Genetic variations in the human genome represent the differences in DNA sequence within individuals. This highlights the important role of whole human genome sequencing which has become the keystone for precision medicine and disease prediction. Morocco is an important hub for studying human population migration and mixing history. This study presents the analysis of 3 Moroccan genomes; the variant analysis revealed 6 379 606 single nucleotide variants (SNVs) and 1 050 577 small InDels. Of those identified SNVs, 219 152 were novel, with 1233 occurring in coding regions, and 5580 non-synonymous single nucleotide variants (nsSNP) variants were predicted to affect protein functions. The InDels produced 1055 coding variants and 454 non-3n length variants, and their size ranged from -49 and 49 bp. We further analysed the gene pathways of 8 novel coding variants found in the 3 genomes and revealed 5 genes involved in various diseases and biological pathways. We found that the Moroccan genomes share 92.78% of African ancestry, and 92.86% of Non-Finnish European ancestry, according to the gnomAD database. Then, population structure inference, by admixture analysis and network-based approach, revealed that the studied genomes form a mixed population structure, highlighting the increased genetic diversity in Morocco.
{"title":"A Comprehensive Analysis of 3 Moroccan Genomes Revealed Contributions From Both African and European Ancestries.","authors":"Nasma Boumajdi, Houda Bendani, Souad Kartti, Tarek Alouane, Lahcen Belyamani, Azeddine Ibrahimi","doi":"10.1177/11769343241229278","DOIUrl":"10.1177/11769343241229278","url":null,"abstract":"<p><p>Genetic variations in the human genome represent the differences in DNA sequence within individuals. This highlights the important role of whole human genome sequencing which has become the keystone for precision medicine and disease prediction. Morocco is an important hub for studying human population migration and mixing history. This study presents the analysis of 3 Moroccan genomes; the variant analysis revealed 6 379 606 single nucleotide variants (SNVs) and 1 050 577 small InDels. Of those identified SNVs, 219 152 were novel, with 1233 occurring in coding regions, and 5580 non-synonymous single nucleotide variants (nsSNP) variants were predicted to affect protein functions. The InDels produced 1055 coding variants and 454 non-3n length variants, and their size ranged from -49 and 49 bp. We further analysed the gene pathways of 8 novel coding variants found in the 3 genomes and revealed 5 genes involved in various diseases and biological pathways. We found that the Moroccan genomes share 92.78% of African ancestry, and 92.86% of Non-Finnish European ancestry, according to the gnomAD database. Then, population structure inference, by admixture analysis and network-based approach, revealed that the studied genomes form a mixed population structure, highlighting the increased genetic diversity in Morocco.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"20 ","pages":"11769343241229278"},"PeriodicalIF":2.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30eCollection Date: 2024-01-01DOI: 10.1177/11769343241227331
Yingjie Geng, Yu'e Han, Shujuan Wang, Jia Qi, Xiaoli Bi
Aims: Autophagy plays a significant role in the development of acute myocardial infarction (AMI), and cardiomyocyte autophagy is of major importance in maintaining cardiac function. We aimed to identify key genes associated with autophagy in AMI through bioinformatics analysis and verify them through clinical validation.
Materials and methods: We downloaded an AMI expression profile dataset GSE166780 from Gene Expression Omnibus (GEO). Autophagy-associated genes potentially differentially expressed in AMI were screened using R software. Then, to identify key autophagy-related genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, protein-protein interaction (PPI) analysis, Receiver Operating Characteristic (ROC) curve analysis, and correlation analysis were performed on the differentially expressed autophagy-related genes in AMI. Finally, we used quantificational real-time polymerase chain reaction (qRT-PCR) to verify the RNA expression of the screened key genes.
Results: TSC2, HSPA8, and HIF1A were screened out as key autophagy-related genes. qRT-PCR results showed that the expression levels of HSPA8 and TSC2 in AMI blood samples were lower, while the expression level of HIF1A was higher than that in the healthy controls.
Conclusions: TSC2, HSPA8, and HIF1A were identified as key autophagy-related genes in this study. They may influence the development of AMI through autophagy. These findings may help deepen our understanding of AMI and may be useful for the treatment of AMI.
