Pub Date : 2021-08-26eCollection Date: 2021-01-01DOI: 10.1177/11769343211041382
Chaoxin Zhang, Tao Wang, Tongyan Cui, Shengwei Liu, Bing Zhang, Xue Li, Jian Tang, Peng Wang, Yuanyuan Guo, Zhipeng Wang
The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.
{"title":"Genome-Wide Phylogenetic Analysis, Expression Pattern, and Transcriptional Regulatory Network of the Pig C/EBP Gene Family.","authors":"Chaoxin Zhang, Tao Wang, Tongyan Cui, Shengwei Liu, Bing Zhang, Xue Li, Jian Tang, Peng Wang, Yuanyuan Guo, Zhipeng Wang","doi":"10.1177/11769343211041382","DOIUrl":"10.1177/11769343211041382","url":null,"abstract":"<p><p>The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named <i>C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ</i>, and <i>C/EBPζ</i>. Gene expression analysis showed that the <i>C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ</i>, and <i>C/EBPζ</i> genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211041382"},"PeriodicalIF":2.6,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/3d/10.1177_11769343211041382.PMC8404664.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39375403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-16eCollection Date: 2021-01-01DOI: 10.1177/11769343211038948
Olubukola Oluranti Babalola, Bartholomew Saanu Adeleke, Ayansina Segun Ayangbenro
In recent times, diverse agriculturally important endophytic bacteria colonizing plant endosphere have been identified. Harnessing the potential of Bacillus species from sunflower could reveal their biotechnological and agricultural importance. Here, we present genomic insights into B. cereus T4S isolated from sunflower sourced from Lichtenburg, South Africa. Genome analysis revealed a sequence read count of 7 255 762, a genome size of 5 945 881 bp, and G + C content of 34.8%. The genome contains various protein-coding genes involved in various metabolic pathways. The detection of genes involved in the metabolism of organic substrates and chemotaxis could enhance plant-microbe interactions in the synthesis of biological products with biotechnological and agricultural importance.
近年来,已经鉴定出多种具有重要农业意义的定殖植物内球内生细菌。利用向日葵芽孢杆菌的潜力可以揭示其在生物技术和农业上的重要性。在这里,我们提出了从南非利希滕堡向日葵中分离到的蜡样芽孢杆菌T4S的基因组见解。基因组分析结果显示,该菌株序列读取数为7 255 762,基因组大小为5 945 881 bp, G + C含量为34.8%。基因组包含各种蛋白质编码基因,参与各种代谢途径。检测参与有机底物代谢和趋化性的基因可以增强植物与微生物在生物技术和农业生物制品合成中的相互作用。
{"title":"Whole Genome Sequencing of Sunflower Root-Associated <i>Bacillus cereus</i>.","authors":"Olubukola Oluranti Babalola, Bartholomew Saanu Adeleke, Ayansina Segun Ayangbenro","doi":"10.1177/11769343211038948","DOIUrl":"https://doi.org/10.1177/11769343211038948","url":null,"abstract":"<p><p>In recent times, diverse agriculturally important endophytic bacteria colonizing plant endosphere have been identified. Harnessing the potential of <i>Bacillus</i> species from sunflower could reveal their biotechnological and agricultural importance. Here, we present genomic insights into <i>B. cereus</i> T4S isolated from sunflower sourced from Lichtenburg, South Africa. Genome analysis revealed a sequence read count of 7 255 762, a genome size of 5 945 881 bp, and G + C content of 34.8%. The genome contains various protein-coding genes involved in various metabolic pathways. The detection of genes involved in the metabolism of organic substrates and chemotaxis could enhance plant-microbe interactions in the synthesis of biological products with biotechnological and agricultural importance.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211038948"},"PeriodicalIF":2.6,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/16/10.1177_11769343211038948.PMC8375328.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39334116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-24eCollection Date: 2021-01-01DOI: 10.1177/11769343211035141
Yupeng Wang, Ying Sun, Paule Valery Joseph
In humans, taste genes are responsible for perceiving at least 5 different taste qualities. Human taste genes' evolutionary mechanisms need to be explored. We compiled a list of 69 human taste-related genes and divided them into 7 functional groups. We carried out comparative genomic and evolutionary analyses for these taste genes based on 8 vertebrate species. We found that relative to other groups of human taste genes, human TAS2R genes have a higher proportion of tandem duplicates, suggesting that tandem duplications have contributed significantly to the expansion of the human TAS2R gene family. Human TAS2R genes tend to have fewer collinear genes in outgroup species and evolve faster, suggesting that human TAS2R genes have experienced more gene relocations. Moreover, human TAS2R genes tend to be under more relaxed purifying selection than other genes. Our study sheds new insights into diverse and contrasting evolutionary patterns among human taste genes.
