中识别任务级事件
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-05-15 DOI: 10.1016/j.is.2024.102404
Adrian Rebmann , Han van der Aa

User interaction data comprises events that capture individual actions that a user performs on their computer. Such events provide detailed records about how users carry out their tasks in a process, even when this involves different applications. Although the comprehensiveness of such data provides a promising basis for process mining, user interaction events cannot be used directly for this purpose, because they do not meet two essential requirements. In particular, they neither indicate their relation to a process-level activity nor their relation to a specific process execution. Therefore, user interaction data needs to be transformed so that it meets these requirements before process mining techniques can be applied. This transformation problem comprises identifying tasks and their types and determining the relation between tasks and process executions. While some existing approaches tackle parts of this problem, none address it comprehensively. Therefore, we propose an unsupervised approach for recognizing task-level events from user interaction data that addresses it in full. It segments user interaction data to identify tasks, categorizes these according to their type, and relates tasks to each other via object instances it extracts from the user interaction events. In this manner, our approach creates task-level events that meet the requirements of process mining settings. Our evaluation demonstrates the approach’s efficacy and shows that its combined consideration of control-flow, data, and semantic information allows it to outperform baseline approaches in both online and offline settings.

用户交互数据包括捕捉用户在计算机上执行的单个操作的事件。这些事件详细记录了用户在流程中执行任务的情况,即使涉及不同的应用程序。虽然此类数据的全面性为流程挖掘提供了一个很好的基础,但用户交互事件不能直接用于此目的,因为它们不符合两个基本要求。特别是,它们既没有表明与流程级活动的关系,也没有表明与特定流程执行的关系。因此,在应用流程挖掘技术之前,需要对用户交互数据进行转换,使其满足这些要求。这一转换问题包括识别任务及其类型,以及确定任务与流程执行之间的关系。虽然现有的一些方法解决了这一问题的部分内容,但没有一种方法能全面解决这一问题。因此,我们提出了一种从用户交互数据中识别任务级事件的无监督方法,以全面解决这一问题。该方法可分割用户交互数据以识别任务,根据任务类型对任务进行分类,并通过从用户交互事件中提取的对象实例将任务相互联系起来。通过这种方式,我们的方法可以创建符合流程挖掘设置要求的任务级事件。我们的评估证明了这一方法的有效性,并表明它对控制流、数据和语义信息的综合考虑使其在在线和离线环境中均优于基准方法。
{"title":"Recognizing task-level events from user interaction data","authors":"Adrian Rebmann ,&nbsp;Han van der Aa","doi":"10.1016/j.is.2024.102404","DOIUrl":"10.1016/j.is.2024.102404","url":null,"abstract":"<div><p>User interaction data comprises events that capture individual actions that a user performs on their computer. Such events provide detailed records about how users carry out their tasks in a process, even when this involves different applications. Although the comprehensiveness of such data provides a promising basis for process mining, user interaction events cannot be used directly for this purpose, because they do not meet two essential requirements. In particular, they neither indicate their relation to a process-level activity nor their relation to a specific process execution. Therefore, user interaction data needs to be transformed so that it meets these requirements before process mining techniques can be applied. This transformation problem comprises identifying tasks and their types and determining the relation between tasks and process executions. While some existing approaches tackle parts of this problem, none address it comprehensively. Therefore, we propose an unsupervised approach for recognizing task-level events from user interaction data that addresses it in full. It segments user interaction data to identify tasks, categorizes these according to their type, and relates tasks to each other via object instances it extracts from the user interaction events. In this manner, our approach creates task-level events that meet the requirements of process mining settings. Our evaluation demonstrates the approach’s efficacy and shows that its combined consideration of control-flow, data, and semantic information allows it to outperform baseline approaches in both online and offline settings.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102404"},"PeriodicalIF":3.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000620/pdfft?md5=6b076d025b548fc182dc1f86d4b2885e&pid=1-s2.0-S0306437924000620-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning complex predicates for cardinality estimation using recursive neural networks 利用递归神经网络学习复杂谓词以进行卡方估计
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-05-08 DOI: 10.1016/j.is.2024.102402
Zhi Wang , Hancong Duan , Yamin Cheng , Geyong Min