目的:自噬在急性心肌梗死(AMI)的发生发展中起着重要作用,而心肌细胞自噬在维持心脏功能方面具有重要意义。我们旨在通过生物信息学分析确定AMI中与自噬相关的关键基因,并通过临床验证这些基因:我们从基因表达总库(Gene Expression Omnibus,GEO)下载了 AMI 表达谱数据集 GSE166780。使用 R 软件筛选 AMI 中可能存在差异表达的自噬相关基因。然后,为了确定关键的自噬相关基因,我们对 AMI 中差异表达的自噬相关基因进行了基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析、蛋白-蛋白相互作用(PPI)分析、接收者操作特征曲线(ROC)分析和相关性分析。最后,我们使用定量实时聚合酶链反应(qRT-PCR)验证了筛选出的关键基因的 RNA 表达:qRT-PCR结果显示,AMI血样中HSPA8和TSC2的表达水平低于健康对照组,而HIF1A的表达水平高于健康对照组:结论:本研究发现 TSC2、HSPA8 和 HIF1A 是关键的自噬相关基因。结论:本研究发现 TSC2、HSPA8 和 HIF1A 是与自噬相关的关键基因,它们可能通过自噬影响 AMI 的发生。这些发现可能有助于加深我们对 AMI 的了解,并对 AMI 的治疗有所帮助。
{"title":"Screening and Validation of Key Genes of Autophagy in Acute Myocardial Infarction Based on Bioinformatics.","authors":"Yingjie Geng, Yu'e Han, Shujuan Wang, Jia Qi, Xiaoli Bi","doi":"10.1177/11769343241227331","DOIUrl":"10.1177/11769343241227331","url":null,"abstract":"<p><strong>Aims: </strong>Autophagy plays a significant role in the development of acute myocardial infarction (AMI), and cardiomyocyte autophagy is of major importance in maintaining cardiac function. We aimed to identify key genes associated with autophagy in AMI through bioinformatics analysis and verify them through clinical validation.</p><p><strong>Materials and methods: </strong>We downloaded an AMI expression profile dataset GSE166780 from Gene Expression Omnibus (GEO). Autophagy-associated genes potentially differentially expressed in AMI were screened using R software. Then, to identify key autophagy-related genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, protein-protein interaction (PPI) analysis, Receiver Operating Characteristic (ROC) curve analysis, and correlation analysis were performed on the differentially expressed autophagy-related genes in AMI. Finally, we used quantificational real-time polymerase chain reaction (qRT-PCR) to verify the RNA expression of the screened key genes.</p><p><strong>Results: </strong>TSC2, HSPA8, and HIF1A were screened out as key autophagy-related genes. qRT-PCR results showed that the expression levels of HSPA8 and TSC2 in AMI blood samples were lower, while the expression level of HIF1A was higher than that in the healthy controls.</p><p><strong>Conclusions: </strong>TSC2, HSPA8, and HIF1A were identified as key autophagy-related genes in this study. They may influence the development of AMI through autophagy. These findings may help deepen our understanding of AMI and may be useful for the treatment of AMI.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"20 ","pages":"11769343241227331"},"PeriodicalIF":2.6,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14eCollection Date: 2023-01-01DOI: 10.1177/11769343231216914
Rujun Zhai, Qian Wang
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
{"title":"Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins.","authors":"Rujun Zhai, Qian Wang","doi":"10.1177/11769343231216914","DOIUrl":"https://doi.org/10.1177/11769343231216914","url":null,"abstract":"<p><p>Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231216914"},"PeriodicalIF":2.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01eCollection Date: 2023-01-01DOI: 10.1177/11769343231217916
Ibrahim H Eissa, Reda G Yousef, Eslam B Elkaeed, Aisha A Alsfouk, Dalal Z Husein, Ibrahim M Ibrahim, Hesham A El-Mahdy, Hazem Elkady, Ahmed M Metwaly
The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.
