首页 > 最新文献

Experimental and Molecular Medicine最新文献

英文 中文
Taming hemoglobin chemistry—a new hemoglobin-based oxygen carrier engineered with both decreased rates of nitric oxide scavenging and lipid oxidation 驯服血红蛋白化学--一种基于血红蛋白的新型氧气载体,其一氧化氮清除率和脂质氧化率均有所降低。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s12276-024-01323-x
Chris E. Cooper, Michelle Simons, Alex Dyson, Nélida Leiva Eriksson, Gary G. A. Silkstone, Natalie Syrett, Victoria Allen-Baume, Leif Bülow, Luca Ronda, Andrea Mozzarelli, Mervyn Singer, Brandon J. Reeder
The clinical utility of hemoglobin-based oxygen carriers (HBOC) is limited by adverse heme oxidative chemistry. A variety of tyrosine residues were inserted on the surface of the γ subunit of recombinant fetal hemoglobin to create novel electron transport pathways. This enhanced the ability of the physiological antioxidant ascorbate to reduce ferryl heme and decrease lipid peroxidation. The γL96Y mutation presented the best profile of oxidative protection unaccompanied by loss of protein stability and function. N-terminal deletions were constructed to facilitate the production of recombinant hemoglobin by fermentation and phenylalanine insertions in the heme pocket to decrease the rate of NO dioxygenation. The resultant mutant (αV1del. αL29F, γG1del. γV67F, γL96Y) significantly decreased NO scavenging and lipid peroxidation in vitro. Unlike native hemoglobin or a recombinant control (αV1del, γG1del), this mutation showed no increase in blood pressure immediately following infusion in a rat model of reperfusion injury, suggesting that it was also able to prevent NO scavenging in vivo. Infusion of the mutant also resulted in no meaningful adverse physiological effects apart from diuresis, and no increase in oxidative stress, as measured by urinary isoprostane levels. Following PEGylation via the Euro-PEG-Hb method to increase vascular retention, this novel protein construct was compared with saline in a severe rat reperfusion injury model (45% blood volume removal for 90 minutes followed by reinfusion to twice the volume of shed blood). Blood pressure and survival were followed for 4 h post-reperfusion. While there was no difference in blood pressure, the PEGylated Hb mutant significantly increased survival. Hemoglobin-based oxygen carriers are modified hemoglobin molecules that can be infused as blood substitutes to replace red blood cell transfusions or as oxygen therapeutics to deliver oxygen to damaged tissues not readily accessible by red cells. However, their clinical use has been limited by adverse side effects caused by free radical production and nitric oxide scavenging by extracellular hemoglobin. The researchers used genetic engineering to insert tyrosine residues into fetal human hemoglobin to decrease radical production and phenylalanine residues to decrease nitric oxide scavenging. The resulting novel hemoglobin was tested in rat models to observe the effects on blood pressure and survival rates. The research offers hope for improved treatment for patients in critical need of blood transfusions or with an otherwise compromised oxygen delivery system, such as in sickle cell disease, stroke or sepsis. This summary was written by the author.
基于血红蛋白的氧载体(HBOC)的临床应用受到血红素氧化化学性质不良的限制。在重组胎儿血红蛋白的γ亚基表面插入了多种酪氨酸残基,以创建新的电子传递途径。这增强了生理抗氧化剂抗坏血酸还原摆渡血红素和减少脂质过氧化的能力。γL96Y突变具有最佳的氧化保护能力,且不会伴随蛋白质稳定性和功能的丧失。为了便于通过发酵生产重组血红蛋白,对 N 端进行了缺失,并在血红素袋中插入了苯丙氨酸,以降低 NO 的二氧化速率。由此产生的突变体(αV1del. αL29F、γG1del. γV67F、γL96Y)显著降低了体外清除 NO 和脂质过氧化的能力。与原生血红蛋白或重组对照(αV1del、γG1del)不同,该突变体在大鼠再灌注损伤模型中输注后血压没有立即升高,这表明它在体内也能阻止 NO 清除。除了利尿之外,输注该突变体也不会导致明显的不良生理效应,而且根据尿液中异前列腺素水平的测量,也不会增加氧化应激。通过 Euro-PEG-Hb 方法进行 PEG 化以增加血管保留率后,在严重的大鼠再灌注损伤模型中将这种新型蛋白质构建物与生理盐水进行了比较(90 分钟内去除 45% 的血容量,然后再灌注两倍于脱落血容量的血液)。对再灌注后 4 小时的血压和存活率进行了跟踪。虽然血压没有差异,但 PEG 化 Hb 突变体显著提高了存活率。
{"title":"Taming hemoglobin chemistry—a new hemoglobin-based oxygen carrier engineered with both decreased rates of nitric oxide scavenging and lipid oxidation","authors":"Chris E. Cooper, Michelle Simons, Alex Dyson, Nélida Leiva Eriksson, Gary G. A. Silkstone, Natalie Syrett, Victoria Allen-Baume, Leif Bülow, Luca Ronda, Andrea Mozzarelli, Mervyn Singer, Brandon J. Reeder","doi":"10.1038/s12276-024-01323-x","DOIUrl":"10.1038/s12276-024-01323-x","url":null,"abstract":"The clinical utility of hemoglobin-based oxygen carriers (HBOC) is limited by adverse heme oxidative chemistry. A variety of tyrosine residues were inserted on the surface of the γ subunit of recombinant fetal hemoglobin to create novel electron transport pathways. This enhanced the ability of the physiological antioxidant ascorbate to reduce ferryl heme and decrease lipid peroxidation. The γL96Y mutation presented the best profile of oxidative protection unaccompanied by loss of protein stability and function. N-terminal deletions were constructed to facilitate the production of recombinant hemoglobin by fermentation and phenylalanine insertions in the heme pocket to decrease the rate of NO dioxygenation. The resultant mutant (αV1del. αL29F, γG1del. γV67F, γL96Y) significantly decreased NO scavenging and lipid peroxidation in vitro. Unlike native hemoglobin or a recombinant control (αV1del, γG1del), this mutation showed no increase in blood pressure immediately following infusion in a rat model of reperfusion injury, suggesting that it was also able to prevent NO scavenging in vivo. Infusion of the mutant also resulted in no meaningful adverse physiological effects apart from diuresis, and no increase in oxidative stress, as measured by urinary isoprostane levels. Following PEGylation via the Euro-PEG-Hb method to increase vascular retention, this novel protein construct was compared with saline in a severe rat reperfusion injury model (45% blood volume removal for 90 minutes followed by reinfusion to twice the volume of shed blood). Blood pressure and survival were followed for 4 h post-reperfusion. While there was no difference in blood pressure, the PEGylated Hb mutant significantly increased survival. Hemoglobin-based oxygen carriers are modified hemoglobin molecules that can be infused as blood substitutes to replace red blood cell transfusions or as oxygen therapeutics to deliver oxygen to damaged tissues not readily accessible by red cells. However, their clinical use has been limited by adverse side effects caused by free radical production and nitric oxide scavenging by extracellular hemoglobin. The researchers used genetic engineering to insert tyrosine residues into fetal human hemoglobin to decrease radical production and phenylalanine residues to decrease nitric oxide scavenging. The resulting novel hemoglobin was tested in rat models to observe the effects on blood pressure and survival rates. The research offers hope for improved treatment for patients in critical need of blood transfusions or with an otherwise compromised oxygen delivery system, such as in sickle cell disease, stroke or sepsis. This summary was written by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2260-2270"},"PeriodicalIF":9.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01323-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term three-dimensional high-resolution imaging of live unlabeled small intestinal organoids via low-coherence holotomography 通过低相干全图对未标记的活体小肠有机体进行长期三维高分辨率成像。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s12276-024-01312-0
