首页 > 最新文献

FEBS Letters最新文献

英文 中文
Corrigendum. 有待纠正。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-05-01 DOI: 10.1002/1873-3468.14090
{"title":"Corrigendum.","authors":"","doi":"10.1002/1873-3468.14090","DOIUrl":"https://doi.org/10.1002/1873-3468.14090","url":null,"abstract":"","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.14090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39013833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover 封面
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-05-01 DOI: 10.1002/1873-3468.13827
{"title":"Front Cover","authors":"","doi":"10.1002/1873-3468.13827","DOIUrl":"https://doi.org/10.1002/1873-3468.13827","url":null,"abstract":"","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43078997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformational changes in the nucleotide-binding domains of P-glycoprotein induced by ATP hydrolysis. ATP水解诱导p -糖蛋白核苷酸结合域的构象变化。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2020-12-10 DOI: 10.1002/1873-3468.13992
Sepehr Dehghani-Ghahnaviyeh, Karan Kapoor, Emad Tajkhorshid

P-glycoprotein (Pgp) is a member of the ABC transporter superfamily with high physiological importance. Pgp nucleotide-binding domains (NBDs) drive the transport cycle through ATP binding and hydrolysis. We use molecular dynamics simulations to investigate the ATP hydrolysis-induced conformational changes in NBDs. Five systems, including all possible ATP/ADP combinations in the NBDs and the APO system, are simulated. ATP/ADP exchange induces conformational changes mostly within the conserved signature motif of the NBDs, resulting in relative orientational changes in the NBDs. Nucleotide removal leads to additional orientational changes in the NBDs, allowing their dissociation. Furthermore, we capture putative hydrolysis-competent configurations in which the conserved glutamate in the Walker-B motif acts as a catalytic base capturing a water molecule likely initiating ATP hydrolysis.

p -糖蛋白(Pgp)是ABC转运蛋白超家族的一员,具有很高的生理重要性。Pgp核苷酸结合域(nbd)通过ATP结合和水解驱动转运循环。我们利用分子动力学模拟研究ATP水解诱导的nbd构象变化。模拟了五种系统,包括nbd和APO系统中所有可能的ATP/ADP组合。ATP/ADP交换主要在nbd的保守特征基序内引起构象变化,导致nbd的相对取向变化。核苷酸的去除导致nbd的额外取向变化,允许它们解离。此外,我们捕获了假定的水解能力构型,其中Walker-B基序中的保守谷氨酸作为催化碱捕获可能启动ATP水解的水分子。
{"title":"Conformational changes in the nucleotide-binding domains of P-glycoprotein induced by ATP hydrolysis.","authors":"Sepehr Dehghani-Ghahnaviyeh,&nbsp;Karan Kapoor,&nbsp;Emad Tajkhorshid","doi":"10.1002/1873-3468.13992","DOIUrl":"https://doi.org/10.1002/1873-3468.13992","url":null,"abstract":"<p><p>P-glycoprotein (Pgp) is a member of the ABC transporter superfamily with high physiological importance. Pgp nucleotide-binding domains (NBDs) drive the transport cycle through ATP binding and hydrolysis. We use molecular dynamics simulations to investigate the ATP hydrolysis-induced conformational changes in NBDs. Five systems, including all possible ATP/ADP combinations in the NBDs and the APO system, are simulated. ATP/ADP exchange induces conformational changes mostly within the conserved signature motif of the NBDs, resulting in relative orientational changes in the NBDs. Nucleotide removal leads to additional orientational changes in the NBDs, allowing their dissociation. Furthermore, we capture putative hydrolysis-competent configurations in which the conserved glutamate in the Walker-B motif acts as a catalytic base capturing a water molecule likely initiating ATP hydrolysis.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13992","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38575298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
ABCB1/MDR1/P-gp employs an ATP-dependent twist-and-squeeze mechanism to export hydrophobic drugs. ABCB1/MDR1/P-gp通过atp依赖的扭挤机制输出疏水药物。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2020-12-11 DOI: 10.1002/1873-3468.14018
Atsushi Kodan, Ryota Futamata, Yasuhisa Kimura, Noriyuki Kioka, Toru Nakatsu, Hiroaki Kato, Kazumitsu Ueda

ABCB1, also called MDR1 or P-glycoprotein, exports various hydrophobic compounds and plays an essential role as a protective physiological barrier in several organs, including the brain, testis, and placenta. However, little is known about the structural mechanisms that allow ABCB1 to recognize hydrophobic compounds of diverse structures or the coupling of ATP hydrolysis to uphill substrate export. High-resolution X-ray crystal structures of the pre- and post-transport states and FRET analyses in living cells have revealed that an aromatic hydrophobic network at the top of the inner cavity is key for the conformational change in ABCB1 that is triggered by a hydrophobic substrate. ATP binding, but not hydrolysis, induces a progressive network that results in a twisting motion of the whole protein, squeezing out the substrate directly to the extracellular space. This twist-and-squeeze mechanism by which ABCB1 exports hydrophobic substrates is distinct from those of other transporters.