{"title":"Computer-Assisted Drug Discovery of a Novel Theobromine Derivative as an EGFR Protein-Targeted Apoptosis Inducer.","authors":"Ibrahim H Eissa, Reda G Yousef, Eslam B Elkaeed, Aisha A Alsfouk, Dalal Z Husein, Ibrahim M Ibrahim, Hesham A El-Mahdy, Hazem Elkady, Ahmed M Metwaly","doi":"10.1177/11769343231217916","DOIUrl":"10.1177/11769343231217916","url":null,"abstract":"<p><p>The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (<b>T-1-DOCA</b>). Firstly, <b>T-1-DOCA</b>'s total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of <b>T-1-DOCA</b> against wild and mutant EGFR proteins. <b>T-1-DOCA</b>'s correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, <b>T-1-DOCA</b> showed noticeable efficacy compared to erlotinib by suppressing EGFR<sup>WT</sup> and EGFR<sup>T790M</sup> with IC<sub>50</sub> values of 56.94 and 269.01 nM, respectively. <b>T-1-DOCA</b> inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC<sub>50</sub> values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of <b>T-1-DOCA</b> were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, <b>T-1-DOCA</b>, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that <b>T-1-DOCA</b> is a promising candidate for further development as an anti-cancer drug.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231217916"},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: G-quadruplexes (G4s) are secondary structures in DNA and RNA that impact various cellular processes, such as transcription, splicing, and translation. Due to their numerous functions, G4s are involved in many diseases, making their study important. Yet, G4s evolution remains largely unknown, due to their low sequence similarity and the poor quality of their sequence alignments across several species. To address this, we designed a strategy that avoids direct G4s alignment to study G4s evolution in the 3 species kingdoms. We also explored the coevolution between RBPs and G4s. Methods: We retrieved one-to-one orthologous genes from the Ensembl Compara database and computed groups of one-to-one orthologous genes. For each group, we aligned gene sequences and identified G4 families as groups of overlapping G4s in the alignment. We analyzed these G4 families using Count, a tool to infer feature evolution into a gene or a species tree. Additionally, we utilized these G4 families to predict G4s by homology. To establish a control dataset, we performed mono-, di- and tri-nucleotide shuffling. Results: Only a few conserved G4s occur among all living kingdoms. In eukaryotes, G4s exhibit slight conservation among vertebrates, and few are conserved between plants. In archaea and bacteria, at most, only 2 G4s are common. The G4 homology-based prediction increases the number of conserved G4s in common ancestors. The coevolution between RNA-binding proteins and G4s was investigated and revealed a modest impact of RNA-binding proteins evolution on G4 evolution. However, the details of this relationship remain unclear. Conclusion: Even if G4 evolution still eludes us, the present study provides key information to compute groups of homologous G4 and to reveal the evolution history of G4 families.
{"title":"Toward a Better Understanding of G4 Evolution in the 3 Living Kingdoms.","authors":"Anaïs Vannutelli, Aïda Ouangraoua, Jean-Pierre Perreault","doi":"10.1177/11769343231212075","DOIUrl":"10.1177/11769343231212075","url":null,"abstract":"Background: G-quadruplexes (G4s) are secondary structures in DNA and RNA that impact various cellular processes, such as transcription, splicing, and translation. Due to their numerous functions, G4s are involved in many diseases, making their study important. Yet, G4s evolution remains largely unknown, due to their low sequence similarity and the poor quality of their sequence alignments across several species. To address this, we designed a strategy that avoids direct G4s alignment to study G4s evolution in the 3 species kingdoms. We also explored the coevolution between RBPs and G4s. Methods: We retrieved one-to-one orthologous genes from the Ensembl Compara database and computed groups of one-to-one orthologous genes. For each group, we aligned gene sequences and identified G4 families as groups of overlapping G4s in the alignment. We analyzed these G4 families using Count, a tool to infer feature evolution into a gene or a species tree. Additionally, we utilized these G4 families to predict G4s by homology. To establish a control dataset, we performed mono-, di- and tri-nucleotide shuffling. Results: Only a few conserved G4s occur among all living kingdoms. In eukaryotes, G4s exhibit slight conservation among vertebrates, and few are conserved between plants. In archaea and bacteria, at most, only 2 G4s are common. The G4 homology-based prediction increases the number of conserved G4s in common ancestors. The coevolution between RNA-binding proteins and G4s was investigated and revealed a modest impact of RNA-binding proteins evolution on G4 evolution. However, the details of this relationship remain unclear. Conclusion: Even if G4 evolution still eludes us, the present study provides key information to compute groups of homologous G4 and to reveal the evolution history of G4 families.","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231212075"},"PeriodicalIF":2.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bluetongue virus (BTV) is an arbovirus considered as a major threat for the global livestock economy. Since 1999, Tunisia has experienced several incursions of BTV, during which numerous cases of infection and mortality have been reported. However, the geographical origin and epidemiological characteristics of these incursions remained unclear. To understand the evolutionary history of BTV emergence in Tunisia, we extracted from Genbank the segment 6 sequences of 7 BTV strains isolated in Tunisia during the period 2000 to 2017 and blasted them to obtain a final dataset of 67 sequences. We subjected the dataset to a Bayesian phylogeography framework inferring geographical origin and serotype as phylodynamic models. Our results suggest that BTV-2 was first introduced in Tunisia in the 1960s and that since 1990s, the country has witnessed the emergence of other typical and atypical BTV serotypes notably BTV-1, BTV-3 and BTV-Y. The reported serotypes have a diverse geographical origin and have been transmitted to Tunisia from countries in the Mediterranean Basin. Interserotype reassortments have been identified among BTV-1, BTV-2 and BTV-Y. This study has provided new insights on the temporal and geographical origin of BTV in Tunisia, suggesting the contribution of animal trade and environment conditions in virus spread.