Cardinality estimation is one of the most vital components in the query optimizer, which has been extensively studied recently. On one hand, traditional cardinality estimators, such as histograms and sampling methods, struggle to capture the correlations between multiple tables. On the other hand, current learning-based methods still suffer from the feature extraction of complex predicates and join relations, which will lead to inaccurate cost estimation, eventually a sub-optimal execution plan. To address these challenges, we present a novel end-to-end architecture leveraging deep learning to provide high-quality cardinality estimation. We exploit an effective feature extraction technique, which can fully make use of the structure of tables, join conditions and predicates. Besides, we use sampling-based technique to construct sample bitmaps for the tables and join conditions respectively. We also utilize the characteristics of predicate tree combined with recursive neural network to extract deep-level features of complex predicates. Finally, we embed these feature vectors into the model, which consists of three components: a recursive neural network, a graph convolutional neural network (GCN) and a multi-set convolutional neural network, to obtain the estimated cardinality. Extensive results conducted on real-world workloads demonstrate that our approach can achieve significant improvement in accuracy and be extended to queries with complex semantics.

卡片性估计是查询优化器中最重要的组成部分之一,近来已得到广泛研究。一方面,直方图和抽样方法等传统的卡片性估计方法难以捕捉到多个表之间的相关性。另一方面,当前基于学习的方法仍然存在复杂谓词和连接关系的特征提取问题,这将导致成本估计不准确,最终产生次优执行计划。为了应对这些挑战,我们提出了一种新颖的端到端架构,利用深度学习来提供高质量的万有引力估计。我们利用有效的特征提取技术,可以充分利用表的结构、连接条件和谓词。此外,我们还使用基于采样的技术,分别为表和连接条件构建样本位图。我们还利用谓词树的特点,结合递归神经网络,提取复杂谓词的深层次特征。最后,我们将这些特征向量嵌入到由递归神经网络、图卷积神经网络(GCN)和多集卷积神经网络三部分组成的模型中,以获得估计的卡入度。在实际工作负载中取得的大量结果表明,我们的方法可以显著提高准确性,并可扩展到具有复杂语义的查询。
{"title":"Learning complex predicates for cardinality estimation using recursive neural networks","authors":"Zhi Wang ,&nbsp;Hancong Duan ,&nbsp;Yamin Cheng ,&nbsp;Geyong Min","doi":"10.1016/j.is.2024.102402","DOIUrl":"10.1016/j.is.2024.102402","url":null,"abstract":"<div><p>Cardinality estimation is one of the most vital components in the query optimizer, which has been extensively studied recently. On one hand, traditional cardinality estimators, such as histograms and sampling methods, struggle to capture the correlations between multiple tables. On the other hand, current learning-based methods still suffer from the feature extraction of complex predicates and join relations, which will lead to inaccurate cost estimation, eventually a sub-optimal execution plan. To address these challenges, we present a novel end-to-end architecture leveraging deep learning to provide high-quality cardinality estimation. We exploit an effective feature extraction technique, which can fully make use of the structure of tables, join conditions and predicates. Besides, we use sampling-based technique to construct sample bitmaps for the tables and join conditions respectively. We also utilize the characteristics of predicate tree combined with recursive neural network to extract deep-level features of complex predicates. Finally, we embed these feature vectors into the model, which consists of three components: a recursive neural network, a graph convolutional neural network (GCN) and a multi-set convolutional neural network, to obtain the estimated cardinality. Extensive results conducted on real-world workloads demonstrate that our approach can achieve significant improvement in accuracy and be extended to queries with complex semantics.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102402"},"PeriodicalIF":3.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141048672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BF-BigGraph: An efficient subgraph isomorphism approach using machine learning for big graph databases BF-BigGraph:利用机器学习为大型图数据库提供高效的子图同构方法
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-05-06 DOI: 10.1016/j.is.2024.102401
Adnan Yazici , Ezgi Taşkomaz