{"title":"Contrasting Patterns of Gene Duplication, Relocation, and Selection Among Human Taste Genes.","authors":"Yupeng Wang, Ying Sun, Paule Valery Joseph","doi":"10.1177/11769343211035141","DOIUrl":"https://doi.org/10.1177/11769343211035141","url":null,"abstract":"<p><p>In humans, taste genes are responsible for perceiving at least 5 different taste qualities. Human taste genes' evolutionary mechanisms need to be explored. We compiled a list of 69 human taste-related genes and divided them into 7 functional groups. We carried out comparative genomic and evolutionary analyses for these taste genes based on 8 vertebrate species. We found that relative to other groups of human taste genes, human TAS2R genes have a higher proportion of tandem duplicates, suggesting that tandem duplications have contributed significantly to the expansion of the human TAS2R gene family. Human TAS2R genes tend to have fewer collinear genes in outgroup species and evolve faster, suggesting that human TAS2R genes have experienced more gene relocations. Moreover, human TAS2R genes tend to be under more relaxed purifying selection than other genes. Our study sheds new insights into diverse and contrasting evolutionary patterns among human taste genes.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211035141"},"PeriodicalIF":2.6,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11769343211035141","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39299985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-21eCollection Date: 2021-01-01DOI: 10.1177/11769343211035140
Ting Qi, Yuming Xu, Tong Zhou, Wanjun Gu
The RNA G-quadruplex (rG4) is a kind of non-canonical high-order secondary structure with important biological functions and is enriched in untranslated regions (UTRs) of protein-coding genes. However, how rG4 structures evolve is largely unknown. Here, we systematically investigated the evolution of RNA sequences around UTR rG4 structures in 5 eukaryotic organisms. We found universal selection on UTR sequences, which facilitated rG4 formation in all the organisms that we analyzed. While G-rich sequences were preferred in the rG4 structural region, C-rich sequences were selectively not preferred. The selective pressure acting on rG4 structures in the UTRs of genes with higher G content was significantly smaller. Furthermore, we found that rG4 structures experienced smaller evolutionary selection near the translation initiation region in the 5' UTR, near the polyadenylation signals in the 3' UTR, and in regions flanking the miRNA targets in the 3' UTR. These results suggest universal selection for rG4 formation in the UTRs of eukaryotic genomes and the selection may be related to the biological functions of rG4s.