{"title":"Retrospective Phylodynamic and Phylogeographic Analysis of the Bluetongue Virus in Tunisia.","authors":"Oussema Souiai, Marwa Arbi, Mariem Hanachi, Ameny Sallami, Imen Larbi, Melek Chaouch, Emna Harigua-Souiai, Alia Benkahla","doi":"10.1177/11769343231212266","DOIUrl":"10.1177/11769343231212266","url":null,"abstract":"<p><p>Bluetongue virus (BTV) is an arbovirus considered as a major threat for the global livestock economy. Since 1999, Tunisia has experienced several incursions of BTV, during which numerous cases of infection and mortality have been reported. However, the geographical origin and epidemiological characteristics of these incursions remained unclear. To understand the evolutionary history of BTV emergence in Tunisia, we extracted from Genbank the segment 6 sequences of 7 BTV strains isolated in Tunisia during the period 2000 to 2017 and blasted them to obtain a final dataset of 67 sequences. We subjected the dataset to a Bayesian phylogeography framework inferring geographical origin and serotype as phylodynamic models. Our results suggest that BTV-2 was first introduced in Tunisia in the 1960s and that since 1990s, the country has witnessed the emergence of other typical and atypical BTV serotypes notably BTV-1, BTV-3 and BTV-Y. The reported serotypes have a diverse geographical origin and have been transmitted to Tunisia from countries in the Mediterranean Basin. Interserotype reassortments have been identified among BTV-1, BTV-2 and BTV-Y. This study has provided new insights on the temporal and geographical origin of BTV in Tunisia, suggesting the contribution of animal trade and environment conditions in virus spread.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231212266"},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27eCollection Date: 2023-01-01DOI: 10.1177/11769343231212078
Guanghui Zhong, Dali Wu, Haiping Chen, Lingfei Yan, Qi Xiang, Yufeng Liu, Tao Wang
Objective: The Fas-activated serine/threonine kinase (FASTK) family of proteins has been recently found to be able to regulate mitochondrial gene expression post-transcriptionally. Nonetheless, there is a paucity of study about the role of the FASTK family in kidney renal clear cell carcinoma (KIRC). This study was conducted to explore the correlation of FASTK family genes with expression, prognosis, and immune infiltration in KIRC.
Methods: We collected the data from the UALCAN, GeneMANIA, STRING, CancerSEA, cBioPortal, Kaplan-Meier plotter, GEPIA, TISIDB and TIMER databases to evaluate the genetic alterations, differential expression, prognostic significance, and immune cell infiltration of FASTKs in patients with KIRC.
Results: In tumor tissues of KIRC, the mRNA expression level of FASTK and TBRG4 was elevated, whereas that of FASTKD1, FASTKD2, and FASTKD5 was lowered compared with normal tissues (P < .05). Patients with KIRC and high FASTK and Transforming growth factor β regulator 4 (TBRG4) expression had worse overall survival (OS) and disease specific survival (DFS), while those with lower expression of FASTKD2/3/5 had worse outcomes. FASTK was positively correlated with DNA damage. FASTKD1 was positively related to differentiation. FASTKD2 was inversely related to proliferation and FASTKD5 was inversely related to invasion and EMT in KIRC cells. FASTK expression in KIRC was inversely linked to the presence of several immune cells including Tgd, macrophages, Tcm, and Mast cells (P < .05).
Conclusions: Our research provided fresh insight and in-depth analysis to the selection of prognostic biological markers of FASTK family members in KIRC.
