For over a century, Palazzo Botta (Palace Botta) has housed the University of Pavia's Biomedical Institutes. Illustrious scientists have conducted research and taught at this Palace, making significant contributions to the advancement of natural, biological, and medical science. Among them, Camillo Golgi received the Nobel Prize for discovering the so-called "black reaction." Following Golgi, the Palace continued to be a hub for the development of methodologies and reactions aimed at detecting and quantifying biological components. Maffo Vialli (in the Golgi stream) was the first to establish a Histochemistry Research Group, which began in the naturalistic field and later expanded to the biomedical area. Among the many histochemical studies initiated in the Palace, the Feulgen reaction undoubtedly played a significant role. This reaction, developed R. Feulgen and H. Rossenbeck in 1924, had significant international implications: numerous researchers then contributed to define its fine chemical details, which remained the subject of study for years, resulting in a massive international scientific literature. The Pavia School of Histochemistry also contributed to the evolution and application of this method, which has become a true benchmark in quantitative histochemistry. Giovanni Prenna and the CNR Centre for Histochemistry made significant contributions, as they were already focused on fluorescence cytochemistry. The Pavia researchers made significant contributions to the development of methodology and, in particular, instrumentation; the evolution of the latter resulted in the emergence of flow cytometry and an ever-increasing family of fluorescent probes, which somewhat overshadowed the Feulgen reaction for DNA quantification. The advent of monoclonal antibodies then contributed to the final explosion of flow cytometry in clinical application, almost making young neophytes forget that its roots date back to Feulgen.
{"title":"The Feulgen reaction: from pink-magenta to rainbow fluorescent at the Maffo Vialli's School of Histochemistry.","authors":"Giuliano Mazzini","doi":"10.4081/ejh.2024.3971","DOIUrl":"10.4081/ejh.2024.3971","url":null,"abstract":"<p><p>For over a century, Palazzo Botta (Palace Botta) has housed the University of Pavia's Biomedical Institutes. Illustrious scientists have conducted research and taught at this Palace, making significant contributions to the advancement of natural, biological, and medical science. Among them, Camillo Golgi received the Nobel Prize for discovering the so-called \"black reaction.\" Following Golgi, the Palace continued to be a hub for the development of methodologies and reactions aimed at detecting and quantifying biological components. Maffo Vialli (in the Golgi stream) was the first to establish a Histochemistry Research Group, which began in the naturalistic field and later expanded to the biomedical area. Among the many histochemical studies initiated in the Palace, the Feulgen reaction undoubtedly played a significant role. This reaction, developed R. Feulgen and H. Rossenbeck in 1924, had significant international implications: numerous researchers then contributed to define its fine chemical details, which remained the subject of study for years, resulting in a massive international scientific literature. The Pavia School of Histochemistry also contributed to the evolution and application of this method, which has become a true benchmark in quantitative histochemistry. Giovanni Prenna and the CNR Centre for Histochemistry made significant contributions, as they were already focused on fluorescence cytochemistry. The Pavia researchers made significant contributions to the development of methodology and, in particular, instrumentation; the evolution of the latter resulted in the emergence of flow cytometry and an ever-increasing family of fluorescent probes, which somewhat overshadowed the Feulgen reaction for DNA quantification. The advent of monoclonal antibodies then contributed to the final explosion of flow cytometry in clinical application, almost making young neophytes forget that its roots date back to Feulgen.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping - and understanding - of the glycome.
{"title":"Lectins as versatile tools to explore cellular glycosylation.","authors":"Susan Brooks","doi":"10.4081/ejh.2024.3959","DOIUrl":"10.4081/ejh.2024.3959","url":null,"abstract":"<p><p>Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping - and understanding - of the glycome.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlo Pellicciari, Marco Biggiogera, Manuela Malatesta
This Editorial celebrates the 70th anniversary of the European Journal of Histochemistry since its foundation as Rivista di Istochimica Normale e Patologica, and introduces a Special Collection of selected articles on the application of the histochemical approach for investigating cell biological features and processes in animals and plants, and under diseased conditions. The year 2024 is a special one for histochemists, as 100 years ago J.W. Robert Feulgen and H. Rossenbeck introduced the histochemical procedure for the specific stoichiometric staining of DNA in histological samples: to commemorate this influential publication, three papers in the present issue are devoted to the application of the Feulgen reaction at light and electron microscopy, and in cytometry.
