Recent progress in the field of computer vision incorporates robust tools for creating convincing deepfakes. Hence, the propagation of fake media may have detrimental effects on social communities, potentially tarnishing the reputation of individuals or groups. Furthermore, this phenomenon may manipulate public sentiments and skew opinions about the affected entities. Recent research determines Convolution Neural Networks (CNNs) as a viable solution for detecting deepfakes within the networks. However, existing techniques struggle to accurately capture the differences between frames in the collected media streams. To alleviate these limitations, our work proposes a new Deepfake detection approach using a hybrid model using the Multi-layer Perceptron Convolution Neural Network (MLP-CNN) model and LSTM (Long Short Term Memory). Our model has utilized Contrast Limited Adaptive Histogram Equalization (CLAHE) (Musa et al., 2018) approach to enhance the contrast of the image and later on applying Viola Jones Algorithm (VJA) (Paul et al., 2018) to the preprocessed image for detecting the face. The extracted features such as Improved eye blinking pattern detection (IEBPD), active shape model (ASM), face attributes, and eye attributes features along with the age and gender of the corresponding image are fed to the hybrid deepfake detection model that involves two classifiers MLP-CNN and LSTM model. The proposed model is trained with these features to detect the deepfake images proficiently. The experimentation demonstrates that our proposed hybrid model has been evaluated on two datasets, i.e. World Leader Dataset (WLDR) and the DeepfakeTIMIT Dataset. From the experimental results, it is affirmed that our proposed hybrid model outperforms existing approaches such as DeepVision, DNN (Deep Neutral Network), CNN (Convolution Neural Network), RNN (Recurrent Neural network), DeepMaxout, DBN (Deep Belief Networks), and Bi-GRU (Bi-Directional Gated Recurrent Unit).