ABCB1也被称为MDR1或p -糖蛋白,输出多种疏水化合物,并在包括脑、睾丸和胎盘在内的多个器官中作为保护性生理屏障发挥重要作用。然而,对于ABCB1识别不同结构的疏水化合物或ATP水解与上坡底物输出耦合的结构机制知之甚少。高分辨率x射线晶体结构的前后输运状态和FRET分析表明,在内腔顶部的芳香疏水网络是由疏水底物引发ABCB1构象变化的关键。ATP结合,而不是水解,诱导了一个渐进的网络,导致整个蛋白质的扭曲运动,将底物直接挤出到细胞外空间。ABCB1输出疏水底物的这种扭曲和挤压机制与其他转运体不同。
{"title":"ABCB1/MDR1/P-gp employs an ATP-dependent twist-and-squeeze mechanism to export hydrophobic drugs.","authors":"Atsushi Kodan,&nbsp;Ryota Futamata,&nbsp;Yasuhisa Kimura,&nbsp;Noriyuki Kioka,&nbsp;Toru Nakatsu,&nbsp;Hiroaki Kato,&nbsp;Kazumitsu Ueda","doi":"10.1002/1873-3468.14018","DOIUrl":"https://doi.org/10.1002/1873-3468.14018","url":null,"abstract":"<p><p>ABCB1, also called MDR1 or P-glycoprotein, exports various hydrophobic compounds and plays an essential role as a protective physiological barrier in several organs, including the brain, testis, and placenta. However, little is known about the structural mechanisms that allow ABCB1 to recognize hydrophobic compounds of diverse structures or the coupling of ATP hydrolysis to uphill substrate export. High-resolution X-ray crystal structures of the pre- and post-transport states and FRET analyses in living cells have revealed that an aromatic hydrophobic network at the top of the inner cavity is key for the conformational change in ABCB1 that is triggered by a hydrophobic substrate. ATP binding, but not hydrolysis, induces a progressive network that results in a twisting motion of the whole protein, squeezing out the substrate directly to the extracellular space. This twist-and-squeeze mechanism by which ABCB1 exports hydrophobic substrates is distinct from those of other transporters.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.14018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38673033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
ABC-F translation factors: from antibiotic resistance to immune response. ABC-F翻译因子:从抗生素耐药性到免疫应答。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2020-12-04 DOI: 10.1002/1873-3468.13984
Corentin R Fostier, Laura Monlezun, Farès Ousalem, Shikha Singh, John F Hunt, Grégory Boël

Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.

来自大肠杆菌的能量依赖性翻译节流A (EttA)是一种典型的ABC-F蛋白,根据细胞能量状态控制核糖体上多肽延伸的第一步。生化和结构研究已经证实,ABC-F蛋白通常作为翻译因子,在与核糖体tRNA出口位点结合时调节肽基转移酶中心的构象。这些因子存在于原核生物和真核生物中,但不存在于古细菌中,它们利用相关的分子机制来调节蛋白质合成,以达到异质目的,从抗生素耐药性和挽救停滞的核糖体到调节哺乳动物的免疫反应。在此,我们回顾了细菌ABC-F蛋白的系统发育、调控、核糖体相互作用和作用机制的典型研究,并讨论了这些研究对真核生物ABC-F蛋白的分子功能的影响,包括三种人类家族成员。
{"title":"ABC-F translation factors: from antibiotic resistance to immune response.","authors":"Corentin R Fostier,&nbsp;Laura Monlezun,&nbsp;Farès Ousalem,&nbsp;Shikha Singh,&nbsp;John F Hunt,&nbsp;Grégory Boël","doi":"10.1002/1873-3468.13984","DOIUrl":"https://doi.org/10.1002/1873-3468.13984","url":null,"abstract":"<p><p>Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13984","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38562107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Single-molecule studies of conformational states and dynamics in the ABC importer OpuA. 单分子研究的构象状态和动力学的ABC进口OpuA。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2021-01-06 DOI: 10.1002/1873-3468.14026
Konstantinos Tassis, Ruslan Vietrov, Matthijs de Koning, Marijn de Boer, Giorgos Gouridis, Thorben Cordes