{"title":"Multi-omics Analysis of Prognostic Significance and Immune Infiltration of FASTK Family Members in Kidney Renal Clear Cell Carcinoma.","authors":"Guanghui Zhong, Dali Wu, Haiping Chen, Lingfei Yan, Qi Xiang, Yufeng Liu, Tao Wang","doi":"10.1177/11769343231212078","DOIUrl":"10.1177/11769343231212078","url":null,"abstract":"<p><strong>Objective: </strong>The Fas-activated serine/threonine kinase (FASTK) family of proteins has been recently found to be able to regulate mitochondrial gene expression post-transcriptionally. Nonetheless, there is a paucity of study about the role of the FASTK family in kidney renal clear cell carcinoma (KIRC). This study was conducted to explore the correlation of FASTK family genes with expression, prognosis, and immune infiltration in KIRC.</p><p><strong>Methods: </strong>We collected the data from the UALCAN, GeneMANIA, STRING, CancerSEA, cBioPortal, Kaplan-Meier plotter, GEPIA, TISIDB and TIMER databases to evaluate the genetic alterations, differential expression, prognostic significance, and immune cell infiltration of FASTKs in patients with KIRC.</p><p><strong>Results: </strong>In tumor tissues of KIRC, the mRNA expression level of FASTK and TBRG4 was elevated, whereas that of FASTKD1, FASTKD2, and FASTKD5 was lowered compared with normal tissues (<i>P</i> < .05). Patients with KIRC and high FASTK and Transforming growth factor β regulator 4 (TBRG4) expression had worse overall survival (OS) and disease specific survival (DFS), while those with lower expression of FASTKD2/3/5 had worse outcomes. FASTK was positively correlated with DNA damage. FASTKD1 was positively related to differentiation. FASTKD2 was inversely related to proliferation and FASTKD5 was inversely related to invasion and EMT in KIRC cells. FASTK expression in KIRC was inversely linked to the presence of several immune cells including Tgd, macrophages, Tcm, and Mast cells (<i>P</i> < .05).</p><p><strong>Conclusions: </strong>Our research provided fresh insight and in-depth analysis to the selection of prognostic biological markers of FASTK family members in KIRC.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231212078"},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17eCollection Date: 2023-01-01DOI: 10.1177/11769343231169377
Nicolas Hernandez, Gustavo Caetano-Anollés
Many viral diseases exhibit seasonal behavior and can be affected by environmental stressors. Using time-series correlation charts extrapolated from worldwide data, we provide strong support for the seasonal development of COVID-19 regardless of the immunity of the population, behavioral changes, and the periodic appearance of new variants with higher rates of infectivity and transmissibility. Statistically significant latitudinal gradients were also observed with indicators of global change. Using the Environmental Protection Index (EPI) and State of Global Air (SoGA) metrics, a bilateral analysis of environmental health and ecosystem vitality effects showed associations with COVID-19 transmission. Air quality, pollution emissions, and other indicators showed strong correlations with COVID-19 incidence and mortality. Remarkably, EPI category and performance indicators also correlated with latitude, suggesting cultural and psychological diversity in human populations not only impact wealth and happiness but also planetary health at latitudinal level. Looking forward, we conclude there will be a need to disentangle the seasonal and global change effects of COVID-19 noting that countries that go against the health of the planet affect health in general.
{"title":"Worldwide Correlations Support COVID-19 Seasonal Behavior and Impact of Global Change.","authors":"Nicolas Hernandez, Gustavo Caetano-Anollés","doi":"10.1177/11769343231169377","DOIUrl":"10.1177/11769343231169377","url":null,"abstract":"<p><p>Many viral diseases exhibit seasonal behavior and can be affected by environmental stressors. Using time-series correlation charts extrapolated from worldwide data, we provide strong support for the seasonal development of COVID-19 regardless of the immunity of the population, behavioral changes, and the periodic appearance of new variants with higher rates of infectivity and transmissibility. Statistically significant latitudinal gradients were also observed with indicators of global change. Using the Environmental Protection Index (EPI) and State of Global Air (SoGA) metrics, a bilateral analysis of environmental health and ecosystem vitality effects showed associations with COVID-19 transmission. Air quality, pollution emissions, and other indicators showed strong correlations with COVID-19 incidence and mortality. Remarkably, EPI category and performance indicators also correlated with latitude, suggesting cultural and psychological diversity in human populations not only impact wealth and happiness but also planetary health at latitudinal level. Looking forward, we conclude there will be a need to disentangle the seasonal and global change effects of COVID-19 noting that countries that go against the health of the planet affect health in general.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231169377"},"PeriodicalIF":1.7,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/2d/10.1177_11769343231169377.PMC10113908.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9443665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769343231153293
Zhengzhong Zhang, Tingting Pang, Min Qi, Gengyun Sun
Background: A worldwide outbreak of coronavirus disease 2019 (COVID-19) has resulted in millions of deaths. Ferroptosis is a form of iron-dependent cell death which is characterized by accumulation of lipid peroxides on cellular membranes, and is related with many physiological and pathophysiological processes of diseases such as cancer, inflammation and infection. However, the role of ferroptosis in COVID-19 has few been studied.