Graph databases are flexible NoSQL databases used to efficiently store and query complex and big data. One of the most difficult problems in graph databases is the problem of subgraph isomorphism, which involves finding a matching pattern in a given graph. Subgraph isomorphism algorithms generally encounter problems in the efficient processing of complex queries based on a lack of pruning methods and the use of a matching order. In this study, we present a new subgraph isomorphism approach based on the best-first search design strategy and name it BF-BigGraph. Our approach includes a machine learning technique to efficiently find the best matching order for various complex queries. The parameters we used in our approach as heuristics to improve the performance of complex queries on graph-based NoSQL databases are database volatility, database size, type of query, and the size of the query. We utilized the Random Forest machine learning method to narrow candidate nodes to a higher level of search and effectively reduce the search space for efficient querying and retrieval. We compared BF-BigGraph with state-of-the-art approaches, namely BB-Graph, Neo4j’s Cypher, DualIso, GraphQL, TurboIso, and VF3 using publicly available databases including undirected graphs; WorldCup, Pokec, Youtube, and a big graph database of a real demographic application (a population database) with approximately 70 million nodes of a big directed graph. The performance results of our approach for different types of complex queries on all these databases are significantly better in terms of computation time and required memory than other competing approaches in the literature.

图数据库是一种灵活的 NoSQL 数据库,用于高效地存储和查询复杂的海量数据。图数据库中最困难的问题之一是子图同构问题,它涉及在给定图中找到匹配模式。由于缺乏剪枝方法和使用匹配顺序,子图同构算法在高效处理复杂查询时通常会遇到问题。在本研究中,我们提出了一种基于最佳优先搜索设计策略的新型子图同构方法,并将其命名为 BF-BigGraph。我们的方法包括一种机器学习技术,可高效地为各种复杂查询找到最佳匹配顺序。在我们的方法中,我们使用了数据库波动性、数据库大小、查询类型和查询大小等参数作为启发式方法,以提高基于图的 NoSQL 数据库上复杂查询的性能。我们利用随机森林(Random Forest)机器学习方法将候选节点缩小到更高层次的搜索范围,并有效缩小搜索空间,从而实现高效查询和检索。我们使用公开的数据库(包括无向图、WorldCup、Pokec、Youtube 和一个真实人口应用的大图数据库(人口数据库))对 BF-BigGraph 和最先进的方法(即 BB-Graph、Neo4j 的 Cypher、DualIso、GraphQL、TurboIso 和 VF3)进行了比较,这些数据库包含约 7000 万个节点的大有向图。在所有这些数据库上进行不同类型的复杂查询时,我们的方法在计算时间和所需内存方面都明显优于文献中的其他竞争方法。
{"title":"BF-BigGraph: An efficient subgraph isomorphism approach using machine learning for big graph databases","authors":"Adnan Yazici ,&nbsp;Ezgi Taşkomaz","doi":"10.1016/j.is.2024.102401","DOIUrl":"10.1016/j.is.2024.102401","url":null,"abstract":"<div><p>Graph databases are flexible NoSQL databases used to efficiently store and query complex and big data. One of the most difficult problems in graph databases is the problem of subgraph isomorphism, which involves finding a matching pattern in a given graph. Subgraph isomorphism algorithms generally encounter problems in the efficient processing of complex queries based on a lack of pruning methods and the use of a matching order. In this study, we present a new subgraph isomorphism approach based on the best-first search design strategy and name it BF-BigGraph. Our approach includes a machine learning technique to efficiently find the best matching order for various complex queries. The parameters we used in our approach as heuristics to improve the performance of complex queries on graph-based NoSQL databases are database volatility, database size, type of query, and the size of the query. We utilized the Random Forest machine learning method to narrow candidate nodes to a higher level of search and effectively reduce the search space for efficient querying and retrieval. We compared BF-BigGraph with state-of-the-art approaches, namely BB-Graph, Neo4j’s Cypher, DualIso, GraphQL, TurboIso, and VF3 using publicly available databases including undirected graphs; WorldCup, Pokec, Youtube, and a big graph database of a real demographic application (a population database) with approximately 70 million nodes of a big directed graph. The performance results of our approach for different types of complex queries on all these databases are significantly better in terms of computation time and required memory than other competing approaches in the literature.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102401"},"PeriodicalIF":3.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responsible composition and optimization of integration processes under correctness preserving guarantees 在保证正确性的前提下,负责任地组成和优化集成流程
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-30 DOI: 10.1016/j.is.2024.102400
Daniel Ritter , Fredrik Nordvall Forsberg , Stefanie Rinderle-Ma