Mahn Jae Lee, Jaehyeok Lee, Jeongmin Ha, Geon Kim, Hye-Jin Kim, Sumin Lee, Bon-Kyoung Koo, YongKeun Park
Organoids, which are miniature in vitro versions of organs, possess significant potential for studying human diseases and elucidating their underlying mechanisms. Live imaging techniques play a crucial role in organoid research and contribute to elucidating the complex structure and dynamic biological phenomena of organoids. However, live, unlabeled high-resolution imaging of native organoids is challenging, primarily owing to the complexities of sample handling and optical scattering inherent in three-dimensional (3D) structures. Additionally, conventional imaging methods fail to capture the real-time dynamic processes of growing organoids. In this study, we introduce low-coherence holotomography as an advanced, label-free, quantitative imaging modality designed to overcome several technical obstacles for long-term live imaging of 3D organoids. We demonstrate the efficacy of low-coherence holotomography by capturing high-resolution morphological details and dynamic activities within mouse small intestinal organoids at subcellular resolution. Moreover, our approach facilitates the distinction between viable and nonviable organoids, significantly enhancing its utility in organoid-based research. This advancement underscores the critical role of live imaging in organoid studies, offering a more comprehensive understanding of these complex systems. Organoids, miniature 3D structures that imitate real organs, are grown in labs to study human biology and diseases. However, their complex structures and behaviors are hard to understand due to imaging technology limitations. In this study, researchers used a method called low-coherence holotomography to study mouse small intestinal organoids. This method let them observe organoids’ growth and drug responses in real-time, without altering their natural state. They conducted an experiment involving over 120 hours of continuous imaging, providing new insights into organoid development, cell dynamics, and drug responses. The study shows that low-coherence HT can reveal detailed 3D structures and changes within organoids, such as cell division and death, with high resolution. This research could revolutionize drug development and testing and provide new insights into human biology and diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
类器官是器官的微型体外版本,在研究人类疾病和阐明其潜在机制方面具有巨大潜力。活体成像技术在类器官研究中起着至关重要的作用,有助于阐明类器官的复杂结构和动态生物现象。然而,主要由于三维(3D)结构中固有的样品处理和光学散射的复杂性,对原生有机体进行非标记的高分辨率活体成像具有挑战性。此外,传统的成像方法无法捕捉到有机体生长的实时动态过程。在本研究中,我们引入了低相干全息成像技术,作为一种先进的、无标记的定量成像方式,旨在克服三维有机体长期实时成像的若干技术障碍。我们以亚细胞分辨率捕捉了小鼠小肠器官组织内的高分辨率形态细节和动态活动,证明了低相干全图成像的功效。此外,我们的方法还有助于区分有活力和无活力的类器官,大大提高了其在类器官研究中的实用性。这一进展凸显了活体成像在类器官研究中的关键作用,有助于更全面地了解这些复杂的系统。
{"title":"Long-term three-dimensional high-resolution imaging of live unlabeled small intestinal organoids via low-coherence holotomography","authors":"Mahn Jae Lee, Jaehyeok Lee, Jeongmin Ha, Geon Kim, Hye-Jin Kim, Sumin Lee, Bon-Kyoung Koo, YongKeun Park","doi":"10.1038/s12276-024-01312-0","DOIUrl":"10.1038/s12276-024-01312-0","url":null,"abstract":"Organoids, which are miniature in vitro versions of organs, possess significant potential for studying human diseases and elucidating their underlying mechanisms. Live imaging techniques play a crucial role in organoid research and contribute to elucidating the complex structure and dynamic biological phenomena of organoids. However, live, unlabeled high-resolution imaging of native organoids is challenging, primarily owing to the complexities of sample handling and optical scattering inherent in three-dimensional (3D) structures. Additionally, conventional imaging methods fail to capture the real-time dynamic processes of growing organoids. In this study, we introduce low-coherence holotomography as an advanced, label-free, quantitative imaging modality designed to overcome several technical obstacles for long-term live imaging of 3D organoids. We demonstrate the efficacy of low-coherence holotomography by capturing high-resolution morphological details and dynamic activities within mouse small intestinal organoids at subcellular resolution. Moreover, our approach facilitates the distinction between viable and nonviable organoids, significantly enhancing its utility in organoid-based research. This advancement underscores the critical role of live imaging in organoid studies, offering a more comprehensive understanding of these complex systems. Organoids, miniature 3D structures that imitate real organs, are grown in labs to study human biology and diseases. However, their complex structures and behaviors are hard to understand due to imaging technology limitations. In this study, researchers used a method called low-coherence holotomography to study mouse small intestinal organoids. This method let them observe organoids’ growth and drug responses in real-time, without altering their natural state. They conducted an experiment involving over 120 hours of continuous imaging, providing new insights into organoid development, cell dynamics, and drug responses. The study shows that low-coherence HT can reveal detailed 3D structures and changes within organoids, such as cell division and death, with high resolution. This research could revolutionize drug development and testing and provide new insights into human biology and diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2162-2170"},"PeriodicalIF":9.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01312-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CBL-b E3 ligase-mediated neddylation and activation of PARP-1 induce vascular calcification CBL-b E3配体介导的内切酶和 PARP-1 激活诱导血管钙化。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s12276-024-01322-y
Duk-Hwa Kwon, Sera Shin, Yoon Seok Nam, Nakwon Choe, Yongwoon Lim, Anna Jeong, Yun-Gyeong Lee, Young-Kook Kim, Hyun Kook
Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated. In our study, we observed that MLN4924, an inhibitor of the NEDD8-activating E1 enzyme, effectively impedes the progression of VC. LC‒MS/MS analysis revealed that poly(ADP‒ribose) polymerase 1 (PARP-1) is subjected to NEDD8 conjugation, leading to an increase in PARP-1 activity during VC. We subsequently revealed that PARP-1 NEDDylation is mediated by the E3 ligase CBL proto-oncogene B (CBL-b) and is reversed by NEDD8-specific protease 1 (NEDP-1) during VC. Furthermore, the CBL-b C373 peptide effectively mitigated the inactive form of the E3 ligase activity of CBL-b, ultimately preventing VC. These findings provide compelling evidence that the NEDD8-dependent activation of PARP-1 represents a novel mechanism underlying vascular calcification and suggests a promising new therapeutic target for VC. Vascular calcification, a condition where calcium deposits in blood vessels, can increase heart disease risk. Researchers studied a process called neddylation, which modifies proteins, to see if it affects this calcium buildup. They experimented on cells and mice using various techniques like chemical treatments and gene alteration. They found that a protein, NEDD8, when joined to another protein, PARP-1, encourages calcium deposition in blood vessels. By preventing NEDD8 from joining to PARP-1 with a specific inhibitor, they reduced calcium buildup in cells and mice. They also found that an enzyme, Cbl-b, helps NEDD8 attach to PARP-1, suggesting a new way to prevent vascular calcification. Results suggest that stopping neddylation, particularly the joining of NEDD8 to PARP-1, can significantly reduce vascular calcification. This discovery could lead to new treatments for vascular calcification and related heart conditions. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
血管钙化(VC)是指动脉和静脉壁上矿物质沉积的积累,它与心血管疾病患者死亡率的增加密切相关,尤其是糖尿病和慢性肾病(CKD)等高危患者。神经元前体细胞表达的发育下调蛋白 8(NEDD8)是一种泛素样蛋白,在各种细胞功能中发挥着关键作用,主要是通过与目标蛋白连接,然后传递生物信号。然而,NEDDylation 在 VC 中的作用尚未得到研究。在我们的研究中,我们观察到 NEDD8 激活 E1 酶的抑制剂 MLN4924 能有效阻碍 VC 的进展。LC-MS/MS分析表明,聚(ADP-核糖)聚合酶1(PARP-1)与NEDD8结合,导致PARP-1在VC过程中活性增加。我们随后发现,PARP-1的NEDDyl化是由E3连接酶CBL原癌基因B(CBL-b)介导的,并在VC过程中被NEDD8特异性蛋白酶1(NEDP-1)逆转。此外,CBL-b C373多肽能有效减轻CBL-b的E3连接酶活性的非活性形式,最终阻止VC的发生。这些发现提供了令人信服的证据,证明NEDD8依赖性激活PARP-1代表了血管钙化的一种新机制,并提出了一种治疗血管钙化的有希望的新靶点。
{"title":"CBL-b E3 ligase-mediated neddylation and activation of PARP-1 induce vascular calcification","authors":"Duk-Hwa Kwon, Sera Shin, Yoon Seok Nam, Nakwon Choe, Yongwoon Lim, Anna Jeong, Yun-Gyeong Lee, Young-Kook Kim, Hyun Kook","doi":"10.1038/s12276-024-01322-y","DOIUrl":"10.1038/s12276-024-01322-y","url":null,"abstract":"Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated. In our study, we observed that MLN4924, an inhibitor of the NEDD8-activating E1 enzyme, effectively impedes the progression of VC. LC‒MS/MS analysis revealed that poly(ADP‒ribose) polymerase 1 (PARP-1) is subjected to NEDD8 conjugation, leading to an increase in PARP-1 activity during VC. We subsequently revealed that PARP-1 NEDDylation is mediated by the E3 ligase CBL proto-oncogene B (CBL-b) and is reversed by NEDD8-specific protease 1 (NEDP-1) during VC. Furthermore, the CBL-b C373 peptide effectively mitigated the inactive form of the E3 ligase activity of CBL-b, ultimately preventing VC. These findings provide compelling evidence that the NEDD8-dependent activation of PARP-1 represents a novel mechanism underlying vascular calcification and suggests a promising new therapeutic target for VC. Vascular calcification, a condition where calcium deposits in blood vessels, can increase heart disease risk. Researchers studied a process called neddylation, which modifies proteins, to see if it affects this calcium buildup. They experimented on cells and mice using various techniques like chemical treatments and gene alteration. They found that a protein, NEDD8, when joined to another protein, PARP-1, encourages calcium deposition in blood vessels. By preventing NEDD8 from joining to PARP-1 with a specific inhibitor, they reduced calcium buildup in cells and mice. They also found that an enzyme, Cbl-b, helps NEDD8 attach to PARP-1, suggesting a new way to prevent vascular calcification. Results suggest that stopping neddylation, particularly the joining of NEDD8 to PARP-1, can significantly reduce vascular calcification. This discovery could lead to new treatments for vascular calcification and related heart conditions. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2246-2259"},"PeriodicalIF":9.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01322-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocyte activation and liver injury following cerebral ischemia promote HMGB1-mediated hepcidin upregulation in hepatocytes and regulation of systemic iron levels 脑缺血后的肝细胞活化和肝损伤会促进肝细胞中 HMGB1 介导的血红素上调并调节全身铁水平。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s12276-024-01314-y
Dashdulam Davaanyam, Song-I Seol, Sang-A Oh, Hahnbi Lee, Ja-Kyeong Lee
We previously reported that high mobility group box 1 (HMGB1), a danger-associated molecular pattern (DAMP), increases intracellular iron levels in the postischemic brain by upregulating hepcidin, a key regulator of iron homeostasis, triggering ferroptosis. Since hepatocytes are the primary cells that produce hepcidin and control systemic iron levels, we investigated whether cerebral ischemia induces hepcidin upregulation in hepatocytes. Following middle cerebral artery occlusion (MCAO) in a rodent model, significant liver injury was observed. This injury was evidenced by significantly elevated Eckhoff’s scores and increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, total iron levels were significantly elevated in the liver, with intracellular iron accumulation detected in hepatocytes. Hepcidin expression in the liver, which is primarily localized in hepatocytes, increased significantly starting at 3 h after MCAO and continued to increase rapidly, reaching a peak at 24 h. Interestingly, HMGB1 levels in the liver were also significantly elevated after MCAO, with the disulfide form of HMGB1 being the major subtype. In vitro experiments using AML12 hepatocytes showed that recombinant disulfide HMGB1 significantly upregulated hepcidin expression in a Toll-like receptor 4 (TLR4)- and RAGE-dependent manner. Furthermore, treatment with a ROS scavenger and a peptide HMGB1 antagonist revealed that both ROS generation and HMGB1 induction contributed to hepatocyte activation and liver damage following MCAO–reperfusion. In conclusion, this study revealed that cerebral ischemia triggers hepatocyte activation and liver injury. HMGB1 potently induces hepcidin not only in the brain but also in the liver, thereby influencing systemic iron homeostasis following ischemic stroke. Iron is vital for many body functions, but its quantity needs careful monitoring to avoid harm. The processes controlling iron, particularly after brain injuries like strokes, are not entirely known. Researchers studied how strokes affect liver function and iron control. They experimented on rats, causing strokes and then observing the impact on liver damage, iron quantities, and the production of hepcidin, a hormone crucial for iron control. This research used animal models to better comprehend these biological processes. The findings reveal that strokes can harm the liver and disrupt the body’s iron control by increasing hepcidin quantities. The researchers conclude that understanding these processes could help create treatments to manage iron quantities after a stroke, potentially improving stroke patients. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