RNA g -四重体(rG4)是一类具有重要生物学功能的非规范高阶二级结构,富集于蛋白质编码基因的非翻译区(UTRs)。然而,rG4结构如何进化在很大程度上是未知的。在此,我们系统地研究了5种真核生物中UTR rG4结构周围RNA序列的进化。我们发现了UTR序列的普遍选择,这促进了rG4在我们分析的所有生物中的形成。在rG4结构区富g序列优先,富c序列选择性不优先。G含量高的基因UTRs中作用于rG4结构的选择压力明显较小。此外,我们发现rG4结构在5' UTR的翻译起始区附近、3' UTR的聚腺苷化信号附近以及3' UTR中miRNA靶标侧的区域经历了较小的进化选择。这些结果表明,rG4在真核生物基因组的utr中形成具有普遍的选择性,这种选择可能与rG4的生物学功能有关。
{"title":"The Evolution of G-quadruplex Structure in mRNA Untranslated Region.","authors":"Ting Qi, Yuming Xu, Tong Zhou, Wanjun Gu","doi":"10.1177/11769343211035140","DOIUrl":"https://doi.org/10.1177/11769343211035140","url":null,"abstract":"<p><p>The RNA G-quadruplex (rG4) is a kind of non-canonical high-order secondary structure with important biological functions and is enriched in untranslated regions (UTRs) of protein-coding genes. However, how rG4 structures evolve is largely unknown. Here, we systematically investigated the evolution of RNA sequences around UTR rG4 structures in 5 eukaryotic organisms. We found universal selection on UTR sequences, which facilitated rG4 formation in all the organisms that we analyzed. While <i>G</i>-rich sequences were preferred in the rG4 structural region, <i>C</i>-rich sequences were selectively not preferred. The selective pressure acting on rG4 structures in the UTRs of genes with higher <i>G</i> content was significantly smaller. Furthermore, we found that rG4 structures experienced smaller evolutionary selection near the translation initiation region in the 5' UTR, near the polyadenylation signals in the 3' UTR, and in regions flanking the miRNA targets in the 3' UTR. These results suggest universal selection for rG4 formation in the UTRs of eukaryotic genomes and the selection may be related to the biological functions of rG4s.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211035140"},"PeriodicalIF":2.6,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11769343211035140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39299984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-14eCollection Date: 2021-01-01DOI: 10.1177/11769343211031871
Ernest P Williams, Tsvetan R Bachvaroff, Allen R Place
<p><p>Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products kn
{"title":"A Global Approach to Estimating the Abundance and Duplication of Polyketide Synthase Domains in Dinoflagellates.","authors":"Ernest P Williams, Tsvetan R Bachvaroff, Allen R Place","doi":"10.1177/11769343211031871","DOIUrl":"10.1177/11769343211031871","url":null,"abstract":"<p><p>Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products kn","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211031871"},"PeriodicalIF":2.6,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/aa/10.1177_11769343211031871.PMC8283056.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39281379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11eCollection Date: 2021-01-01DOI: 10.1177/11769343211023767
Kailin Mao, Fang Lin, Yingai Zhang, Hailong Zhou
Gefitinib resistance is a serious threat in the treatment of patients with non-small cell lung cancer (NSCLC). Elucidating the underlying mechanisms and developing effective therapies to overcome gefitinib resistance is urgently needed. The differentially expressed genes (DEGs) were screened from the gene expression profile GSE122005 between gefitinib-sensitive and resistant samples. GO and KEGG analyses were performed with DAVID. The protein-protein interaction (PPI) network was established to visualize DEGs and screen hub genes. The functional roles of CCL20 in lung adenocarcinoma (LUAD) were examined using gene set enrichment analysis (GSEA). Functional analysis revealed that the DEGs were mainly concentrated in inflammatory, cell chemotaxis, and PI3K signal regulation. Ten hub genes were identified based on the PPI network. The survival analysis of the hub genes showed that CCL20 had a significant effect on the prognosis of LUAD patients. GSEA analysis showed that CCL20 high expression group was mainly enriched in cytokine-related signaling pathways. In conclusion, our analysis suggests that changes in inflammation and cytokine-related signaling pathways are closely related to gefitinib resistance in patients with lung cancer. The CCL20 gene may promote the formation of gefitinib resistance, which may serve as a new biomarker for predicting gefitinib resistance in patients with lung cancer.