为庆祝《欧洲组织化学杂志》(Rivista di Istochimica Normale e Patologica)创刊 70 周年,本编辑部特推出特辑,精选文章,介绍如何应用组织化学方法研究动物和植物以及疾病条件下的细胞生物学特征和过程。对于组织化学家来说,2024 年是一个特殊的年份,因为 100 年前,罗伯特-费尔根(J.W. Robert Feulgen)和 H. 罗森贝克(H. Rossenbeck)提出了对组织学样本中的 DNA 进行特异性定量染色的组织化学法:为了纪念这一具有影响力的出版物,本期的三篇论文专门讨论了费尔根反应在光镜和电子显微镜以及细胞计量学中的应用。
{"title":"1954-2024: 70 years of histochemical research with the European Journal of Histochemistry.","authors":"Carlo Pellicciari, Marco Biggiogera, Manuela Malatesta","doi":"10.4081/ejh.2024.3970","DOIUrl":"10.4081/ejh.2024.3970","url":null,"abstract":"<p><p>This Editorial celebrates the 70th anniversary of the European Journal of Histochemistry since its foundation as Rivista di Istochimica Normale e Patologica, and introduces a Special Collection of selected articles on the application of the histochemical approach for investigating cell biological features and processes in animals and plants, and under diseased conditions. The year 2024 is a special one for histochemists, as 100 years ago J.W. Robert Feulgen and H. Rossenbeck introduced the histochemical procedure for the specific stoichiometric staining of DNA in histological samples: to commemorate this influential publication, three papers in the present issue are devoted to the application of the Feulgen reaction at light and electron microscopy, and in cytometry.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper reviews some of the goals of our investigations published over the years on Rivista di Istochimica Normale e Patologica, Basic and Applied Histochemistry, and the European Journal of Histochemistry - EJH. In a series of papers, we published some of the basic cytochemical features of the sperm cytodifferentiation process for the first time. This was a conceptual and practical prerequisite to the in situ quantitative evaluation of sperm DNA content. We showed that the discrepancy between the expected 1:2 ratio when comparing sperm versus somatic cell DNA content (sperm DNA content is always far low from the theoretical value) is due to DNA losses caused by the hydrochloric treatment entailed by the Feulgen reaction. The knowledge of the specific losses that occur during the various steps of the Feulgen reaction has allowed us to use it critically in Genome Size studies to highlight: - sperm aneuploidy in chromosomally derived subfertility; - the broad variability range of Mammalian genome sizes; - that termites are roaches (after decades of discussion on this topic). In addition, in a seminal paper on human oocytes, we showed (by transmission electron microscopy) a specific chromatin and cytoplasmic organization (both essential for further embryo development) linked to oocyte maturation arrest, a datum quite relevant to treating unmet therapeutic needs in human and veterinary reproduction.
本文回顾了我们多年来在《Rivista di Istochimica Normale e Patologica》、《基础与应用组织化学》和《欧洲组织化学杂志》(EJH)上发表的一些研究成果。在一系列论文中,我们首次发表了精子细胞分化过程的一些基本细胞化学特征。这是原位定量评估精子 DNA 含量的概念和实践前提。我们发现,在比较精子和体细胞的DNA含量时,预期的1:2比例之间存在差异(精子的DNA含量总是远远低于理论值),这是由于费尔根反应中的盐酸处理造成了DNA损失。对费尔根反应各步骤中发生的特定损失的了解,使我们能够在基因组大小研究中批判性地使用它,以强调:- 染色体引起的不育症中的精子非整倍体;- 哺乳动物基因组大小的广泛变异范围;- 白蚁是蟑螂(在对这一主题进行了几十年的讨论之后)。此外,在一篇关于人类卵母细胞的开创性论文中,我们(通过透射电子显微镜)展示了与卵母细胞成熟停滞有关的特定染色质和细胞质组织(两者对胚胎的进一步发育都至关重要),这一数据与治疗人类和兽医生殖领域未满足的治疗需求密切相关。
{"title":"Giving bodies to ghosts: locating molecules in the very place where they exert their biological roles.","authors":"Ernesto Capanna, CarloAlberto Redi","doi":"10.4081/ejh.2024.3950","DOIUrl":"10.4081/ejh.2024.3950","url":null,"abstract":"<p><p>This paper reviews some of the goals of our investigations published over the years on Rivista di Istochimica Normale e Patologica, Basic and Applied Histochemistry, and the European Journal of Histochemistry - EJH. In a series of papers, we published some of the basic cytochemical features of the sperm cytodifferentiation process for the first time. This was a conceptual and practical prerequisite to the in situ quantitative evaluation of sperm DNA content. We showed that the discrepancy between the expected 1:2 ratio when comparing sperm versus somatic cell DNA content (sperm DNA content is always far low from the theoretical value) is due to DNA losses caused by the hydrochloric treatment entailed by the Feulgen reaction. The knowledge of the specific losses that occur during the various steps of the Feulgen reaction has allowed us to use it critically in Genome Size studies to highlight: - sperm aneuploidy in chromosomally derived subfertility; - the broad variability range of Mammalian genome sizes; - that termites are roaches (after decades of discussion on this topic). In addition, in a seminal paper on human oocytes, we showed (by transmission electron microscopy) a specific chromatin and cytoplasmic organization (both essential for further embryo development) linked to oocyte maturation arrest, a datum quite relevant to treating unmet therapeutic needs in human and veterinary reproduction.