首页 > 最新文献

IEEE Transactions on Robotics最新文献

英文 中文
Design, Modeling, and Optimization of Hydraulically Powered Double-Joint Soft Robotic Fish 液压驱动双关节柔性机器鱼的设计、建模与优化
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-01-06 DOI: 10.1109/tro.2025.3526087
Sijia Liu, Chunbao Liu, Guowu Wei, Luquan Ren, Lei Ren
{"title":"Design, Modeling, and Optimization of Hydraulically Powered Double-Joint Soft Robotic Fish","authors":"Sijia Liu, Chunbao Liu, Guowu Wei, Luquan Ren, Lei Ren","doi":"10.1109/tro.2025.3526087","DOIUrl":"https://doi.org/10.1109/tro.2025.3526087","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"15 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Continuum Robot with Modular Axial Magnetization: Design, Modeling, Optimization, and Control 具有模块化轴向磁化的磁性连续体机器人:设计、建模、优化和控制
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-01-06 DOI: 10.1109/tro.2025.3526077
Yanfei Cao, Mingxue Cai, Bonan Sun, Zhaoyang Qi, Junnan Xue, Yihang Jiang, Bo Hao, Jiaqi Zhu, Xurui Liu, Chaoyu Yang, Li Zhang
{"title":"Magnetic Continuum Robot with Modular Axial Magnetization: Design, Modeling, Optimization, and Control","authors":"Yanfei Cao, Mingxue Cai, Bonan Sun, Zhaoyang Qi, Junnan Xue, Yihang Jiang, Bo Hao, Jiaqi Zhu, Xurui Liu, Chaoyu Yang, Li Zhang","doi":"10.1109/tro.2025.3526077","DOIUrl":"https://doi.org/10.1109/tro.2025.3526077","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"28 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous Tail-Sitter Flights in Unknown Environments 未知环境下的自动坐尾飞行
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-01-06 DOI: 10.1109/tro.2025.3526102
Guozheng Lu, Yunfan Ren, Fangcheng Zhu, Haotian Li, Ruize Xue, Yixi Cai, Ximin Lyu, Fu Zhang
{"title":"Autonomous Tail-Sitter Flights in Unknown Environments","authors":"Guozheng Lu, Yunfan Ren, Fangcheng Zhu, Haotian Li, Ruize Xue, Yixi Cai, Ximin Lyu, Fu Zhang","doi":"10.1109/tro.2025.3526102","DOIUrl":"https://doi.org/10.1109/tro.2025.3526102","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"1 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle-based Instance-aware Semantic Occupancy Mapping in Dynamic Environments 动态环境中基于粒子的实例感知语义占用映射
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-01-06 DOI: 10.1109/tro.2025.3526084
Gang Chen, Zhaoying Wang, Wei Dong, Javier Alonso-Mora
{"title":"Particle-based Instance-aware Semantic Occupancy Mapping in Dynamic Environments","authors":"Gang Chen, Zhaoying Wang, Wei Dong, Javier Alonso-Mora","doi":"10.1109/tro.2025.3526084","DOIUrl":"https://doi.org/10.1109/tro.2025.3526084","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"26 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Efficient MPPI Trajectory Generation with Unscented Guidance: U-MPPI Control Strategy 无气味导引下高效MPPI轨迹生成:U-MPPI控制策略
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-01-03 DOI: 10.1109/tro.2025.3526078
Ihab S. Mohamed, Junhong Xu, Gaurav S. Sukhatme, Lantao Liu
{"title":"Towards Efficient MPPI Trajectory Generation with Unscented Guidance: U-MPPI Control Strategy","authors":"Ihab S. Mohamed, Junhong Xu, Gaurav S. Sukhatme, Lantao Liu","doi":"10.1109/tro.2025.3526078","DOIUrl":"https://doi.org/10.1109/tro.2025.3526078","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"30 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State Estimation for Continuum Multirobot Systems on SE(3) 基于SE(3)的连续统多机器人系统状态估计
IF 9.4 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-12-25 DOI: 10.1109/TRO.2024.3521859
Sven Lilge;Timothy Barfoot;Jessica Burgner-Kahrs
In contrast to conventional robots, accurately modeling the kinematics and statics of continuum robots is challenging due to partially unknown material properties, parasitic effects, or unknown forces acting on the continuous body. Consequentially, state estimation approaches that utilize additional sensor information to predict the shape of continuum robots have garnered significant interest. This article presents a novel approach to state estimation for systems with multiple coupled continuum robots, which allows estimating the shape and strain variables of multiple continuum robots in an arbitrary coupled topology. Simulations and experiments demonstrate the capabilities and versatility of the proposed method, while achieving accurate and continuous estimates for the state of such systems, resulting in average end-effector errors of 3.3 mm and 5.02$^circ$ depending on the sensor setup. It is further shown, that the approach offers fast computation times of below 10 ms, enabling its utilization in quasi-static real-time scenarios with average update rates of 100–200 Hz. An open-source C++ implementation of the proposed state estimation method is made publicly available to the community.