Enterprise Application Integration deals with the problem of connecting heterogeneous applications, and is the centerpiece of current on-premise, cloud and device integration scenarios. For integration scenarios, structurally correct composition of patterns into processes and improvements of integration processes are crucial. In order to achieve this, we formalize compositions of integration patterns based on their characteristics, and describe optimization strategies that help to reduce the model complexity, and improve the process execution efficiency using design time techniques. Using the formalism of timed DB-nets – a refinement of Petri nets – we model integration logic features such as control- and data flow, transactional data storage, compensation and exception handling, and time aspects that are present in reoccurring solutions as separate integration patterns. We then propose a realization of optimization strategies using graph rewriting, and prove that the optimizations we consider preserve both structural and functional correctness. We evaluate the improvements on a real-world catalog of pattern compositions, containing over 900 integration processes, and illustrate the correctness properties in case studies based on two of these processes.

企业应用集成涉及异构应用的连接问题,是当前内部部署、云和设备集成方案的核心。对于集成方案来说,从结构上正确地将模式组成流程并改进集成流程至关重要。为了实现这一目标,我们根据集成模式的特点对其组合进行了形式化,并介绍了有助于降低模型复杂性的优化策略,以及利用设计时间技术提高流程执行效率的方法。使用定时 DB 网(Petri 网的一种改进)的形式主义,我们将控制流和数据流、事务数据存储、补偿和异常处理等集成逻辑特征以及重复出现的解决方案中的时间方面作为单独的集成模式进行建模。然后,我们提出了一种使用图重写的优化策略,并证明了我们所考虑的优化策略既能保持结构正确性,又能保持功能正确性。我们在一个包含 900 多个集成流程的实际模式组合目录中对改进进行了评估,并在基于其中两个流程的案例研究中说明了正确性属性。
{"title":"Responsible composition and optimization of integration processes under correctness preserving guarantees","authors":"Daniel Ritter ,&nbsp;Fredrik Nordvall Forsberg ,&nbsp;Stefanie Rinderle-Ma","doi":"10.1016/j.is.2024.102400","DOIUrl":"https://doi.org/10.1016/j.is.2024.102400","url":null,"abstract":"<div><p>Enterprise Application Integration deals with the problem of connecting heterogeneous applications, and is the centerpiece of current on-premise, cloud and device integration scenarios. For integration scenarios, structurally correct composition of patterns into processes and improvements of integration processes are crucial. In order to achieve this, we formalize compositions of integration patterns based on their characteristics, and describe optimization strategies that help to reduce the model complexity, and improve the process execution efficiency using design time techniques. Using the formalism of timed DB-nets – a refinement of Petri nets – we model integration logic features such as control- and data flow, transactional data storage, compensation and exception handling, and time aspects that are present in reoccurring solutions as separate integration patterns. We then propose a realization of optimization strategies using graph rewriting, and prove that the optimizations we consider preserve both structural and functional correctness. We evaluate the improvements on a real-world catalog of pattern compositions, containing over 900 integration processes, and illustrate the correctness properties in case studies based on two of these processes.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102400"},"PeriodicalIF":3.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue with Best Papers from ICPM 2022 国际清洁生产大会 2022 年最佳论文特刊
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-21 DOI: 10.1016/j.is.2024.102389
Andrea Burattin, Artem Polyvyanyy, Barbara Weber
{"title":"Special Issue with Best Papers from ICPM 2022","authors":"Andrea Burattin,&nbsp;Artem Polyvyanyy,&nbsp;Barbara Weber","doi":"10.1016/j.is.2024.102389","DOIUrl":"10.1016/j.is.2024.102389","url":null,"abstract":"","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102389"},"PeriodicalIF":3.7,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TransLSTD: Augmenting hierarchical disease risk prediction model with time and context awareness via disease clustering TransLSTD:通过疾病聚类增强分层疾病风险预测模型的时间和上下文意识
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-19 DOI: 10.1016/j.is.2024.102390
Tao You , Qiaodong Dang , Qing Li , Peng Zhang , Guanzhong Wu , Wei Huang