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evidence has shown that small nucleolar RNAs (snoRNAs) participate in the tumorigenesis in multiple cancers, including gallbladder cancer (GBC). Our results showed that SNORA38B level was increased in GBC tissues compared to adjacent normal tissues. Thus, this research aimed to explore the role and molecular mechanisms of SNORA38B in GBC. SNORA38B level between normal and GBC tissues was evaluated by RT-qPCR. Cell proliferation, apoptosis, migration, and invasion were tested by EdU assay, TUNEL staining and transwell assay, respectively on human intrahepatic biliary epithelial cells (HIBEpiCs) and the GBC cell lines, NOZ and GBC-SD. Expression of proteins in GBC cells was evaluated by immunofluorescence and Western blot assays. We found that, relative to normal tissues, SNORA38B level was notably elevated in GBC tissues. SNORA38B overexpression obviously enhanced GBC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), but weakened cell apoptosis. Conversely, SNORA38B downregulation strongly suppressed the proliferation and EMT of GBC cells and induced cell apoptosis and ferroptosis, whereas these phenomena were obviously reversed by TGF-β. Meanwhile, SNORA38B downregulation notably reduced the levels of phosphorylated-Smad2 and phosphorylated-Smad3 in GBC cells, whereas these levels were elevated by TGF-β. Collectively, downregulation of SNORA38B could inhibit GBC cell proliferation and EMT and induce ferroptosis via inactivating TGF-β1/Smad2/3 signaling. These findings showed that SNORA38B may be potential target for GBC treatment.
{"title":"SNORA38B promotes proliferation, migration, invasion and epithelial-mesenchymal transition of gallbladder cancer cells via activating TGF-β/Smad2/3 signaling","authors":"Yiyu Qin, Jian Li, Hongchao Han, Yongliang Zheng, Haiming Lei, Yang Zhou, Hongyan Wu, Guozhe Zhang, Xiang Chen, Zhengping Chen","doi":"10.4081/ejh.2023.3899","DOIUrl":"https://doi.org/10.4081/ejh.2023.3899","url":null,"abstract":"Evidence has shown that small nucleolar RNAs (snoRNAs) participate in the tumorigenesis in multiple cancers, including gallbladder cancer (GBC). Our results showed that SNORA38B level was increased in GBC tissues compared to adjacent normal tissues. Thus, this research aimed to explore the role and molecular mechanisms of SNORA38B in GBC. SNORA38B level between normal and GBC tissues was evaluated by RT-qPCR. Cell proliferation, apoptosis, migration, and invasion were tested by EdU assay, TUNEL staining and transwell assay, respectively on human intrahepatic biliary epithelial cells (HIBEpiCs) and the GBC cell lines, NOZ and GBC-SD. Expression of proteins in GBC cells was evaluated by immunofluorescence and Western blot assays. We found that, relative to normal tissues, SNORA38B level was notably elevated in GBC tissues. SNORA38B overexpression obviously enhanced GBC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), but weakened cell apoptosis. Conversely, SNORA38B downregulation strongly suppressed the proliferation and EMT of GBC cells and induced cell apoptosis and ferroptosis, whereas these phenomena were obviously reversed by TGF-β. Meanwhile, SNORA38B downregulation notably reduced the levels of phosphorylated-Smad2 and phosphorylated-Smad3 in GBC cells, whereas these levels were elevated by TGF-β. Collectively, downregulation of SNORA38B could inhibit GBC cell proliferation and EMT and induce ferroptosis via inactivating TGF-β1/Smad2/3 signaling. These findings showed that SNORA38B may be potential target for GBC treatment.","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139150738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.