Material and method: Based on the RNA-seq data of 100 COVID-19 cases and 26 Non-COVID-19 cases from GSE157103, we identified ferroptosis related differentially expressed genes (FRDEGs, adj.P-value < .05) using the "Deseq2" R package. By using the "clusterProfiler" R package, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Next, a protein-protein interaction (PPI) network of FRDEGs was constructed and top 30 hub genes were selected by cytoHubba in Cytoscape. Subsequently, we established a prediction model for COVID-19 by utilizing univariate logistic regression and the least absolute shrinkage and selection operator (LASSO) regression. Based on core FRDEGs, COVID-19 patients were identified as two clusters using the "ConsenesusClusterPlus" R package. Finally, the miRNA-mRNA network was built by Targetscan online database and visualized by Cytoscape software.
Results: A total of 119 FRDEGs were identified and the GO and KEGG enrichment analyses showed the most important biologic processes are oxidative stress response, MAPK and PI3K-AKT signaling pathway. The top 30 hub genes were selected, and finally, 7 core FRDEGs (JUN, MAPK8, VEGFA, CAV1, XBP1, HMOX1, and HSPB1) were found to be associated with the occurrence of COVID-19. Next, the two patterns of COVID-19 patients had constructed and the cluster A patients were likely to be more severe.
Conclusion: Our study suggested that ferroptosis was involved in the pathogenesis of COVID-19 disease and the functions of core FRDEGs may become a new research aspect of this disease.
{"title":"The Biological Processes of Ferroptosis Involved in Pathogenesis of COVID-19 and Core Ferroptoic Genes Related With the Occurrence and Severity of This Disease.","authors":"Zhengzhong Zhang, Tingting Pang, Min Qi, Gengyun Sun","doi":"10.1177/11769343231153293","DOIUrl":"https://doi.org/10.1177/11769343231153293","url":null,"abstract":"<p><strong>Background: </strong>A worldwide outbreak of coronavirus disease 2019 (COVID-19) has resulted in millions of deaths. Ferroptosis is a form of iron-dependent cell death which is characterized by accumulation of lipid peroxides on cellular membranes, and is related with many physiological and pathophysiological processes of diseases such as cancer, inflammation and infection. However, the role of ferroptosis in COVID-19 has few been studied.</p><p><strong>Material and method: </strong>Based on the RNA-seq data of 100 COVID-19 cases and 26 Non-COVID-19 cases from GSE157103, we identified ferroptosis related differentially expressed genes (FRDEGs, adj.<i>P</i>-value < .05) using the \"Deseq2\" R package. By using the \"clusterProfiler\" R package, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Next, a protein-protein interaction (PPI) network of FRDEGs was constructed and top 30 hub genes were selected by cytoHubba in Cytoscape. Subsequently, we established a prediction model for COVID-19 by utilizing univariate logistic regression and the least absolute shrinkage and selection operator (LASSO) regression. Based on core FRDEGs, COVID-19 patients were identified as two clusters using the \"ConsenesusClusterPlus\" R package. Finally, the miRNA-mRNA network was built by Targetscan online database and visualized by Cytoscape software.</p><p><strong>Results: </strong>A total of 119 FRDEGs were identified and the GO and KEGG enrichment analyses showed the most important biologic processes are oxidative stress response, MAPK and PI3K-AKT signaling pathway. The top 30 hub genes were selected, and finally, 7 core FRDEGs (JUN, MAPK8, VEGFA, CAV1, XBP1, HMOX1, and HSPB1) were found to be associated with the occurrence of COVID-19. Next, the two patterns of COVID-19 patients had constructed and the cluster A patients were likely to be more severe.</p><p><strong>Conclusion: </strong>Our study suggested that ferroptosis was involved in the pathogenesis of COVID-19 disease and the functions of core FRDEGs may become a new research aspect of this disease.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231153293"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/a8/10.1177_11769343231153293.PMC9929189.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10769063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769343231191481
Junhui Qiu, Yulan Shi, Fei Zhao, Yi Xu, Hui Xu, Yan Dai, Yi Cao