我们以前曾报道过,高迁移率基团框 1(HMGB1)是一种危险相关分子模式(DAMP),它通过上调铁稳态的关键调节因子--肝素(hepcidin),引发铁变态反应,从而增加缺血后大脑细胞内的铁含量。由于肝细胞是产生血红素并控制全身铁水平的主要细胞,我们研究了脑缺血是否会诱导肝细胞中血红素的上调。在啮齿动物模型中进行大脑中动脉闭塞(MCAO)后,观察到肝脏明显损伤。这种损伤表现为埃克霍夫评分明显升高,血清中丙氨酸氨基转移酶(ALT)和天门冬氨酸氨基转移酶(AST)水平升高。此外,肝脏中的总铁水平明显升高,肝细胞中检测到细胞内铁蓄积。肝脏中的 Hepcidin 主要定位于肝细胞,其表达在 MCAO 后 3 小时开始显著增加,并持续快速增加,在 24 小时达到峰值。使用 AML12 肝细胞进行的体外实验表明,重组二硫化物 HMGB1 能以 Toll 样受体 4 (TLR4) 和 RAGE 依赖性方式显著上调肝磷脂素的表达。此外,用 ROS 清除剂和多肽 HMGB1 拮抗剂处理后发现,ROS 生成和 HMGB1 诱导都是 MCAO 再灌注后肝细胞活化和肝损伤的原因。总之,本研究揭示了脑缺血会引发肝细胞活化和肝损伤。HMGB1 不仅在脑部而且在肝脏都能有效诱导血红素,从而影响缺血性脑卒中后的全身铁平衡。
{"title":"Hepatocyte activation and liver injury following cerebral ischemia promote HMGB1-mediated hepcidin upregulation in hepatocytes and regulation of systemic iron levels","authors":"Dashdulam Davaanyam, Song-I Seol, Sang-A Oh, Hahnbi Lee, Ja-Kyeong Lee","doi":"10.1038/s12276-024-01314-y","DOIUrl":"10.1038/s12276-024-01314-y","url":null,"abstract":"We previously reported that high mobility group box 1 (HMGB1), a danger-associated molecular pattern (DAMP), increases intracellular iron levels in the postischemic brain by upregulating hepcidin, a key regulator of iron homeostasis, triggering ferroptosis. Since hepatocytes are the primary cells that produce hepcidin and control systemic iron levels, we investigated whether cerebral ischemia induces hepcidin upregulation in hepatocytes. Following middle cerebral artery occlusion (MCAO) in a rodent model, significant liver injury was observed. This injury was evidenced by significantly elevated Eckhoff’s scores and increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, total iron levels were significantly elevated in the liver, with intracellular iron accumulation detected in hepatocytes. Hepcidin expression in the liver, which is primarily localized in hepatocytes, increased significantly starting at 3 h after MCAO and continued to increase rapidly, reaching a peak at 24 h. Interestingly, HMGB1 levels in the liver were also significantly elevated after MCAO, with the disulfide form of HMGB1 being the major subtype. In vitro experiments using AML12 hepatocytes showed that recombinant disulfide HMGB1 significantly upregulated hepcidin expression in a Toll-like receptor 4 (TLR4)- and RAGE-dependent manner. Furthermore, treatment with a ROS scavenger and a peptide HMGB1 antagonist revealed that both ROS generation and HMGB1 induction contributed to hepatocyte activation and liver damage following MCAO–reperfusion. In conclusion, this study revealed that cerebral ischemia triggers hepatocyte activation and liver injury. HMGB1 potently induces hepcidin not only in the brain but also in the liver, thereby influencing systemic iron homeostasis following ischemic stroke. Iron is vital for many body functions, but its quantity needs careful monitoring to avoid harm. The processes controlling iron, particularly after brain injuries like strokes, are not entirely known. Researchers studied how strokes affect liver function and iron control. They experimented on rats, causing strokes and then observing the impact on liver damage, iron quantities, and the production of hepcidin, a hormone crucial for iron control. This research used animal models to better comprehend these biological processes. The findings reveal that strokes can harm the liver and disrupt the body’s iron control by increasing hepcidin quantities. The researchers conclude that understanding these processes could help create treatments to manage iron quantities after a stroke, potentially improving stroke patients. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2171-2183"},"PeriodicalIF":9.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01314-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dichotomous intronic polyadenylation profiles reveal multifaceted gene functions in the pan-cancer transcriptome 二歧内含子多腺苷酸化图谱揭示了泛癌症转录组中基因的多方面功能。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s12276-024-01289-w
Jiao Sun, Jin-Young Kim, Semo Jun, Meeyeon Park, Ebbing de Jong, Jae-Woong Chang, Sze Cheng, Deliang Fan, Yue Chen, Timothy J. Griffin, Jung-Hee Lee, Ho Jin You, Wei Zhang, Jeongsik Yong
Alternative cleavage and polyadenylation within introns (intronic APA) generate shorter mRNA isoforms; however, their physiological significance remains elusive. In this study, we developed a comprehensive workflow to analyze intronic APA profiles using the mammalian target of rapamycin (mTOR)-regulated transcriptome as a model system. Our investigation revealed two contrasting effects within the transcriptome in response to fluctuations in cellular mTOR activity: an increase in intronic APA for a subset of genes and a decrease for another subset of genes. The application of this workflow to RNA-seq data from The Cancer Genome Atlas demonstrated that this dichotomous intronic APA pattern is a consistent feature in transcriptomes across both normal tissues and various cancer types. Notably, our analyses of protein length changes resulting from intronic APA events revealed two distinct phenomena in proteome programming: a loss of functional domains due to significant changes in protein length or minimal alterations in C-terminal protein sequences within unstructured regions. Focusing on conserved intronic APA events across 10 different cancer types highlighted the prevalence of the latter cases in cancer transcriptomes, whereas the former cases were relatively enriched in normal tissue transcriptomes. These observations suggest potential, yet distinct, roles for intronic APA events during pathogenic processes and emphasize the abundance of protein isoforms with similar lengths in the cancer proteome. Furthermore, our investigation into the isoform-specific functions of JMJD6 intronic APA events supported the hypothesis that alterations in unstructured C-terminal protein regions lead to functional differences. Collectively, our findings underscore intronic APA events as a discrete molecular signature present in both normal tissues and cancer transcriptomes, highlighting the contribution of APA to the multifaceted functionality of the cancer proteome. Understanding our genes is vital for combating diseases like cancer. A crucial gene expression process is alternative polyadenylation. These versions can influence cell behavior and are associated with various diseases, including cancer. The role of a specific APA type, intronic APA, in cancer was unclear. This study examined intronic APA’s effect on cancer by analyzing cancer patient data. They found that intronic APA profiles vary greatly between normal and tumor tissues across different cancer types, indicating that intronic APA plays a complex role in cancer biology. The results showed that intronic APA contributes to the diversity of mRNA endings in cancer, affecting gene expression. This could lead to new diagnosis or treatment approaches. The researchers concluded that intronic APA is a key factor in cancer’s molecular landscape, providing new insights into cancer development and progression. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the au