{"title":"Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>).","authors":"Yankun Wang, Yuning Liu, Yawei Wang, Ao Zhang, Wenqian Xie, Haolin Zhang, Qiang Weng, Meiyu Xu","doi":"10.4081/ejh.2023.3890","DOIUrl":"10.4081/ejh.2023.3890","url":null,"abstract":"<p><p>A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 4","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xufei Wang, Yinlian Liu, Yongnian Zhou, Yang Zhou, Yueping Li
Osteoarthritis (OA) is characterized by degenerative articular cartilage. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) plays an important role in inflammation. This study aims to investigate whether protective effects of curculigoside on OA are medicated by the regulation of NLRP3 pathway. Destabilization of the medial meniscus (DMM) was performed to build an OA mouse model. After surgery, OA mice were treated with curculigoside. Immunohistochemistry was conducted to evaluate OA cartilage. In addition, human chondrocytes were isolated and treated with curculigoside. The mRNA and protein expression of iNOS, MMP-9, NLRP3 was detected by PCR and Western blot analysis. Curculigoside inhibited mRNA and protein levels of iNOS and MMP-9 induced by DMM surgery in a dose-dependent manner. Furthermore, the expression of NLRP3, NF-κB and PKR was downregulated after curculigoside administration. Moreover, curculigoside reversed the effects of IL-1β on MMP-9, iNOS and type II collagen expression at mRNA and protein levels in human chondrocytes in a dose-dependent manner. In conclusion, curculigoside exhibits beneficial effect on cartilage via the inhibition of NLRP3 pathway.
骨关节炎(OA)的特点是关节软骨退化。核苷酸结合寡聚化结构域样受体(Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3,NLRP3)在炎症中发挥着重要作用。本研究旨在探讨莪术苷对 OA 的保护作用是否可通过调节 NLRP3 通路来实现。研究人员通过破坏内侧半月板(DMM)来建立 OA 小鼠模型。手术后,OA小鼠接受姜黄苷治疗。免疫组化对 OA 软骨进行了评估。此外,还分离了人软骨细胞并用姜黄苷处理。PCR和Western印迹分析检测了iNOS、MMP-9和NLRP3的mRNA和蛋白表达。莪术甙能以剂量依赖性的方式抑制DMM手术诱导的iNOS和MMP-9的mRNA和蛋白水平。此外,服用莪术甙后,NLRP3、NF-κB 和 PKR 的表达均有所下降。此外,姜黄苷还能以剂量依赖的方式逆转 IL-1β 对人软骨细胞中 MMP-9、iNOS 和 II 型胶原 mRNA 和蛋白表达的影响。总之,莪术苷可通过抑制 NLRP3 通路对软骨产生有益影响。
{"title":"Curculigoside inhibits osteoarthritis <em>via</em> the regulation of NLRP3 pathway.","authors":"Xufei Wang, Yinlian Liu, Yongnian Zhou, Yang Zhou, Yueping Li","doi":"10.4081/ejh.2023.3896","DOIUrl":"10.4081/ejh.2023.3896","url":null,"abstract":"<p><p>Osteoarthritis (OA) is characterized by degenerative articular cartilage. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) plays an important role in inflammation. This study aims to investigate whether protective effects of curculigoside on OA are medicated by the regulation of NLRP3 pathway. Destabilization of the medial meniscus (DMM) was performed to build an OA mouse model. After surgery, OA mice were treated with curculigoside. Immunohistochemistry was conducted to evaluate OA cartilage. In addition, human chondrocytes were isolated and treated with curculigoside. The mRNA and protein expression of iNOS, MMP-9, NLRP3 was detected by PCR and Western blot analysis. Curculigoside inhibited mRNA and protein levels of iNOS and MMP-9 induced by DMM surgery in a dose-dependent manner. Furthermore, the expression of NLRP3, NF-κB and PKR was downregulated after curculigoside administration. Moreover, curculigoside reversed the effects of IL-1β on MMP-9, iNOS and type II collagen expression at mRNA and protein levels in human chondrocytes in a dose-dependent manner. In conclusion, curculigoside exhibits beneficial effect on cartilage via the inhibition of NLRP3 pathway.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to explore the role and mechanism of umbilical cord mesenchymal stem cells (UCMSCs) in regulating inflammation of bronchial epithelial cells. Transforming growth factor beta-1 (TGF-β1) was used to induce inflammation in human bronchial epithelial cells. Cell proliferation was detected through CCK8 and cell apoptosis was detected by Annexin V and propidium iodide double staining. E-cadherin and α-smooth muscle actin (α-SMA) were detected by immunofluorescence, and tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in culture medium supernatant were detected by ELISA. The expression of E-cadherin, α-SMA, Sonic hedgehog (Shh), Gli1 and Snail was detected by Western blot analysis. Compared with the control group, bronchial epithelial cells treated with TGF-β1 showed significantly decreased proliferation, increased apoptosis, increased secretion of TNF-α and IL-6, increased expression of α-SMA, Shh, Gli1 and Snail and decreased E-cadherin expression. However, co-culture with UCMSCs inhibited TGF-β1-induced changes in human bronchial epithelial cell proliferation, apoptosis, secretion of TNF-α and IL-6 and activation of the Hedgehog pathway. In conclusion, UCMSCs have protective effects on TGF-β1-induced inflammation in human bronchial epithelial cells by regulating the Hedgehog pathway.