The use of electronic health records has become widespread, providing a valuable source of information for predicting disease risk. While deep neural network models have been proposed and shown to be effective in this task, supplemented with medical domain knowledge for interpretability, several limitations still exist. Firstly, there is often a lack of differentiation between chronic and acute diseases leading to biased modeling of diseases. Secondly, the extraction of patient single-layer temporal patterns is limited, which hinders comprehensive representation and predictive power. Thirdly, weak interpretability based on deep neural networks prevents the extraction of valuable medical knowledge, limiting practical applications. To overcome these challenges, we propose TransLSTD, a hierarchical model that incorporates time awareness and context awareness while distinguishing between long-term and short-term diseases. TransLSTD uses clustering algorithms to classify disease types based on the occurrence feature matrix of diseases from EHR dataset and updates disease representation at the code level while creating patient visit embeddings. The model utilizes query vectors to incorporate visit context information and combines time data to capture the patient’s overall health status. Finally, the prediction module generates outcomes and provides effective interpretations. We demonstrate the effectiveness of TransLSTD using two real-world datasets, outperforming state-of-the-art models in terms of both AUC and F1 values. The data and code are released at https://github.com/DangQD/TransLSTD-master.

电子健康记录的使用已经非常普遍,为预测疾病风险提供了宝贵的信息来源。虽然深度神经网络模型已被提出并证明能有效地完成这项任务,并辅以医学领域知识以提高可解释性,但仍存在一些局限性。首先,慢性病和急性病之间往往缺乏区分,导致疾病建模存在偏差。其次,对患者单层时间模式的提取有限,这阻碍了综合表征和预测能力。第三,基于深度神经网络的可解释性较弱,无法提取有价值的医学知识,限制了实际应用。为了克服这些挑战,我们提出了 TransLSTD,这是一种分层模型,结合了时间感知和上下文感知,同时区分了长期和短期疾病。TransLSTD 采用聚类算法,根据电子病历数据集的疾病发生特征矩阵对疾病类型进行分类,并在创建患者就诊嵌入的同时更新代码级的疾病表示。该模型利用查询向量来整合就诊上下文信息,并结合时间数据来捕捉患者的整体健康状态。最后,预测模块生成结果并提供有效解释。我们使用两个真实数据集证明了 TransLSTD 的有效性,其 AUC 和 F1 值均优于最先进的模型。数据和代码发布于 https://github.com/DangQD/TransLSTD-master。
{"title":"TransLSTD: Augmenting hierarchical disease risk prediction model with time and context awareness via disease clustering","authors":"Tao You ,&nbsp;Qiaodong Dang ,&nbsp;Qing Li ,&nbsp;Peng Zhang ,&nbsp;Guanzhong Wu ,&nbsp;Wei Huang","doi":"10.1016/j.is.2024.102390","DOIUrl":"https://doi.org/10.1016/j.is.2024.102390","url":null,"abstract":"<div><p>The use of electronic health records has become widespread, providing a valuable source of information for predicting disease risk. While deep neural network models have been proposed and shown to be effective in this task, supplemented with medical domain knowledge for interpretability, several limitations still exist. Firstly, there is often a lack of differentiation between chronic and acute diseases leading to biased modeling of diseases. Secondly, the extraction of patient single-layer temporal patterns is limited, which hinders comprehensive representation and predictive power. Thirdly, weak interpretability based on deep neural networks prevents the extraction of valuable medical knowledge, limiting practical applications. To overcome these challenges, we propose TransLSTD, a hierarchical model that incorporates time awareness and context awareness while distinguishing between long-term and short-term diseases. TransLSTD uses clustering algorithms to classify disease types based on the occurrence feature matrix of diseases from EHR dataset and updates disease representation at the code level while creating patient visit embeddings. The model utilizes query vectors to incorporate visit context information and combines time data to capture the patient’s overall health status. Finally, the prediction module generates outcomes and provides effective interpretations. We demonstrate the effectiveness of TransLSTD using two real-world datasets, outperforming state-of-the-art models in terms of both AUC and F1 values. The data and code are released at <span>https://github.com/DangQD/TransLSTD-master</span><svg><path></path></svg>.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102390"},"PeriodicalIF":3.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences 通过解决负面转移和利用项目共现,加强跨市场推荐
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-16 DOI: 10.1016/j.is.2024.102388
Zheng Hu , Satoshi Nakagawa , Shi-Min Cai , Fuji Ren , Jiawen Deng

Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose an attention-based user interest mining module to harness the potential of common items as bridges for mining general knowledge from item co-occurrence patterns through rich data derived from global markets. In order to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent biases associated with different markets, while the market-agnostic embeddings learn generic representations of the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.1 Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets.

现实世界中的跨国电子商务公司,如亚马逊和 eBay,在多个国家和地区提供服务。一些市场数据稀缺,而另一些市场数据丰富。近年来,有人提出了跨市场推荐(CMR),通过利用数据丰富市场的辅助信息来支持数据稀缺市场。以往的跨市场推荐算法采用了共享市场无关参数或结合市场间相似性等技术来优化跨市场推荐的性能。然而,现有方法有几个局限性:(1) 它们没有充分利用从数据丰富的市场(如鼠标和键盘的一致购买)中获得的物品共现的宝贵信息。(2) 它们忽视了不同市场间差异所产生的负迁移问题。为了解决这些局限性,我们引入了一种新颖的基于注意力的模型,该模型利用用户的历史行为从项目共现中挖掘一般模式,并设计针对特定市场的嵌入来减轻负迁移。具体来说,我们提出了一个基于注意力的用户兴趣挖掘模块,利用共同项目作为桥梁的潜力,通过从全球市场获得的丰富数据,从项目共现模式中挖掘一般知识。为了减轻负迁移的不利影响,我们将项目表征解耦为特定市场嵌入和市场无关嵌入。针对特定市场的嵌入有效地模拟了与不同市场相关的固有偏差,而与市场无关的嵌入则学习了项目的通用表征。在七个真实世界数据集上进行的大量实验证明了我们模型的有效性1。在两个指标的四个变体中,我们的模型平均优于次优模型 4.82%、6.82%、3.87% 和 5.34%。广泛的实验和分析证明了我们提出的模型在挖掘一般项目共现模式和避免数据稀缺市场的负转移方面的有效性。
{"title":"Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences","authors":"Zheng Hu ,&nbsp;Satoshi Nakagawa ,&nbsp;Shi-Min Cai ,&nbsp;Fuji Ren ,&nbsp;Jiawen Deng","doi":"10.1016/j.is.2024.102388","DOIUrl":"10.1016/j.is.2024.102388","url":null,"abstract":"<div><p>Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose an attention-based user interest mining module to harness the potential of common items as bridges for mining general knowledge from item co-occurrence patterns through rich data derived from global markets. In order to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent biases associated with different markets, while the market-agnostic embeddings learn generic representations of the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.<span><sup>1</sup></span> Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102388"},"PeriodicalIF":3.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140788460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process-related user interaction logs: State of the art, reference model, and object-centric implementation 与流程相关的用户交互日志:技术现状、参考模型和以对象为中心的实现方法
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-13 DOI: 10.1016/j.is.2024.102386
Luka Abb, Jana-Rebecca Rehse

User interaction (UI) logs are high-resolution event logs that record low-level activities performed by a user during the execution of a task in an information system. Each event in such a log represents an interaction between the user and the interface, such as clicking a button, ticking a checkbox, or typing into a text field. UI logs are used in many different application contexts for purposes such as usability analysis, task mining, or robotic process automation (RPA). However, UI logs suffer from a lack of standardization. Each research study and processing tool relies on a different conceptualization and implementation of the elements and attributes of user interactions. This exacerbates or even prohibits the integration of UI logs from different sources or the combination of UI data collection tools with downstream analytics or automation solutions. In this paper, our objective is to address this issue and facilitate the exchange and analysis of UI logs in research and practice. Therefore, we first review process-related UI logs in scientific publications and industry tools to determine commonalities and differences between them. Based on our findings, we propose a universally applicable reference data model for process-related UI logs, which includes all core attributes but remains flexible regarding the scope, level of abstraction, and case notion. Finally, we provide exemplary implementations of the reference model in XES and OCED.