与传统机器人相比,由于部分未知的材料特性、寄生效应或作用在连续体上的未知力,连续体机器人的运动学和静力学的准确建模是具有挑战性的。因此,利用附加传感器信息来预测连续体机器人形状的状态估计方法已经引起了人们的极大兴趣。本文提出了一种新的连续统机器人系统状态估计方法,该方法允许在任意耦合拓扑中估计多个连续统机器人的形状和应变变量。仿真和实验证明了所提出方法的能力和通用性,同时实现了对此类系统状态的准确和连续估计,根据传感器设置,导致平均末端执行器误差为3.3 mm和5.02$^circ$。进一步表明,该方法提供了低于10 ms的快速计算时间,使其能够在平均更新率为100-200 Hz的准静态实时场景中使用。所建议的状态估计方法的开源c++实现已向社区公开提供。
{"title":"State Estimation for Continuum Multirobot Systems on SE(3)","authors":"Sven Lilge;Timothy Barfoot;Jessica Burgner-Kahrs","doi":"10.1109/TRO.2024.3521859","DOIUrl":"10.1109/TRO.2024.3521859","url":null,"abstract":"In contrast to conventional robots, accurately modeling the kinematics and statics of continuum robots is challenging due to partially unknown material properties, parasitic effects, or unknown forces acting on the continuous body. Consequentially, state estimation approaches that utilize additional sensor information to predict the shape of continuum robots have garnered significant interest. This article presents a novel approach to state estimation for systems with multiple coupled continuum robots, which allows estimating the shape and strain variables of multiple continuum robots in an arbitrary coupled topology. Simulations and experiments demonstrate the capabilities and versatility of the proposed method, while achieving accurate and continuous estimates for the state of such systems, resulting in average end-effector errors of 3.3 mm and 5.02<inline-formula><tex-math>$^circ$</tex-math></inline-formula> depending on the sensor setup. It is further shown, that the approach offers fast computation times of below 10 ms, enabling its utilization in quasi-static real-time scenarios with average update rates of 100–200 Hz. An open-source C++ implementation of the proposed state estimation method is made publicly available to the community.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"905-925"},"PeriodicalIF":9.4,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft Synergies: Model Order Reduction of Hybrid Soft-Rigid Robots via Optimal Strain Parameterization 软协同:基于最优应变参数化的混合软刚体机器人模型阶数降低
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-12-25 DOI: 10.1109/tro.2024.3522182
Abdulaziz Y. Alkayas, Anup Teejo Mathew, Daniel Feliu-Talegon, Ping Deng, Thomas George Thuruthel, Federico Renda
{"title":"Soft Synergies: Model Order Reduction of Hybrid Soft-Rigid Robots via Optimal Strain Parameterization","authors":"Abdulaziz Y. Alkayas, Anup Teejo Mathew, Daniel Feliu-Talegon, Ping Deng, Thomas George Thuruthel, Federico Renda","doi":"10.1109/tro.2024.3522182","DOIUrl":"https://doi.org/10.1109/tro.2024.3522182","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"154 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous-Time Radar-Inertial and Lidar-Inertial Odometry Using a Gaussian Process Motion Prior 使用高斯过程运动先验的连续时间雷达-惯性和激光雷达-惯性里程计
IF 9.4 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-12-25 DOI: 10.1109/TRO.2024.3521856
Keenan Burnett;Angela P. Schoellig;Timothy D. Barfoot
In this work, we demonstrate continuous-time radar-inertial and lidar-inertial odometry using a Gaussian process motion prior. Using a sparse prior, we demonstrate improved computational complexity during preintegration and interpolation. We use a white-noise-on-acceleration motion prior and treat the gyroscope as a direct measurement of the state while preintegrating accelerometer measurements to form relative velocity factors. Our odometry is implemented using sliding-window batch trajectory estimation. To our knowledge, our work is the first to demonstrate radar-inertial odometry with a spinning mechanical radar using both gyroscope and accelerometer measurements. We improve the performance of our radar odometry by 43% by incorporating an inertial measurement unit. Our approach is efficient and we demonstrate real-time performance. Code for this article can be found at: https://github.com/utiasASRL/steam_icp.