{"title":"Umbilical cord mesenchymal stem cells inhibited inflammation of bronchial epithelial cells by regulating Hedgehog pathway.","authors":"Qiong Lin, Tianxing Yu, Xiaohua Li, Xin Lin, Yong Fan, Liyu Xu","doi":"10.4081/ejh.2023.3908","DOIUrl":"10.4081/ejh.2023.3908","url":null,"abstract":"<p><p>This study aimed to explore the role and mechanism of umbilical cord mesenchymal stem cells (UCMSCs) in regulating inflammation of bronchial epithelial cells. Transforming growth factor beta-1 (TGF-β1) was used to induce inflammation in human bronchial epithelial cells. Cell proliferation was detected through CCK8 and cell apoptosis was detected by Annexin V and propidium iodide double staining. E-cadherin and α-smooth muscle actin (α-SMA) were detected by immunofluorescence, and tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in culture medium supernatant were detected by ELISA. The expression of E-cadherin, α-SMA, Sonic hedgehog (Shh), Gli1 and Snail was detected by Western blot analysis. Compared with the control group, bronchial epithelial cells treated with TGF-β1 showed significantly decreased proliferation, increased apoptosis, increased secretion of TNF-α and IL-6, increased expression of α-SMA, Shh, Gli1 and Snail and decreased E-cadherin expression. However, co-culture with UCMSCs inhibited TGF-β1-induced changes in human bronchial epithelial cell proliferation, apoptosis, secretion of TNF-α and IL-6 and activation of the Hedgehog pathway. In conclusion, UCMSCs have protective effects on TGF-β1-induced inflammation in human bronchial epithelial cells by regulating the Hedgehog pathway.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 4","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.
{"title":"Pre-treatment with galectin-1 attenuates lipopolysaccharide-induced myocarditis by regulating the Nrf2 pathway.","authors":"Liying Shen, Kongjie Lu, Zhenfeng Chen, Yingwei Zhu, Cong Zhang, Li Zhang","doi":"10.4081/ejh.2023.3816","DOIUrl":"10.4081/ejh.2023.3816","url":null,"abstract":"<p><p>Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 4","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proceedings of the 33rd National Conference of the Italian Group for the Study of Neuromorphology "Gruppo Italiano per lo Studio della Neuromorfologia" G.I.S.N., Verona, November 24-25, 2023.
意大利神经形态学研究小组 "Gruppo Italiano per lo Studio della Neuromorfologia" G.I.S.N. 第 33 届全国会议论文集,维罗纳,2023 年 11 月 24-25 日。
{"title":"Proceedings of the 33rd National Conference of the Italian Group for the Study of Neuromorphology \"Gruppo Italiano per lo Studio della Neuromorfologia\" G.I.S.N., Verona, November 24-25, 2023.","authors":"Conference Chair Raffaella Mariotti","doi":"10.4081/ejh.2023.3924","DOIUrl":"https://doi.org/10.4081/ejh.2023.3924","url":null,"abstract":"<p><p>Proceedings of the 33rd National Conference of the Italian Group for the Study of Neuromorphology \"Gruppo Italiano per lo Studio della Neuromorfologia\" G.I.S.N., Verona, November 24-25, 2023.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 s4","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}