用户交互(UI)日志是一种高分辨率的事件日志,记录了用户在信息系统中执行任务时的低级活动。此类日志中的每个事件都代表了用户与界面之间的交互,例如点击按钮、勾选复选框或在文本字段中输入内容。用户界面日志可用于许多不同的应用场合,如可用性分析、任务挖掘或机器人流程自动化(RPA)。然而,用户界面日志缺乏标准化。每项研究和处理工具都依赖于对用户交互元素和属性的不同概念化和实现。这加剧甚至阻碍了不同来源用户界面日志的整合,或用户界面数据收集工具与下游分析或自动化解决方案的结合。在本文中,我们的目标是解决这一问题,促进用户界面日志在研究和实践中的交流和分析。因此,我们首先回顾了科学出版物和行业工具中与流程相关的用户界面日志,以确定它们之间的共性和差异。在此基础上,我们为流程相关用户界面日志提出了一个普遍适用的参考数据模型,其中包括所有核心属性,但在范围、抽象程度和案例概念方面保持灵活性。最后,我们提供了参考模型在 XES 和 OCED 中的示例实现。
{"title":"Process-related user interaction logs: State of the art, reference model, and object-centric implementation","authors":"Luka Abb,&nbsp;Jana-Rebecca Rehse","doi":"10.1016/j.is.2024.102386","DOIUrl":"https://doi.org/10.1016/j.is.2024.102386","url":null,"abstract":"<div><p>User interaction (UI) logs are high-resolution event logs that record low-level activities performed by a user during the execution of a task in an information system. Each event in such a log represents an interaction between the user and the interface, such as clicking a button, ticking a checkbox, or typing into a text field. UI logs are used in many different application contexts for purposes such as usability analysis, task mining, or robotic process automation (RPA). However, UI logs suffer from a lack of standardization. Each research study and processing tool relies on a different conceptualization and implementation of the elements and attributes of user interactions. This exacerbates or even prohibits the integration of UI logs from different sources or the combination of UI data collection tools with downstream analytics or automation solutions. In this paper, our objective is to address this issue and facilitate the exchange and analysis of UI logs in research and practice. Therefore, we first review process-related UI logs in scientific publications and industry tools to determine commonalities and differences between them. Based on our findings, we propose a universally applicable reference data model for process-related UI logs, which includes all core attributes but remains flexible regarding the scope, level of abstraction, and case notion. Finally, we provide exemplary implementations of the reference model in XES and OCED.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102386"},"PeriodicalIF":3.7,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000449/pdfft?md5=99fcafdb33deb5f863a548bbb4740fc9&pid=1-s2.0-S0306437924000449-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140604560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Read-safe snapshots: An abort/wait-free serializable read method for read-only transactions on mixed OLTP/OLAP workloads 安全读取快照适用于混合 OLTP/OLAP 工作负载上只读事务的中止/免等待可序列化读取方法
IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-09 DOI: 10.1016/j.is.2024.102385
Takamitsu Shioi , Takashi Kambayashi , Suguru Arakawa , Ryoji Kurosawa , Satoshi Hikida , Haruo Yokota

This paper proposes Read-Safe Snapshots (RSS), a concurrency control method that ensures reading the latest serializable version on multiversion concurrency control (MVCC) for read-only transactions without creating any serializability anomaly, thereby enhancing the transaction processing throughput under mixed workloads of online transactional processing (OLTP) and online analytical processing (OLAP). Ensuring serializability for data consistency between OLTP and OLAP is vital to prevent OLAP from obtaining nonserializable results. Existing serializability methods achieve this consistency by making OLTP or OLAP transactions aborts or waits, but these can lead to throughput degradation when implemented for large read sets in read-only OLAP transactions under mixed workloads of the recent real-time analysis applications. To deal with this problem, we present an RSS construction algorithm that does not affect the conventional OLTP performance and simultaneously avoids producing additional aborts and waits. Moreover, the RSS construction method can be easily applied to the read-only replica of a multinode system as well as a single-node system because no validation for serializability is required. Our experimental findings showed that RSS could prevent read-only OLAP transactions from creating anomaly cycles under a multinode environment of master-copy replication, which led to the achievement of serializability with the low overhead of about 15% compared to baseline OLTP/OLAP throughputs under snapshot isolation (SI). The OLTP throughput under our proposed method in a mixed OLTP/OLAP workload was about 45% better than SafeSnapshots, a serializable snapshot isolation (SSI) equipped with a read-only optimization method, and did not degrade the OLAP throughput.

