Pub Date : 2023-07-01Epub Date: 2023-12-30DOI: 10.1080/14789450.2023.2275681
Rubén A Bartolomé, J Ignacio Casal
Introduction: Tissue-based proteomic studies of colorectal cancer (CRC) metastasis have delivered fragmented results, with very few therapeutic targets and prognostic biomarkers moving beyond the discovery phase. This situation is likely due to the difficulties in obtaining and analyzing large numbers of patient-derived metastatic samples, the own heterogeneity of CRC, and technical limitations in proteomics discovery. As an alternative, metastatic CRC cell lines provide a flexible framework to investigate the underlying mechanisms and network biology of metastasis for target discovery.
Areas covered: In this perspective, we comment on different in-depth proteomic studies of metastatic versus non-metastatic CRC cell lines. Identified metastasis-related proteins are introduced and discussed according to the spatial location in different cellular fractions, with special emphasis on membrane/adhesion proteins, secreted proteins, and nuclear factors, including miRNAs associated with liver metastasis. Moreover, we analyze the biological significance and potential therapeutic applications of the identified liver metastasis-related proteins.
Expert opinion: The combination of protein discovery and functional analysis is the only way to accelerate the progress to clinical translation of the proteomic-derived findings in a relatively fast pace. Patient-derived organoids represent a promising alternative to patient tissues and cell lines, but further optimizations are still required for achieving solid and reproducible results.
{"title":"Proteomic profiling and network biology of colorectal cancer liver metastasis.","authors":"Rubén A Bartolomé, J Ignacio Casal","doi":"10.1080/14789450.2023.2275681","DOIUrl":"10.1080/14789450.2023.2275681","url":null,"abstract":"<p><strong>Introduction: </strong>Tissue-based proteomic studies of colorectal cancer (CRC) metastasis have delivered fragmented results, with very few therapeutic targets and prognostic biomarkers moving beyond the discovery phase. This situation is likely due to the difficulties in obtaining and analyzing large numbers of patient-derived metastatic samples, the own heterogeneity of CRC, and technical limitations in proteomics discovery. As an alternative, metastatic CRC cell lines provide a flexible framework to investigate the underlying mechanisms and network biology of metastasis for target discovery.</p><p><strong>Areas covered: </strong>In this perspective, we comment on different in-depth proteomic studies of metastatic versus non-metastatic CRC cell lines. Identified metastasis-related proteins are introduced and discussed according to the spatial location in different cellular fractions, with special emphasis on membrane/adhesion proteins, secreted proteins, and nuclear factors, including miRNAs associated with liver metastasis. Moreover, we analyze the biological significance and potential therapeutic applications of the identified liver metastasis-related proteins.</p><p><strong>Expert opinion: </strong>The combination of protein discovery and functional analysis is the only way to accelerate the progress to clinical translation of the proteomic-derived findings in a relatively fast pace. Patient-derived organoids represent a promising alternative to patient tissues and cell lines, but further optimizations are still required for achieving solid and reproducible results.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"357-370"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-12-30DOI: 10.1080/14789450.2023.2275683
Vasiliki Kanaka, Petros Drakakis, Dimitrios Loutradis, George Th Tsangaris
Introduction: Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions.
Areas covered: The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure.
Expert opinion: The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].
{"title":"Proteomics in the study of female fertility: an update.","authors":"Vasiliki Kanaka, Petros Drakakis, Dimitrios Loutradis, George Th Tsangaris","doi":"10.1080/14789450.2023.2275683","DOIUrl":"10.1080/14789450.2023.2275683","url":null,"abstract":"<p><strong>Introduction: </strong>Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions.</p><p><strong>Areas covered: </strong>The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure.</p><p><strong>Expert opinion: </strong>The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"319-330"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-12-30DOI: 10.1080/14789450.2023.2287054
Brenden Dufault, Richard D LeDuc, René P Zahedi
{"title":"How to maximize power for differential expression analysis in discovery omics through experimental design.","authors":"Brenden Dufault, Richard D LeDuc, René P Zahedi","doi":"10.1080/14789450.2023.2287054","DOIUrl":"10.1080/14789450.2023.2287054","url":null,"abstract":"","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"299-301"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138292300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-12-30DOI: 10.1080/14789450.2023.2295872
Katharina Zittlau, Payal Nashier, Claudia Cavarischia-Rega, Boris Macek, Philipp Spät, Nicolas Nalpas
Introduction: Protein phosphorylation is a critical post-translational modification involved in the regulation of numerous cellular processes from signal transduction to modulation of enzyme activities. Knowledge of dynamic changes of phosphorylation levels during biological processes, under various treatments or between healthy and disease models is fundamental for understanding the role of each phosphorylation event. Thereby, LC-MS/MS based technologies in combination with quantitative proteomics strategies evolved as a powerful strategy to investigate the function of individual protein phosphorylation events.