Corynebacterium striatum is a Gram-positive bacterium that is straight or slightly curved and non-spore-forming. Although it was originally believed to be a part of the normal microbiome of human skin, a growing number of studies have identified it as a cause of various chronic diseases, bacteremia, and respiratory infections. However, despite its increasing importance as a pathogen, the genetic characteristics of the pathogen population, such as genomic characteristics and differences, the types of resistance genes and virulence factors carried by the pathogen and their distribution in the population are poorly understood. To address these knowledge gaps, we conducted a pan-genomic analysis of 314 strains of C. striatum isolated from various tissues and geographic locations. Our analysis revealed that C. striatum has an open pan-genome, comprising 5692 gene families, including 1845 core gene families, 2362 accessory gene families, and 1485 unique gene families. We also found that C. striatum exhibits a high degree of diversity across different sources, but strains isolated from skin tissue are more conserved. Furthermore, we identified 53 drug resistance genes and 42 virulence factors by comparing the strains to the drug resistance gene database (CARD) and the pathogen virulence factor database (VFDB), respectively. We found that these genes and factors are widely distributed among C. striatum, with 77.7% of strains carrying 2 or more resistance genes and displaying primary resistance to aminoglycosides, tetracyclines, lincomycin, macrolides, and streptomycin. The virulence factors are primarily associated with pathogen survival within the host, iron uptake, pili, and early biofilm formation. In summary, our study provides insights into the population diversity, resistance genes, and virulence factors ofC. striatum from different sources. Our findings could inform future research and clinical practices in the diagnosis, prevention, and treatment of C. striatum-associated diseases.
{"title":"The Pan-Genomic Analysis of <i>Corynebacterium striatum</i> Revealed its Genetic Characteristics as an Emerging Multidrug-Resistant Pathogen.","authors":"Junhui Qiu, Yulan Shi, Fei Zhao, Yi Xu, Hui Xu, Yan Dai, Yi Cao","doi":"10.1177/11769343231191481","DOIUrl":"https://doi.org/10.1177/11769343231191481","url":null,"abstract":"<p><p><i>Corynebacterium striatum</i> is a Gram-positive bacterium that is straight or slightly curved and non-spore-forming. Although it was originally believed to be a part of the normal microbiome of human skin, a growing number of studies have identified it as a cause of various chronic diseases, bacteremia, and respiratory infections. However, despite its increasing importance as a pathogen, the genetic characteristics of the pathogen population, such as genomic characteristics and differences, the types of resistance genes and virulence factors carried by the pathogen and their distribution in the population are poorly understood. To address these knowledge gaps, we conducted a pan-genomic analysis of 314 strains of <i>C. striatum</i> isolated from various tissues and geographic locations. Our analysis revealed that <i>C. striatum</i> has an open pan-genome, comprising 5692 gene families, including 1845 core gene families, 2362 accessory gene families, and 1485 unique gene families. We also found that <i>C. striatum</i> exhibits a high degree of diversity across different sources, but strains isolated from skin tissue are more conserved. Furthermore, we identified 53 drug resistance genes and 42 virulence factors by comparing the strains to the drug resistance gene database (CARD) and the pathogen virulence factor database (VFDB), respectively. We found that these genes and factors are widely distributed among <i>C. striatum</i>, with 77.7% of strains carrying 2 or more resistance genes and displaying primary resistance to aminoglycosides, tetracyclines, lincomycin, macrolides, and streptomycin. The virulence factors are primarily associated with pathogen survival within the host, iron uptake, pili, and early biofilm formation. In summary, our study provides insights into the population diversity, resistance genes, and virulence factors of<i>C. striatum</i> from different sources. Our findings could inform future research and clinical practices in the diagnosis, prevention, and treatment of <i>C. striatum</i>-associated diseases.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"19 ","pages":"11769343231191481"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/03/54/10.1177_11769343231191481.PMC10422898.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}