本文提出了一种并发控制方法--"读安全快照"(Read-Safe Snapshots,RSS),它能确保在多版本并发控制(Multi-iversion concurrency control,MVCC)上读取只读事务的最新可序列化版本,而不会产生任何可序列化异常,从而提高在线事务处理(OLTP)和在线分析处理(OLAP)混合工作负载下的事务处理吞吐量。确保 OLTP 和 OLAP 之间数据一致性的可序列化对于防止 OLAP 获得不可序列化的结果至关重要。现有的可序列化方法通过让 OLTP 或 OLAP 事务中止或等待来实现这种一致性,但在最近的实时分析应用的混合工作负载下,当在只读 OLAP 事务中实施大型读取集时,这些方法会导致吞吐量下降。为了解决这个问题,我们提出了一种 RSS 构建算法,它不会影响传统 OLTP 性能,同时还能避免产生额外的中止和等待。此外,由于不需要序列化验证,RSS 构建方法既可以轻松应用于多节点系统的只读副本,也可以应用于单节点系统。我们的实验结果表明,RSS 可以防止只读 OLAP 事务在主副本复制的多节点环境下产生异常循环,从而实现可序列化,与快照隔离(SI)下的基准 OLTP/OLAP 吞吐量相比,开销仅为 15%。在混合 OLTP/OLAP 工作负载中,采用我们提出的方法的 OLTP 吞吐量比配备了只读优化方法的可序列化快照隔离(SSI)SafeSnapshots 高出约 45%,而且不会降低 OLAP 吞吐量。
{"title":"Read-safe snapshots: An abort/wait-free serializable read method for read-only transactions on mixed OLTP/OLAP workloads","authors":"Takamitsu Shioi ,&nbsp;Takashi Kambayashi ,&nbsp;Suguru Arakawa ,&nbsp;Ryoji Kurosawa ,&nbsp;Satoshi Hikida ,&nbsp;Haruo Yokota","doi":"10.1016/j.is.2024.102385","DOIUrl":"https://doi.org/10.1016/j.is.2024.102385","url":null,"abstract":"<div><p>This paper proposes Read-Safe Snapshots (RSS), a concurrency control method that ensures reading the latest serializable version on multiversion concurrency control (MVCC) for read-only transactions without creating any serializability anomaly, thereby enhancing the transaction processing throughput under mixed workloads of online transactional processing (OLTP) and online analytical processing (OLAP). Ensuring serializability for data consistency between OLTP and OLAP is vital to prevent OLAP from obtaining nonserializable results. Existing serializability methods achieve this consistency by making OLTP or OLAP transactions aborts or waits, but these can lead to throughput degradation when implemented for large read sets in read-only OLAP transactions under mixed workloads of the recent real-time analysis applications. To deal with this problem, we present an RSS construction algorithm that does not affect the conventional OLTP performance and simultaneously avoids producing additional aborts and waits. Moreover, the RSS construction method can be easily applied to the read-only replica of a multinode system as well as a single-node system because no validation for serializability is required. Our experimental findings showed that RSS could prevent read-only OLAP transactions from creating anomaly cycles under a multinode environment of master-copy replication, which led to the achievement of serializability with the low overhead of about 15% compared to baseline OLTP/OLAP throughputs under snapshot isolation (SI). The OLTP throughput under our proposed method in a mixed OLTP/OLAP workload was about 45% better than SafeSnapshots, a serializable snapshot isolation (SSI) equipped with a read-only optimization method, and did not degrade the OLAP throughput.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102385"},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000437/pdfft?md5=44919a1e7ab150e46eaabe4c385782e7&pid=1-s2.0-S0306437924000437-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Information Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1