Areas covered: State-of-the-art labeling techniques including stable isotope and isobaric labeling provide precise and accurate quantification of phosphorylation events. Here, we review the strengths and limitations of recent quantification methods and provide examples based on current studies, how quantitative phosphoproteomics can be further optimized for enhanced analytic depth, dynamic range, site localization, and data integrity. Specifically, reducing the input material demands is key to a broader implementation of quantitative phosphoproteomics, not least for clinical samples.
Expert opinion: Despite quantitative phosphoproteomics is one of the most thriving fields in the proteomics world, many challenges still have to be overcome to facilitate even deeper and more comprehensive analyses as required in the current research, especially at single cell levels and in clinical diagnostics.
{"title":"Recent progress in quantitative phosphoproteomics.","authors":"Katharina Zittlau, Payal Nashier, Claudia Cavarischia-Rega, Boris Macek, Philipp Spät, Nicolas Nalpas","doi":"10.1080/14789450.2023.2295872","DOIUrl":"10.1080/14789450.2023.2295872","url":null,"abstract":"<p><strong>Introduction: </strong>Protein phosphorylation is a critical post-translational modification involved in the regulation of numerous cellular processes from signal transduction to modulation of enzyme activities. Knowledge of dynamic changes of phosphorylation levels during biological processes, under various treatments or between healthy and disease models is fundamental for understanding the role of each phosphorylation event. Thereby, LC-MS/MS based technologies in combination with quantitative proteomics strategies evolved as a powerful strategy to investigate the function of individual protein phosphorylation events.</p><p><strong>Areas covered: </strong>State-of-the-art labeling techniques including stable isotope and isobaric labeling provide precise and accurate quantification of phosphorylation events. Here, we review the strengths and limitations of recent quantification methods and provide examples based on current studies, how quantitative phosphoproteomics can be further optimized for enhanced analytic depth, dynamic range, site localization, and data integrity. Specifically, reducing the input material demands is key to a broader implementation of quantitative phosphoproteomics, not least for clinical samples.</p><p><strong>Expert opinion: </strong>Despite quantitative phosphoproteomics is one of the most thriving fields in the proteomics world, many challenges still have to be overcome to facilitate even deeper and more comprehensive analyses as required in the current research, especially at single cell levels and in clinical diagnostics.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"469-482"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-10-27DOI: 10.1080/14789450.2023.2260955
Jong-Heon Kim, Ruqayya Afridi, Won-Ha Lee, Kyoungho Suk
Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets.
Area covered: In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them.
Expert opinion: Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.
{"title":"Analyzing the glial proteome in Alzheimer's disease.","authors":"Jong-Heon Kim, Ruqayya Afridi, Won-Ha Lee, Kyoungho Suk","doi":"10.1080/14789450.2023.2260955","DOIUrl":"10.1080/14789450.2023.2260955","url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets.</p><p><strong>Area covered: </strong>In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them.</p><p><strong>Expert opinion: </strong>Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"197-209"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10363643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-10-16DOI: 10.1080/14789450.2023.2260952
Chiara Martinello, Emanuele Panza, Antonio Orlacchio
Introduction: Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation.
Areas covered: This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease.
Expert opinion: Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
{"title":"Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms.","authors":"Chiara Martinello, Emanuele Panza, Antonio Orlacchio","doi":"10.1080/14789450.2023.2260952","DOIUrl":"10.1080/14789450.2023.2260952","url":null,"abstract":"<p><strong>Introduction: </strong>Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation.</p><p><strong>Areas covered: </strong>This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease.</p><p><strong>Expert opinion: </strong>Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"171-188"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-10-27DOI: 10.1080/14789450.2023.2263652
Vijay K Singh, Meera Srivastava, Thomas M Seed
Introduction: Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses.
Areas covered: This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models.