The current model of active transport via ABC importers is mostly based on structural, biochemical and genetic data. We here establish single-molecule Förster resonance energy transfer (smFRET) assays to monitor the conformational states and heterogeneity of the osmoregulatory type I ABC importer OpuA from Lactococcus lactis. We present data probing both intradomain distances that elucidate conformational changes within the substrate-binding domain (SBD) OpuAC, and interdomain distances between SBDs or transmembrane domains. Using this methodology, we studied ligand-binding mechanisms, as well as ATP and glycine betaine dependences of conformational changes. Our work expands the scope of smFRET investigations towards a class of so far unstudied ABC importers, and paves the way for a full understanding of their transport cycle in the future.

目前通过ABC进口商进行主动运输的模型主要基于结构、生化和遗传数据。我们在此建立了单分子Förster共振能量转移(smFRET)检测,以监测乳球菌渗透调节型ABC进口OpuA的构象状态和异质性。我们提供的数据探测了阐明底物结合域(SBD) OpuAC内构象变化的域内距离,以及SBD或跨膜域之间的域间距离。使用这种方法,我们研究了配体结合机制,以及ATP和甘氨酸甜菜碱对构象变化的依赖性。我们的工作将smFRET调查的范围扩展到一类迄今尚未研究的ABC进口商,并为将来全面了解其运输周期铺平了道路。
{"title":"Single-molecule studies of conformational states and dynamics in the ABC importer OpuA.","authors":"Konstantinos Tassis,&nbsp;Ruslan Vietrov,&nbsp;Matthijs de Koning,&nbsp;Marijn de Boer,&nbsp;Giorgos Gouridis,&nbsp;Thorben Cordes","doi":"10.1002/1873-3468.14026","DOIUrl":"https://doi.org/10.1002/1873-3468.14026","url":null,"abstract":"<p><p>The current model of active transport via ABC importers is mostly based on structural, biochemical and genetic data. We here establish single-molecule Förster resonance energy transfer (smFRET) assays to monitor the conformational states and heterogeneity of the osmoregulatory type I ABC importer OpuA from Lactococcus lactis. We present data probing both intradomain distances that elucidate conformational changes within the substrate-binding domain (SBD) OpuAC, and interdomain distances between SBDs or transmembrane domains. Using this methodology, we studied ligand-binding mechanisms, as well as ATP and glycine betaine dependences of conformational changes. Our work expands the scope of smFRET investigations towards a class of so far unstudied ABC importers, and paves the way for a full understanding of their transport cycle in the future.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.14026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38706350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Low oxygen tension differentially regulates the expression of placental solute carriers and ABC transporters. 低氧张力对胎盘溶质载体和ABC转运蛋白表达的调控存在差异。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2020-10-07 DOI: 10.1002/1873-3468.13937
Ludwik Gorczyca, Jianyao Du, Kristin M Bircsak, Xia Wen, Anna M Vetrano, Lauren M Aleksunes
Low oxygen concentration, or hypoxia, is an important physiological regulator of placental function including chemical disposition. Here, we compared the ability of low oxygen tension to alter the expression of solute carriers (SLC) and ABC transporters in two human placental models, namely BeWo cells and term placental explants. We found that exposure to low oxygen concentration differentially regulates transporter expression in BeWo cells, including downregulation of ENT1, OATP4A1, OCTN2, BCRP, and MRP2/3/5, and upregulation of CNT1, OAT4, OATP2B1, SERT, SOAT, and MRP1. Similar upregulation of MRP1 and downregulation of MRP5 and BCRP were observed in explants, whereas uptake transporters were decreased or unchanged. Furthermore, a screening of transcriptional regulators of transporters revealed that hypoxia leads to a decrease in the mRNA levels of aryl hydrocarbon receptor, nuclear factor erythroid 2‐related factor 2, and retinoid x receptor alpha in both human placental models. These data suggest that transporter expression is differentially regulated by oxygen concentration across experimental human placental models.
低氧浓度,或缺氧,是一个重要的生理调节胎盘功能,包括化学处置。在这里,我们比较了低氧张力对两种人类胎盘模型(BeWo细胞和足月胎盘外植体)中溶质载体(SLC)和ABC转运蛋白表达的影响。我们发现低氧浓度暴露对BeWo细胞中的转运蛋白表达有差异调节,包括下调ENT1、OATP4A1、OCTN2、BCRP和MRP2/3/5,上调CNT1、OAT4、OATP2B1、SERT、SOAT和MRP1。在外植体中也观察到MRP1的上调和MRP5和BCRP的下调,而摄取转运蛋白则减少或不变。此外,对转运蛋白转录调节因子的筛选显示,缺氧导致两种人类胎盘模型中芳烃受体、核因子红系2相关因子2和类视黄酮x受体α的mRNA水平降低。这些数据表明,在实验人类胎盘模型中,转运蛋白的表达受到氧浓度的不同调节。
{"title":"Low oxygen tension differentially regulates the expression of placental solute carriers and ABC transporters.","authors":"Ludwik Gorczyca,&nbsp;Jianyao Du,&nbsp;Kristin M Bircsak,&nbsp;Xia Wen,&nbsp;Anna M Vetrano,&nbsp;Lauren M Aleksunes","doi":"10.1002/1873-3468.13937","DOIUrl":"https://doi.org/10.1002/1873-3468.13937","url":null,"abstract":"Low oxygen concentration, or hypoxia, is an important physiological regulator of placental function including chemical disposition. Here, we compared the ability of low oxygen tension to alter the expression of solute carriers (SLC) and ABC transporters in two human placental models, namely BeWo cells and term placental explants. We found that exposure to low oxygen concentration differentially regulates transporter expression in BeWo cells, including downregulation of ENT1, OATP4A1, OCTN2, BCRP, and MRP2/3/5, and upregulation of CNT1, OAT4, OATP2B1, SERT, SOAT, and MRP1. Similar upregulation of MRP1 and downregulation of MRP5 and BCRP were observed in explants, whereas uptake transporters were decreased or unchanged. Furthermore, a screening of transcriptional regulators of transporters revealed that hypoxia leads to a decrease in the mRNA levels of aryl hydrocarbon receptor, nuclear factor erythroid 2‐related factor 2, and retinoid x receptor alpha in both human placental models. These data suggest that transporter expression is differentially regulated by oxygen concentration across experimental human placental models.","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38522451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The Saccharomyces cerevisiae ABC subfamily D transporter Pxa1/Pxa2p co-imports CoASH into the peroxisome. 酿酒酵母ABC亚家族D转运体Pxa1/Pxa2p共同将CoASH导入过氧化物酶体。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2020-11-11 DOI: 10.1002/1873-3468.13974
Carlo W T van Roermund, Lodewijk IJlst, Alison Baker, Ronald J A Wanders, Freddie L Theodoulou, Hans R Waterham