{"title":"Identification of Key Genes and Pathways in Gefitinib-Resistant Lung Adenocarcinoma using Bioinformatics Analysis.","authors":"Kailin Mao, Fang Lin, Yingai Zhang, Hailong Zhou","doi":"10.1177/11769343211023767","DOIUrl":"10.1177/11769343211023767","url":null,"abstract":"<p><p>Gefitinib resistance is a serious threat in the treatment of patients with non-small cell lung cancer (NSCLC). Elucidating the underlying mechanisms and developing effective therapies to overcome gefitinib resistance is urgently needed. The differentially expressed genes (DEGs) were screened from the gene expression profile GSE122005 between gefitinib-sensitive and resistant samples. GO and KEGG analyses were performed with DAVID. The protein-protein interaction (PPI) network was established to visualize DEGs and screen hub genes. The functional roles of CCL20 in lung adenocarcinoma (LUAD) were examined using gene set enrichment analysis (GSEA). Functional analysis revealed that the DEGs were mainly concentrated in inflammatory, cell chemotaxis, and PI3K signal regulation. Ten hub genes were identified based on the PPI network. The survival analysis of the hub genes showed that CCL20 had a significant effect on the prognosis of LUAD patients. GSEA analysis showed that CCL20 high expression group was mainly enriched in cytokine-related signaling pathways. In conclusion, our analysis suggests that changes in inflammation and cytokine-related signaling pathways are closely related to gefitinib resistance in patients with lung cancer. The CCL20 gene may promote the formation of gefitinib resistance, which may serve as a new biomarker for predicting gefitinib resistance in patients with lung cancer.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211023767"},"PeriodicalIF":2.6,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11769343211023767","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39112216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.
{"title":"Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment.","authors":"Rita Rahmeh, Abrar Akbar, Vinod Kumar, Hamad Al-Mansour, Mohamed Kishk, Nisar Ahmed, Mustafa Al-Shamali, Anwar Boota, Zainab Al-Ballam, Anisha Shajan, Naser Al-Okla","doi":"10.1177/11769343211016887","DOIUrl":"10.1177/11769343211016887","url":null,"abstract":"<p><p>Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of <i>Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi</i>, and <i>Acidobacteria</i> groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211016887"},"PeriodicalIF":2.6,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11769343211016887","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39020516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-05eCollection Date: 2021-01-01DOI: 10.1177/11769343211014167
Sean P Ryder, Brittany R Morgan, Peren Coskun, Katianna Antkowiak, Francesca Massi
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
{"title":"Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome.","authors":"Sean P Ryder, Brittany R Morgan, Peren Coskun, Katianna Antkowiak, Francesca Massi","doi":"10.1177/11769343211014167","DOIUrl":"https://doi.org/10.1177/11769343211014167","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"11769343211014167"},"PeriodicalIF":2.6,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11769343211014167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38933380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibiotic resistance is a major global health issue that has seen alarming rates of increase in all parts of the world over the past two decades. The surge in antibiotic resistance has resulted in longer hospital stays, higher medical costs, and elevated mortality rates. Constant attempts have been made to discover newer and more effective antimicrobials to reduce the severity of antibiotic resistance. Plant secondary metabolites, such as essential oils, have been the major focus due to their complexity and bioactive nature. However, the underlying mechanism of their antimicrobial effect remains largely unknown. Understanding the antimicrobial mode of action of essential oils is crucial in developing potential strategies for the use of essential oils in a clinical setting. Recent advances in genomics and proteomics have enhanced our understanding of the antimicrobial mode of action of essential oils. We might well be at the dawn of completing a mystery on how essential oils carry out their antimicrobial activities. Therefore, an overview of essential oils with regard to their antimicrobial activities and mode of action is discussed in this review. Recent approaches used in identifying the antimicrobial mode of action of essential oils, specifically from the perspective of genomics and proteomics, are also synthesized. Based on the information gathered from this review, we offer recommendations for future strategies and prospects for the study of essential oils and their function as antimicrobials.