Expert opinion: The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
{"title":"Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions.","authors":"Vijay K Singh, Meera Srivastava, Thomas M Seed","doi":"10.1080/14789450.2023.2263652","DOIUrl":"10.1080/14789450.2023.2263652","url":null,"abstract":"<p><strong>Introduction: </strong>Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses.</p><p><strong>Areas covered: </strong>This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models.</p><p><strong>Expert opinion: </strong>The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"221-246"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41138930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-09-07DOI: 10.1080/14789450.2023.2255743
Paul Dowling, Dieter Swandulla, Kay Ohlendieck
Introduction: Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission.
Areas covered: The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective.
Expert opinion: Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
{"title":"Biochemical and proteomic insights into sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase complexes in skeletal muscles.","authors":"Paul Dowling, Dieter Swandulla, Kay Ohlendieck","doi":"10.1080/14789450.2023.2255743","DOIUrl":"10.1080/14789450.2023.2255743","url":null,"abstract":"<p><strong>Introduction: </strong>Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission.</p><p><strong>Areas covered: </strong>The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca<sup>2+</sup>-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective.</p><p><strong>Expert opinion: </strong>Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca<sup>2+</sup>-pump proteins of the sarcoplasmic reticulum.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"125-142"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10166439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-09-16DOI: 10.1080/14789450.2023.2260954
Manuel Matzinger, Karl Mechtler
{"title":"Improving single cell proteomics experiments: how can we best utilize latest-generation data acquisition and MS instrument architecture?","authors":"Manuel Matzinger, Karl Mechtler","doi":"10.1080/14789450.2023.2260954","DOIUrl":"10.1080/14789450.2023.2260954","url":null,"abstract":"","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"193-195"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10268160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-12-30DOI: 10.1080/14789450.2023.2285311
Ruqayya Afridi, Won-Ha Lee, Jong-Heon Kim, Kyoungho Suk
Introduction: Astrocytes are the most abundant cell type in the central nervous system (CNS). They play a pivotal role in supporting neuronal function and maintaining homeostasis by releasing a variety of bioactive proteins, collectively known as the astrocyte secretome. Investigating secretome provides insights into the molecular mechanisms underlying astrocyte function and dysfunction, as well as novel strategies to prevent and treat diseases affecting the CNS.
Areas covered: Proteomics databases are a valuable resource for studying the role of astrocytes in healthy and diseased brain function, as they provide information about gene expression, protein expression, and cellular function. In this review, we discuss existing databases that are useful for astrocyte secretome research.
Expert opinion: Astrocyte secretomics is a field that is rapidly progressing, yet the availability of dedicated databases is currently limited. To meet the increasing demand for comprehensive omics data in glia research, developing databases specifically focused on astrocyte secretome is crucial. Such databases would allow researchers to investigate the intricate molecular landscape of astrocytes and comprehend their involvement in diverse physiological and pathological processes. Expanding resources through the development of databases dedicated to the astrocyte secretome may facilitate further advancements in this field.
{"title":"Utilizing databases for astrocyte secretome research.","authors":"Ruqayya Afridi, Won-Ha Lee, Jong-Heon Kim, Kyoungho Suk","doi":"10.1080/14789450.2023.2285311","DOIUrl":"10.1080/14789450.2023.2285311","url":null,"abstract":"<p><strong>Introduction: </strong>Astrocytes are the most abundant cell type in the central nervous system (CNS). They play a pivotal role in supporting neuronal function and maintaining homeostasis by releasing a variety of bioactive proteins, collectively known as the astrocyte secretome. Investigating secretome provides insights into the molecular mechanisms underlying astrocyte function and dysfunction, as well as novel strategies to prevent and treat diseases affecting the CNS.</p><p><strong>Areas covered: </strong>Proteomics databases are a valuable resource for studying the role of astrocytes in healthy and diseased brain function, as they provide information about gene expression, protein expression, and cellular function. In this review, we discuss existing databases that are useful for astrocyte secretome research.</p><p><strong>Expert opinion: </strong>Astrocyte secretomics is a field that is rapidly progressing, yet the availability of dedicated databases is currently limited. To meet the increasing demand for comprehensive omics data in glia research, developing databases specifically focused on astrocyte secretome is crucial. Such databases would allow researchers to investigate the intricate molecular landscape of astrocytes and comprehend their involvement in diverse physiological and pathological processes. Expanding resources through the development of databases dedicated to the astrocyte secretome may facilitate further advancements in this field.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"371-379"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}