内含子内的替代性裂解和多腺苷酸化(内含子 APA)会产生较短的 mRNA 异构体;然而,它们的生理意义仍然难以捉摸。在这项研究中,我们以哺乳动物雷帕霉素靶标(mTOR)调控的转录组为模型系统,开发了一套全面的工作流程来分析内含子 APA 图谱。我们的研究揭示了转录组对细胞 mTOR 活性波动的两种截然不同的反应:一部分基因的内含子 APA 增加,另一部分基因的内含子 APA 减少。将这一工作流程应用于癌症基因组图谱的 RNA-seq 数据表明,这种二分的内含子 APA 模式是正常组织和各种癌症类型转录组的一致特征。值得注意的是,我们对内含子 APA 事件导致的蛋白质长度变化的分析表明,在蛋白质组编程中存在两种截然不同的现象:由于蛋白质长度的显著变化而导致功能域的缺失,或者在非结构化区域内 C 端蛋白质序列发生极小的变化。重点研究 10 种不同癌症类型中的保守内含子 APA 事件突出表明,后一种情况在癌症转录组中普遍存在,而前一种情况在正常组织转录组中相对较多。这些观察结果表明,内含子 APA 事件在致病过程中具有潜在但不同的作用,并强调了癌症蛋白质组中具有相似长度的蛋白质同工型的丰富性。此外,我们对 JMJD6 内含子 APA 事件的异构体特异性功能的研究支持了非结构化 C 端蛋白区域的改变导致功能差异的假设。总之,我们的研究结果强调了内含子 APA 事件是存在于正常组织和癌症转录组中的一种离散分子特征,突出了 APA 对癌症蛋白质组多方面功能的贡献。
{"title":"Dichotomous intronic polyadenylation profiles reveal multifaceted gene functions in the pan-cancer transcriptome","authors":"Jiao Sun, Jin-Young Kim, Semo Jun, Meeyeon Park, Ebbing de Jong, Jae-Woong Chang, Sze Cheng, Deliang Fan, Yue Chen, Timothy J. Griffin, Jung-Hee Lee, Ho Jin You, Wei Zhang, Jeongsik Yong","doi":"10.1038/s12276-024-01289-w","DOIUrl":"10.1038/s12276-024-01289-w","url":null,"abstract":"Alternative cleavage and polyadenylation within introns (intronic APA) generate shorter mRNA isoforms; however, their physiological significance remains elusive. In this study, we developed a comprehensive workflow to analyze intronic APA profiles using the mammalian target of rapamycin (mTOR)-regulated transcriptome as a model system. Our investigation revealed two contrasting effects within the transcriptome in response to fluctuations in cellular mTOR activity: an increase in intronic APA for a subset of genes and a decrease for another subset of genes. The application of this workflow to RNA-seq data from The Cancer Genome Atlas demonstrated that this dichotomous intronic APA pattern is a consistent feature in transcriptomes across both normal tissues and various cancer types. Notably, our analyses of protein length changes resulting from intronic APA events revealed two distinct phenomena in proteome programming: a loss of functional domains due to significant changes in protein length or minimal alterations in C-terminal protein sequences within unstructured regions. Focusing on conserved intronic APA events across 10 different cancer types highlighted the prevalence of the latter cases in cancer transcriptomes, whereas the former cases were relatively enriched in normal tissue transcriptomes. These observations suggest potential, yet distinct, roles for intronic APA events during pathogenic processes and emphasize the abundance of protein isoforms with similar lengths in the cancer proteome. Furthermore, our investigation into the isoform-specific functions of JMJD6 intronic APA events supported the hypothesis that alterations in unstructured C-terminal protein regions lead to functional differences. Collectively, our findings underscore intronic APA events as a discrete molecular signature present in both normal tissues and cancer transcriptomes, highlighting the contribution of APA to the multifaceted functionality of the cancer proteome. Understanding our genes is vital for combating diseases like cancer. A crucial gene expression process is alternative polyadenylation. These versions can influence cell behavior and are associated with various diseases, including cancer. The role of a specific APA type, intronic APA, in cancer was unclear. This study examined intronic APA’s effect on cancer by analyzing cancer patient data. They found that intronic APA profiles vary greatly between normal and tumor tissues across different cancer types, indicating that intronic APA plays a complex role in cancer biology. The results showed that intronic APA contributes to the diversity of mRNA endings in cancer, affecting gene expression. This could lead to new diagnosis or treatment approaches. The researchers concluded that intronic APA is a key factor in cancer’s molecular landscape, providing new insights into cancer development and progression. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the au","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2145-2161"},"PeriodicalIF":9.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01289-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erythropoiesis: insights from a genomic perspective 红细胞生成:从基因组角度看问题。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s12276-024-01311-1
Hye Ji Cha
Erythropoiesis, the process underlying the production of red blood cells, which are essential for oxygen transport, involves the development of hematopoietic stem cells into mature red blood cells. This review focuses on the critical roles of transcription factors and epigenetic mechanisms in modulating gene expression critical for erythroid differentiation. It emphasizes the significance of chromatin remodeling in ensuring gene accessibility, a key factor for the orderly progression of erythropoiesis. This review also discusses how dysregulation of these processes can lead to erythroid disorders and examines the promise of genome editing and gene therapy as innovative therapeutic approaches. By shedding light on the genomic regulation of erythropoiesis, this review suggests avenues for novel treatments for hematological conditions, underscoring the need for continued molecular studies to improve human health. Understanding how our bodies produce red blood cells, a process called erythropoiesis, is vital for treating blood disorders. Researchers have reviewed the stages of erythropoiesis, focusing on the genetic and molecular factors that influence the development of red blood cells. Erythropoiesis starts with stem cells in the bone marrow, which transform into several stages of red blood cell precursors before becoming mature, oxygen-carrying cells. The review emphasizes the role of specific growth factors, like erythropoietin, and transcription factors, proteins that activate or deactivate specific genes, in guiding these developmental stages. It also discusses how manipulating these factors in the lab can produce red blood cells outside of the body, a technique that could have therapeutic uses. By targeting the specific genes and pathways involved in red blood cell development, researchers can develop more effective treatments. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