ATP-binding cassette (ABC) subfamily D transporters are important for the uptake of fatty acids and other beta-oxidation substrates into peroxisomes. Genetic and biochemical evidence indicates that the transporters accept fatty acyl-coenzyme A that is cleaved during the transport cycle and then re-esterified in the peroxisomal lumen. However, it is not known whether free coenzyme A (CoA) is released inside or outside the peroxisome. Here we have used Saccharomyces cerevisiae and isolated peroxisomes to demonstrate that free CoA is released in the peroxisomal lumen. Thus, ABC subfamily D transporter provide an import pathway for free CoA that controls peroxisomal CoA homeostasis and tunes metabolism according to the cell's demands.

atp结合盒(ABC)亚家族D转运蛋白对于脂肪酸和其他β -氧化底物进入过氧化物酶体的摄取是重要的。遗传和生化证据表明,转运体接受在运输周期中被切割的脂肪酰基辅酶A,然后在过氧化物酶体管腔中重新酯化。然而,目前尚不清楚游离辅酶A (CoA)是释放在过氧化物酶体内部还是外部。在这里,我们使用酿酒酵母和分离的过氧化物酶体来证明游离辅酶a在过氧化物酶体腔中释放。因此,ABC亚家族D转运蛋白为游离辅酶a提供了一个输入途径,控制过氧化物酶体的内稳态,并根据细胞的需要调节代谢。
{"title":"The Saccharomyces cerevisiae ABC subfamily D transporter Pxa1/Pxa2p co-imports CoASH into the peroxisome.","authors":"Carlo W T van Roermund,&nbsp;Lodewijk IJlst,&nbsp;Alison Baker,&nbsp;Ronald J A Wanders,&nbsp;Freddie L Theodoulou,&nbsp;Hans R Waterham","doi":"10.1002/1873-3468.13974","DOIUrl":"https://doi.org/10.1002/1873-3468.13974","url":null,"abstract":"<p><p>ATP-binding cassette (ABC) subfamily D transporters are important for the uptake of fatty acids and other beta-oxidation substrates into peroxisomes. Genetic and biochemical evidence indicates that the transporters accept fatty acyl-coenzyme A that is cleaved during the transport cycle and then re-esterified in the peroxisomal lumen. However, it is not known whether free coenzyme A (CoA) is released inside or outside the peroxisome. Here we have used Saccharomyces cerevisiae and isolated peroxisomes to demonstrate that free CoA is released in the peroxisomal lumen. Thus, ABC subfamily D transporter provide an import pathway for free CoA that controls peroxisomal CoA homeostasis and tunes metabolism according to the cell's demands.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13974","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38541542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Generation of fully functional fluorescent fusion proteins to gain insights into ABCC6 biology. 生成全功能荧光融合蛋白,以深入了解 ABCC6 的生物学特性。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 Epub Date: 2020-11-05 DOI: 10.1002/1873-3468.13957
Flora Szeri, Fatemeh Niaziorimi, Sylvia Donnelly, Joseph Orndorff, Koen van de Wetering