在这项工作中,我们演示了连续时间雷达-惯性和激光雷达-惯性里程计使用高斯过程运动先验。使用稀疏先验,我们证明了在预积分和插值期间改进的计算复杂度。我们使用加速度运动的白噪声先验,将陀螺仪作为状态的直接测量,同时对加速度计的测量进行预积分以形成相对速度因子。我们的里程计是使用滑动窗口批量轨迹估计实现的。据我们所知,我们的工作是第一个使用陀螺仪和加速度计测量的旋转机械雷达演示雷达惯性里程计。通过集成惯性测量单元,我们将雷达里程计的性能提高了43%。我们的方法是有效的,我们展示了实时性能。本文的代码可以在https://github.com/utiasASRL/steam_icp找到。
{"title":"Continuous-Time Radar-Inertial and Lidar-Inertial Odometry Using a Gaussian Process Motion Prior","authors":"Keenan Burnett;Angela P. Schoellig;Timothy D. Barfoot","doi":"10.1109/TRO.2024.3521856","DOIUrl":"10.1109/TRO.2024.3521856","url":null,"abstract":"In this work, we demonstrate continuous-time radar-inertial and lidar-inertial odometry using a Gaussian process motion prior. Using a sparse prior, we demonstrate improved computational complexity during preintegration and interpolation. We use a white-noise-on-acceleration motion prior and treat the gyroscope as a direct measurement of the state while preintegrating accelerometer measurements to form relative velocity factors. Our odometry is implemented using sliding-window batch trajectory estimation. To our knowledge, our work is the first to demonstrate radar-inertial odometry with a spinning mechanical radar using both gyroscope and accelerometer measurements. We improve the performance of our radar odometry by 43% by incorporating an inertial measurement unit. Our approach is efficient and we demonstrate real-time performance. Code for this article can be found at: <uri>https://github.com/utiasASRL/steam_icp</uri>.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1059-1076"},"PeriodicalIF":9.4,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swarm-LIO2: Decentralized Efficient LiDAR-Inertial Odometry for Aerial Swarm Systems Swarm-LIO2:无人机群的分散、高效激光雷达-惯性里程计
IF 9.4 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-12-25 DOI: 10.1109/TRO.2024.3522155
Fangcheng Zhu;Yunfan Ren;Longji Yin;Fanze Kong;Qingbo Liu;Ruize Xue;Wenyi Liu;Yixi Cai;Guozheng Lu;Haotian Li;Fu Zhang
Aerial swarm systems possess immense potential in various aspects, such as cooperative exploration, target tracking, and search and rescue. Efficient accurate self- and mutual state estimation are the critical preconditions for completing these swarm tasks, which remain challenging research topics. This article proposes Swarm-LIO2, a fully decentralized, plug-and-play, computationally efficient, and bandwidth-efficient light detection and ranging (LiDAR)-inertial odometry for aerial swarm systems. Swarm-LIO2 uses a decentralized plug-and-play network as the communication infrastructure. Only bandwidth-efficient and low-dimensional information is exchanged, including identity, ego state, mutual observation measurements, and global extrinsic transformations. To support the plug and play of new teammate participants, Swarm-LIO2 detects potential teammate autonomous aerial vehicles (AAVs) and initializes the temporal offset and global extrinsic transformation all automatically. To enhance the initialization efficiency, novel reflectivity-based AAV detection, trajectory matching, and factor graph optimization methods are proposed. For state estimation, Swarm-LIO2 fuses LiDAR, inertial measurement units, and mutual observation measurements within an efficient error state iterated Kalman filter (ESIKF) framework, with careful compensation of temporal delay and modeling of measurements to enhance the accuracy and consistency. Moreover, the proposed ESIKF framework leverages the global extrinsic for ego state estimation in the case of LiDAR degeneration or refines the global extrinsic along with the ego state estimation otherwise. To enhance the scalability, Swarm-LIO2 introduces a novel marginalization method in the ESIKF, which prevents the growth of computational time with swarm size. Extensive simulation and real-world experiments demonstrate the broad adaptability to large-scale aerial swarm systems and complicated scenarios, including GPS-denied scenes and degenerated scenes for cameras or LiDARs. The experimental results showcase the centimeter-level localization accuracy, which outperforms other state-of-the-art LiDAR-inertial odometry for a single-AAV system. Furthermore, diverse applications demonstrate the potential of Swarm-LIO2 to serve as a reliable infrastructure for various aerial swarm missions.