红细胞生成是氧运输所必需的红细胞生成过程的基础,涉及造血干细胞向成熟红细胞的发育。本综述重点探讨转录因子和表观遗传机制在调节红细胞分化关键基因表达中的重要作用。它强调染色质重塑在确保基因可及性方面的重要意义,而基因可及性是红细胞生成有序进行的关键因素。这篇综述还讨论了这些过程的失调如何导致红细胞生成障碍,并探讨了基因组编辑和基因疗法作为创新治疗方法的前景。通过揭示红细胞生成的基因组调控,本综述提出了治疗血液病的新方法,强调了继续进行分子研究以改善人类健康的必要性。
{"title":"Erythropoiesis: insights from a genomic perspective","authors":"Hye Ji Cha","doi":"10.1038/s12276-024-01311-1","DOIUrl":"10.1038/s12276-024-01311-1","url":null,"abstract":"Erythropoiesis, the process underlying the production of red blood cells, which are essential for oxygen transport, involves the development of hematopoietic stem cells into mature red blood cells. This review focuses on the critical roles of transcription factors and epigenetic mechanisms in modulating gene expression critical for erythroid differentiation. It emphasizes the significance of chromatin remodeling in ensuring gene accessibility, a key factor for the orderly progression of erythropoiesis. This review also discusses how dysregulation of these processes can lead to erythroid disorders and examines the promise of genome editing and gene therapy as innovative therapeutic approaches. By shedding light on the genomic regulation of erythropoiesis, this review suggests avenues for novel treatments for hematological conditions, underscoring the need for continued molecular studies to improve human health. Understanding how our bodies produce red blood cells, a process called erythropoiesis, is vital for treating blood disorders. Researchers have reviewed the stages of erythropoiesis, focusing on the genetic and molecular factors that influence the development of red blood cells. Erythropoiesis starts with stem cells in the bone marrow, which transform into several stages of red blood cell precursors before becoming mature, oxygen-carrying cells. The review emphasizes the role of specific growth factors, like erythropoietin, and transcription factors, proteins that activate or deactivate specific genes, in guiding these developmental stages. It also discusses how manipulating these factors in the lab can produce red blood cells outside of the body, a technique that could have therapeutic uses. By targeting the specific genes and pathways involved in red blood cell development, researchers can develop more effective treatments. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2099-2104"},"PeriodicalIF":9.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01311-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: STAT3 promotes NLRP3 inflammasome activation by mediating NLRP3 mitochondrial translocation 作者更正:STAT3 通过介导 NLRP3 线粒体转位促进 NLRP3 炎症小体活化。
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-27 DOI: 10.1038/s12276-024-01327-7
Ling Luo, Fupeng Wang, Xueming Xu, Mingliang Ma, Guangyan Kuang, Yening Zhang, Dan Wang, Wei Li, Ningjie Zhang, Kai Zhao
{"title":"Author Correction: STAT3 promotes NLRP3 inflammasome activation by mediating NLRP3 mitochondrial translocation","authors":"Ling Luo, Fupeng Wang, Xueming Xu, Mingliang Ma, Guangyan Kuang, Yening Zhang, Dan Wang, Wei Li, Ningjie Zhang, Kai Zhao","doi":"10.1038/s12276-024-01327-7","DOIUrl":"10.1038/s12276-024-01327-7","url":null,"abstract":"","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 9","pages":"2097-2097"},"PeriodicalIF":9.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01327-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteogenomic characterization identifies clinical subgroups in EGFR and ALK wild-type never-smoker lung adenocarcinoma 蛋白质基因组特征识别表皮生长因子受体(EGFR)和 ALK 野生型从不吸烟者肺腺癌的临床亚组
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1038/s12276-024-01320-0
Hyondeog Kim, Wonyeop Lee, Youngwook Kim, Sang-Jin Lee, Wonyoung Choi, Geon Kook Lee, Seung-Jin Park, Shinyeong Ju, Seon-Young Kim, Cheolju Lee, Ji-Youn Han
Patients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking. The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients. NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset. Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup. Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the molecular subtypes of EGFR- and ALK-wild-type NSLA with significant unmet clinical needs. Lung cancer is the leading cause of cancer deaths worldwide, with increasing cases in non-smokers, particularly Asian women. This research investigates lung adenocarcinoma in non-smokers who don’t have common genetic changes, using a multi-omics approach. The study involved 99 patients, specifically those without typical EGFR or ALK mutations, to better understand the disease at a molecular level and find new treatments. The study shows the variety within non-smoker lung cancers and suggests that different groups may need specific treatments. Understanding the molecular types of lung adenocarcinoma in non-smokers can lead to better, personalized treatments and improved health outcomes. This research could lead to more effective treatments for non-smoker lung cancer, potentially improving survival and quality of life for this growing patient group. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
从未吸烟(NSLA)且缺乏表皮生长因子受体(EGFR)和ALK基因等关键驱动基因突变的肺腺癌患者面临着靶向治疗的有限选择。与有吸烟史的肺癌患者相比,他们使用免疫检查点抑制剂的疗效也往往较差。人们对没有这些致癌驱动基因突变的非吸烟肺腺癌患者的蛋白质基因组概况知之甚少,这使得这些癌症的精确分子分类变得复杂,并凸显了一个尚未满足临床需求的重要领域。本研究分析了 99 名韩国从不吸烟肺腺癌患者肿瘤的基因组、转录组和 LC-MS/MS-TMT 驱动的蛋白质组数据。没有表皮生长因子受体(EGFR)或ALK驱动癌基因的NSLA肿瘤被分为4个蛋白质组亚组:增殖亚组、血管生成亚组、免疫亚组和代谢亚组。这4个分子亚组与不同的临床结果密切相关。增殖亚型和血管生成亚型与较差的预后相关,而免疫亚型与最有利的预后相关,这一点在外部肺癌数据集中得到了验证。对全基因组影响进行了分析,发现拷贝数改变与多个基因的转录组和蛋白质组之间存在显著相关性,ERBB、神经营养素、胰岛素和MAPK信号通路中的相关基因更为丰富。蛋白质基因组分析表明,包括CDK和ATR在内的几个可靶向基因和蛋白质是增殖亚组的潜在治疗靶点。免疫亚组中上调的细胞因子,如CCL5和CXCL13,可作为联合免疫疗法的潜在靶点。我们的综合蛋白基因组分析揭示了表皮生长因子受体(EGFR)型和ALK-wild型NSLA的分子亚型,这些亚型的重大临床需求尚未得到满足。
{"title":"Proteogenomic characterization identifies clinical subgroups in EGFR and ALK wild-type never-smoker lung adenocarcinoma","authors":"Hyondeog Kim, Wonyeop Lee, Youngwook Kim, Sang-Jin Lee, Wonyoung Choi, Geon Kook Lee, Seung-Jin Park, Shinyeong Ju, Seon-Young Kim, Cheolju Lee, Ji-Youn Han","doi":"10.1038/s12276-024-01320-0","DOIUrl":"10.1038/s12276-024-01320-0","url":null,"abstract":"Patients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking. The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients. NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset. Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup. Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the molecular subtypes of EGFR- and ALK-wild-type NSLA with significant unmet clinical needs. Lung cancer is the leading cause of cancer deaths worldwide, with increasing cases in non-smokers, particularly Asian women. This research investigates lung adenocarcinoma in non-smokers who don’t have common genetic changes, using a multi-omics approach. The study involved 99 patients, specifically those without typical EGFR or ALK mutations, to better understand the disease at a molecular level and find new treatments. The study shows the variety within non-smoker lung cancers and suggests that different groups may need specific treatments. Understanding the molecular types of lung adenocarcinoma in non-smokers can lead to better, personalized treatments and improved health outcomes. This research could lead to more effective treatments for non-smoker lung cancer, potentially improving survival and quality of life for this growing patient group. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 9","pages":"2082-2095"},"PeriodicalIF":9.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01320-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk between FTH1 and PYCR1 dysregulates proline metabolism and mediates cell growth in KRAS-mutant pancreatic cancer cells FTH1 和 PYCR1 之间的相互影响会导致脯氨酸代谢失调,并介导 KRAS 突变胰腺癌细胞的生长