ABCC6 mediates release of ATP from hepatocytes into the blood. Extracellularly, ATP is converted into the mineralization inhibitor pyrophosphate. Consequently, inactivating mutations in ABCC6 give low plasma pyrophosphate and underlie the ectopic mineralization disorder pseudoxanthoma elasticum. How ABCC6 mediates cellular ATP release is still unknown. Fluorescent ABCC6 fusion proteins would allow mechanistic studies, but fluorophores attached to the ABCC6 N- or C-terminus result in intracellular retention and degradation. Here we describe that intramolecular introduction of fluorophores yields fully functional ABCC6 fusion proteins. A corresponding ABCC6 variant in which the catalytic glutamate of the second nucleotide binding domain was mutated, correctly routed to the plasma membrane but was inactive. Finally, N-terminal His10 or FLAG tags did not affect activity of the fusion proteins, allowing their purification for biochemical characterization.

ABCC6 介导 ATP 从肝细胞释放到血液中。在细胞外,ATP 转化为矿化抑制剂焦磷酸盐。因此,ABCC6 的失活突变会导致血浆焦磷酸盐过低,并成为异位矿化症假黄瘤的基础。ABCC6 是如何介导细胞 ATP 释放的仍是未知数。荧光 ABCC6 融合蛋白可用于机理研究,但附着在 ABCC6 N 端或 C 端的荧光团会在细胞内滞留和降解。在这里,我们描述了分子内引入荧光团产生全功能 ABCC6 融合蛋白的过程。第二核苷酸结合域的催化谷氨酸发生突变的相应 ABCC6 变体能正确地进入质膜,但没有活性。最后,N-端 His10 或 FLAG 标记不会影响融合蛋白的活性,因此可以将其纯化以进行生化鉴定。
{"title":"Generation of fully functional fluorescent fusion proteins to gain insights into ABCC6 biology.","authors":"Flora Szeri, Fatemeh Niaziorimi, Sylvia Donnelly, Joseph Orndorff, Koen van de Wetering","doi":"10.1002/1873-3468.13957","DOIUrl":"10.1002/1873-3468.13957","url":null,"abstract":"<p><p>ABCC6 mediates release of ATP from hepatocytes into the blood. Extracellularly, ATP is converted into the mineralization inhibitor pyrophosphate. Consequently, inactivating mutations in ABCC6 give low plasma pyrophosphate and underlie the ectopic mineralization disorder pseudoxanthoma elasticum. How ABCC6 mediates cellular ATP release is still unknown. Fluorescent ABCC6 fusion proteins would allow mechanistic studies, but fluorophores attached to the ABCC6 N- or C-terminus result in intracellular retention and degradation. Here we describe that intramolecular introduction of fluorophores yields fully functional ABCC6 fusion proteins. A corresponding ABCC6 variant in which the catalytic glutamate of the second nucleotide binding domain was mutated, correctly routed to the plasma membrane but was inactive. Finally, N-terminal His<sup>10</sup> or FLAG tags did not affect activity of the fusion proteins, allowing their purification for biochemical characterization.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987643/pdf/nihms-1638648.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38592541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover 封面
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1002/1873-3468.13823
{"title":"Front Cover","authors":"","doi":"10.1002/1873-3468.13823","DOIUrl":"https://doi.org/10.1002/1873-3468.13823","url":null,"abstract":"","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42407043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEBS Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1