{"title":"The Missing Piece: Recent Approaches Investigating the Antimicrobial Mode of Action of Essential Oils.","authors":"Shun-Kai Yang, Ngai-Paing Tan, Chun-Wie Chong, Aisha Abushelaibi, Swee-Hua-Erin Lim, Kok-Song Lai","doi":"10.1177/1176934320938391","DOIUrl":"https://doi.org/10.1177/1176934320938391","url":null,"abstract":"<p><p>Antibiotic resistance is a major global health issue that has seen alarming rates of increase in all parts of the world over the past two decades. The surge in antibiotic resistance has resulted in longer hospital stays, higher medical costs, and elevated mortality rates. Constant attempts have been made to discover newer and more effective antimicrobials to reduce the severity of antibiotic resistance. Plant secondary metabolites, such as essential oils, have been the major focus due to their complexity and bioactive nature. However, the underlying mechanism of their antimicrobial effect remains largely unknown. Understanding the antimicrobial mode of action of essential oils is crucial in developing potential strategies for the use of essential oils in a clinical setting. Recent advances in genomics and proteomics have enhanced our understanding of the antimicrobial mode of action of essential oils. We might well be at the dawn of completing a mystery on how essential oils carry out their antimicrobial activities. Therefore, an overview of essential oils with regard to their antimicrobial activities and mode of action is discussed in this review. Recent approaches used in identifying the antimicrobial mode of action of essential oils, specifically from the perspective of genomics and proteomics, are also synthesized. Based on the information gathered from this review, we offer recommendations for future strategies and prospects for the study of essential oils and their function as antimicrobials.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"1176934320938391"},"PeriodicalIF":2.6,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320938391","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38933378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The phytohormone auxin are important in all aspects of plant growth and development. The Auxin/Indole-3-Acetic Acid (Aux/IAA) gene responds to auxin induction as auxin early response gene family. Despite the physiological importance of the Aux/IAA gene, a systematic analysis of the Aux/IAA gene in Acer rubrum has not been reported. This paper describes the characterization of Acer rubrum Aux/IAA genes at the transcriptomic level and Acer yangbiense Aux/IAA genes at the genomic level, with 17 Acer rubrum AUX/IAA genes (ArAux/IAA) and 23 Acer yangbiense Aux/IAA (AyAux/IAA) genes identified. Phylogenetic analysis shows that AyAux/IAA and ArAux/IAA family genes can be subdivided into 4 groups and show strong evolutionary conservatism. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profile of ArAux/IAA genes in different tissues under indole-3-acetic acid (IAA) treatment. Most ArAux/IAA genes are responsive to exogenous auxin and have tissue-specific expression. Overall, these results will provide molecular-level insights into auxin metabolism, transport, and signaling in Acer species.
{"title":"Identification and Analysis of <i>Aux/IAA</i> Family in <i>Acer rubrum</i>.","authors":"Wenpeng Zhu, Manyu Zhang, Jianyi Li, Hewen Zhao, Wei Ge, Kezhong Zhang","doi":"10.1177/1176934321994127","DOIUrl":"10.1177/1176934321994127","url":null,"abstract":"<p><p>The phytohormone auxin are important in all aspects of plant growth and development. The <i>Auxin/Indole-3-Acetic Acid</i> (<i>Aux/IAA</i>) gene responds to auxin induction as auxin early response gene family. Despite the physiological importance of the <i>Aux/IAA</i> gene, a systematic analysis of the <i>Aux/IAA</i> gene in <i>Acer rubrum</i> has not been reported. This paper describes the characterization of <i>Acer rubrum Aux/IAA</i> genes at the transcriptomic level and <i>Acer yangbiense Aux/IAA</i> genes at the genomic level, with 17 <i>Acer rubrum AUX/IAA</i> genes <i>(ArAux/IAA)</i> and 23 <i>Acer yangbiense Aux/IAA (AyAux/IAA)</i> genes identified. Phylogenetic analysis shows that <i>AyAux/IAA</i> and <i>ArAux/IAA</i> family genes can be subdivided into 4 groups and show strong evolutionary conservatism. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profile of <i>ArAux/IAA</i> genes in different tissues under indole-3-acetic acid (IAA) treatment. Most <i>ArAux/IAA</i> genes are responsive to exogenous auxin and have tissue-specific expression. Overall, these results will provide molecular-level insights into auxin metabolism, transport, and signaling in <i>Acer</i> species.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"1176934321994127"},"PeriodicalIF":1.7,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/b4/10.1177_1176934321994127.PMC8044571.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38954026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}