空中蜂群系统在协同探索、目标跟踪、搜救等方面具有巨大的潜力。高效准确的自态估计和互态估计是完成这些群任务的关键前提,也是具有挑战性的研究课题。本文提出了swarm - lio2,这是一种完全分散、即插即用、计算效率高、带宽效率高的用于空中蜂群系统的光探测和测距(LiDAR)惯性里程计。Swarm-LIO2使用分散的即插即用网络作为通信基础设施。只交换带宽效率高和低维的信息,包括身份、自我状态、相互观察测量和全局外在转换。为了支持新队友的即插即用,Swarm-LIO2检测潜在的队友自主飞行器(aav),并自动初始化时间偏移和全局外在转换。为了提高初始化效率,提出了基于反射率的AAV检测、轨迹匹配和因子图优化方法。对于状态估计,Swarm-LIO2在一个有效的误差状态迭代卡尔曼滤波(ESIKF)框架内融合了激光雷达、惯性测量单元和相互观测测量,并对时间延迟和测量建模进行了仔细的补偿,以提高精度和一致性。此外,所提出的ESIKF框架在激光雷达退化的情况下利用全局外在进行自我状态估计,或者在自我状态估计的同时改进全局外在。为了增强可扩展性,swarm - lio2在ESIKF中引入了一种新的边缘化方法,防止了计算时间随着群体规模的增长而增长。广泛的模拟和真实世界的实验证明了大规模空中蜂群系统和复杂场景的广泛适应性,包括gps拒绝场景和相机或激光雷达的退化场景。实验结果表明,该系统具有厘米级的定位精度,优于其他先进的激光雷达惯性里程计。此外,各种应用表明,swarm - lio2有潜力作为各种空中蜂群任务的可靠基础设施。
{"title":"Swarm-LIO2: Decentralized Efficient LiDAR-Inertial Odometry for Aerial Swarm Systems","authors":"Fangcheng Zhu;Yunfan Ren;Longji Yin;Fanze Kong;Qingbo Liu;Ruize Xue;Wenyi Liu;Yixi Cai;Guozheng Lu;Haotian Li;Fu Zhang","doi":"10.1109/TRO.2024.3522155","DOIUrl":"10.1109/TRO.2024.3522155","url":null,"abstract":"Aerial swarm systems possess immense potential in various aspects, such as cooperative exploration, target tracking, and search and rescue. Efficient accurate self- and mutual state estimation are the critical preconditions for completing these swarm tasks, which remain challenging research topics. This article proposes Swarm-LIO2, a fully decentralized, plug-and-play, computationally efficient, and bandwidth-efficient light detection and ranging (LiDAR)-inertial odometry for aerial swarm systems. Swarm-LIO2 uses a decentralized plug-and-play network as the communication infrastructure. Only bandwidth-efficient and low-dimensional information is exchanged, including identity, ego state, mutual observation measurements, and global extrinsic transformations. To support the plug and play of new teammate participants, Swarm-LIO2 detects potential teammate autonomous aerial vehicles (AAVs) and initializes the temporal offset and global extrinsic transformation all automatically. To enhance the initialization efficiency, novel reflectivity-based AAV detection, trajectory matching, and factor graph optimization methods are proposed. For state estimation, Swarm-LIO2 fuses LiDAR, inertial measurement units, and mutual observation measurements within an efficient error state iterated Kalman filter (ESIKF) framework, with careful compensation of temporal delay and modeling of measurements to enhance the accuracy and consistency. Moreover, the proposed ESIKF framework leverages the global extrinsic for ego state estimation in the case of LiDAR degeneration or refines the global extrinsic along with the ego state estimation otherwise. To enhance the scalability, Swarm-LIO2 introduces a novel marginalization method in the ESIKF, which prevents the growth of computational time with swarm size. Extensive simulation and real-world experiments demonstrate the broad adaptability to large-scale aerial swarm systems and complicated scenarios, including GPS-denied scenes and degenerated scenes for cameras or LiDARs. The experimental results showcase the centimeter-level localization accuracy, which outperforms other state-of-the-art LiDAR-inertial odometry for a single-AAV system. Furthermore, diverse applications demonstrate the potential of Swarm-LIO2 to serve as a reliable infrastructure for various aerial swarm missions.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"960-981"},"PeriodicalIF":9.4,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FALCON: Fast Autonomous Aerial Exploration Using Coverage Path Guidance 猎鹰:使用覆盖路径制导的快速自主空中探测
IF 7.8 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-12-25 DOI: 10.1109/tro.2024.3522148
Yichen Zhang, Xinyi Chen, Chen Feng, Boyu Zhou, Shaojie Shen
{"title":"FALCON: Fast Autonomous Aerial Exploration Using Coverage Path Guidance","authors":"Yichen Zhang, Xinyi Chen, Chen Feng, Boyu Zhou, Shaojie Shen","doi":"10.1109/tro.2024.3522148","DOIUrl":"https://doi.org/10.1109/tro.2024.3522148","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"62 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1