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-18 DOI: 10.1038/s12276-024-01300-4
Ji Min Park, Yen-Hao Su, Chi-Shuan Fan, Hsin-Hua Chen, Yuan-Kai Qiu, Li-Li Chen, Hsin-An Chen, Thamil Selvee Ramasamy, Jung-Su Chang, Shih-Yi Huang, Wun-Shaing Wayne Chang, Alan Yueh-Luen Lee, Tze-Sing Huang, Cheng-Chin Kuo, Ching-Feng Chiu
Ferritin, comprising heavy (FTH1) and light (FTL) chains, is the main iron storage protein, and pancreatic cancer patients exhibit elevated serum ferritin levels. Specifically, higher ferritin levels are correlated with poorer pancreatic ductal adenocarcinoma (PDAC) prognosis; however, the underlying mechanism and metabolic programming of ferritin involved in KRAS-mutant PDAC progression remain unclear. Here, we observed a direct correlation between FTH1 expression and cell viability and clonogenicity in KRAS-mutant PDAC cell lines as well as with in vivo tumor growth through the control of proline metabolism. Our investigation highlights the intricate relationship between FTH1 and pyrroline-5-carboxylate reductase 1 (PYCR1), a crucial mitochondrial enzyme facilitating the glutamate-to-proline conversion, underscoring its impact on proline metabolic imbalance in KRAS-mutant PDAC. This regulation is further reversed by miR-5000-3p, whose dysregulation results in the disruption of proline metabolism, thereby accentuating the progression of KRAS-mutant PDAC. Additionally, our study demonstrated that deferasirox, an oral iron chelator, significantly diminishes cell viability and tumor growth in KRAS-mutant PDAC by targeting FTH1-mediated pathways and altering the PYCR1/PRODH expression ratio. These findings underscore the novel role of FTH1 in proline metabolism and its potential as a target for PDAC therapy development. Iron storage in our body is mainly controlled by a protein named ferritin, which reflects the amount of stored iron through its blood levels. Low ferritin levels usually suggest iron-deficiency anemia, while high levels can indicate inflammation and hinting at ferritin’s potential as a cancer indicator. In this study, scientists focused on pancreatic cancer, notorious for its low survival rates and limited treatment options. They examined the expression of different ferritin components and their link with the KRAS mutation, a common characteristic in pancreatic cancer that promotes tumor growth. The main discovery is that high FTH1 expression is associated with worse survival in pancreatic cancer patients, suggesting that targeting FTH1 could be a promising treatment for this aggressive cancer. This study enhances our knowledge of the molecular processes driving pancreatic cancer and opens new paths for targeted treatments. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
铁蛋白由重链(FTH1)和轻链(FTL)组成,是主要的铁储存蛋白,胰腺癌患者的血清铁蛋白水平会升高。具体而言,较高的铁蛋白水平与较差的胰腺导管腺癌(PDAC)预后相关;然而,铁蛋白参与 KRAS 突变型 PDAC 进展的潜在机制和代谢程序仍不清楚。在这里,我们观察到 FTH1 的表达与 KRAS 突变 PDAC 细胞系的细胞活力和克隆性直接相关,并且通过控制脯氨酸代谢与体内肿瘤生长直接相关。我们的研究强调了FTH1与吡咯啉-5-羧酸还原酶1(PYCR1)之间错综复杂的关系,PYCR1是促进谷氨酸-脯氨酸转化的线粒体关键酶,强调了它对KRAS突变型PDAC中脯氨酸代谢失衡的影响。miR-5000-3p 进一步逆转了这种调控,其失调导致脯氨酸代谢紊乱,从而加剧了 KRAS 突变型 PDAC 的进展。此外,我们的研究表明,口服铁螯合剂地拉羅司通过靶向 FTH1 介导的通路和改变PYCR1/PRODH 的表达比,显著降低了 KRAS 突变型 PDAC 的细胞活力和肿瘤生长。这些发现强调了 FTH1 在脯氨酸代谢中的新作用及其作为 PDAC 治疗开发靶点的潜力。
{"title":"Crosstalk between FTH1 and PYCR1 dysregulates proline metabolism and mediates cell growth in KRAS-mutant pancreatic cancer cells","authors":"Ji Min Park, Yen-Hao Su, Chi-Shuan Fan, Hsin-Hua Chen, Yuan-Kai Qiu, Li-Li Chen, Hsin-An Chen, Thamil Selvee Ramasamy, Jung-Su Chang, Shih-Yi Huang, Wun-Shaing Wayne Chang, Alan Yueh-Luen Lee, Tze-Sing Huang, Cheng-Chin Kuo, Ching-Feng Chiu","doi":"10.1038/s12276-024-01300-4","DOIUrl":"10.1038/s12276-024-01300-4","url":null,"abstract":"Ferritin, comprising heavy (FTH1) and light (FTL) chains, is the main iron storage protein, and pancreatic cancer patients exhibit elevated serum ferritin levels. Specifically, higher ferritin levels are correlated with poorer pancreatic ductal adenocarcinoma (PDAC) prognosis; however, the underlying mechanism and metabolic programming of ferritin involved in KRAS-mutant PDAC progression remain unclear. Here, we observed a direct correlation between FTH1 expression and cell viability and clonogenicity in KRAS-mutant PDAC cell lines as well as with in vivo tumor growth through the control of proline metabolism. Our investigation highlights the intricate relationship between FTH1 and pyrroline-5-carboxylate reductase 1 (PYCR1), a crucial mitochondrial enzyme facilitating the glutamate-to-proline conversion, underscoring its impact on proline metabolic imbalance in KRAS-mutant PDAC. This regulation is further reversed by miR-5000-3p, whose dysregulation results in the disruption of proline metabolism, thereby accentuating the progression of KRAS-mutant PDAC. Additionally, our study demonstrated that deferasirox, an oral iron chelator, significantly diminishes cell viability and tumor growth in KRAS-mutant PDAC by targeting FTH1-mediated pathways and altering the PYCR1/PRODH expression ratio. These findings underscore the novel role of FTH1 in proline metabolism and its potential as a target for PDAC therapy development. Iron storage in our body is mainly controlled by a protein named ferritin, which reflects the amount of stored iron through its blood levels. Low ferritin levels usually suggest iron-deficiency anemia, while high levels can indicate inflammation and hinting at ferritin’s potential as a cancer indicator. In this study, scientists focused on pancreatic cancer, notorious for its low survival rates and limited treatment options. They examined the expression of different ferritin components and their link with the KRAS mutation, a common characteristic in pancreatic cancer that promotes tumor growth. The main discovery is that high FTH1 expression is associated with worse survival in pancreatic cancer patients, suggesting that targeting FTH1 could be a promising treatment for this aggressive cancer. This study enhances our knowledge of the molecular processes driving pancreatic cancer and opens new paths for targeted treatments. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 9","pages":"2065-2081"},"PeriodicalIF":9.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01300-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IKKε-deficient macrophages impede cardiac repair after myocardial infarction by enhancing the macrophage–myofibroblast transition IKKε缺陷的巨噬细胞通过增强巨噬细胞-肌成纤维细胞转化阻碍心肌梗死后的心脏修复
IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-12 DOI: 10.1038/s12276-024-01304-0
Hyang Hee Cho, Siyeon Rhee, Dong Im Cho, Ju Hee Jun, HyoJung Heo, Su Han Cho, Dohyup Kim, Mingqiang Wang, Bo Gyeong Kang, Soo Ji Yoo, Meeyoung Cho, Soo yeon Lim, Jae Yeong Cho, In Seok Jeong, Yong Sook Kim, Youngkeun Ahn
The regulatory role of the inhibitor of NF-kB kinase ε (IKKε) in postmyocardial infarction (MI) inflammation remains uncertain. Using an MI mouse model, we examined the cardiac outcomes of IKKε knockout (KO) mice and wild-type mice. We employed single-cell RNA sequencing (scRNA-seq) and phosphorylated protein array techniques to profile cardiac macrophages. IKKε KO mice exhibited compromised survival, heightened inflammation, pronounced cardiac fibrosis, and a reduced ejection fraction. A distinct cardiac macrophage subset in IKKε KO mice exhibited increased fibrotic marker expression and decreased phosphorylated p38 (p-p38) levels, indicating an enhanced macrophage–myofibroblast transition (MMT) post-MI. While cardiac inflammation is crucial for initiating compensatory pathways, the timely resolution of inflammation was impaired in the IKKε KO group, while the MMT in macrophages accelerated post-MI, leading to cardiac failure. Additionally, our study highlighted the potential of 5-azacytidine (5-Aza), known for its anti-inflammatory and cardioprotective effects, in restoring p-p38 levels in stimulated macrophages. The administration of 5-Aza significantly reduced the MMT in cardiac macrophages from the IKKε KO group. These findings underscore the regulation of the inflammatory response and macrophage transition by the IKKε-p38 axis, indicating that the MMT is a promising therapeutic target for ischemic heart disease. Heart attacks can result in heart failure due to ongoing inflammation and scarring. This research investigates how a specific protein, IKKε, affects inflammation in heart cells. Researchers used genetically altered mice and sophisticated genetic methods to study IKKε‘s role in heart disease. They analyzed heart tissue after inducing heart attacks in the mice, focusing on how cells involved in inflammation and scarring behave differently when the IKKε protein is changed. Macrophage-myofibroblast transition (MMT) is a process in which macrophages acquire characteristics similar to myofibroblasts, potentially contributing to tissue fibrosis. The main discovery is that blocking IKKε causes more scarring by encouraging excessive MMT, suggesting it could be a target for heart disease treatment. The researchers believe that controlling the MMT process could be a new method to enhance heart health after a heart attack by reducing harmful scarring. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
NF-kB激酶ε抑制剂(IKKε)在心肌梗死(MI)后炎症中的调节作用仍不确定。我们利用心肌梗死小鼠模型,研究了IKKε基因敲除(KO)小鼠和野生型小鼠的心脏预后。我们采用了单细胞 RNA 测序(scRNA-seq)和磷酸化蛋白阵列技术来分析心脏巨噬细胞。IKKε KO小鼠表现出存活率下降、炎症加剧、明显的心脏纤维化和射血分数降低。IKKε KO 小鼠中一个独特的心脏巨噬细胞亚群表现出纤维化标志物表达增加和磷酸化 p38(p-p38)水平降低,表明心肌梗死后巨噬细胞-肌成纤维细胞转化(MMT)增强。虽然心脏炎症是启动代偿途径的关键,但在 IKKε KO 组中,炎症的及时解决受到了影响,而巨噬细胞的 MMT 在心肌梗死后加速,从而导致心力衰竭。此外,我们的研究还强调了 5-氮杂胞苷(5-Aza)在恢复受刺激巨噬细胞中 p-p38 水平方面的潜力,5-氮杂胞苷具有抗炎和保护心脏的作用。给予 5-Aza 能明显降低 IKKε KO 组心脏巨噬细胞中的 MMT。这些发现强调了IKKε-p38轴对炎症反应和巨噬细胞转化的调控作用,表明MMT是治疗缺血性心脏病的一个很有前景的靶点。
{"title":"IKKε-deficient macrophages impede cardiac repair after myocardial infarction by enhancing the macrophage–myofibroblast transition","authors":"Hyang Hee Cho, Siyeon Rhee, Dong Im Cho, Ju Hee Jun, HyoJung Heo, Su Han Cho, Dohyup Kim, Mingqiang Wang, Bo Gyeong Kang, Soo Ji Yoo, Meeyoung Cho, Soo yeon Lim, Jae Yeong Cho, In Seok Jeong, Yong Sook Kim, Youngkeun Ahn","doi":"10.1038/s12276-024-01304-0","DOIUrl":"10.1038/s12276-024-01304-0","url":null,"abstract":"The regulatory role of the inhibitor of NF-kB kinase ε (IKKε) in postmyocardial infarction (MI) inflammation remains uncertain. Using an MI mouse model, we examined the cardiac outcomes of IKKε knockout (KO) mice and wild-type mice. We employed single-cell RNA sequencing (scRNA-seq) and phosphorylated protein array techniques to profile cardiac macrophages. IKKε KO mice exhibited compromised survival, heightened inflammation, pronounced cardiac fibrosis, and a reduced ejection fraction. A distinct cardiac macrophage subset in IKKε KO mice exhibited increased fibrotic marker expression and decreased phosphorylated p38 (p-p38) levels, indicating an enhanced macrophage–myofibroblast transition (MMT) post-MI. While cardiac inflammation is crucial for initiating compensatory pathways, the timely resolution of inflammation was impaired in the IKKε KO group, while the MMT in macrophages accelerated post-MI, leading to cardiac failure. Additionally, our study highlighted the potential of 5-azacytidine (5-Aza), known for its anti-inflammatory and cardioprotective effects, in restoring p-p38 levels in stimulated macrophages. The administration of 5-Aza significantly reduced the MMT in cardiac macrophages from the IKKε KO group. These findings underscore the regulation of the inflammatory response and macrophage transition by the IKKε-p38 axis, indicating that the MMT is a promising therapeutic target for ischemic heart disease. Heart attacks can result in heart failure due to ongoing inflammation and scarring. This research investigates how a specific protein, IKKε, affects inflammation in heart cells. Researchers used genetically altered mice and sophisticated genetic methods to study IKKε‘s role in heart disease. They analyzed heart tissue after inducing heart attacks in the mice, focusing on how cells involved in inflammation and scarring behave differently when the IKKε protein is changed. Macrophage-myofibroblast transition (MMT) is a process in which macrophages acquire characteristics similar to myofibroblasts, potentially contributing to tissue fibrosis. The main discovery is that blocking IKKε causes more scarring by encouraging excessive MMT, suggesting it could be a target for heart disease treatment. The researchers believe that controlling the MMT process could be a new method to enhance heart health after a heart attack by reducing harmful scarring. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 9","pages":"2052-2064"},"PeriodicalIF":9.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01304-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental and Molecular Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1