Zhanshu Ma, Qi Gao, Wenjing Xin, Lei Wang, Yan Chen, Chang Su, Songyan Gao, Ruiling Sun
The study aimed to explore the functional role of fibronectin type III domain containing 1 (FNDC1) in nonsmall cell lung cancer (NSCLC), as well as the mechanism governing its expression. The expression levels of FNDC1 and related genes in tissue and cell samples were detected by qRT-PCR. Kaplan-Meier analysis was employed to analyze the association between FNDC1 level and the overall survival of NSCLC patients. Functional experiments such as CCK-8 proliferation, colony formation, EDU staining, migration and invasion assays were conducted to investigate the functional role of FNDC1 in regulating the malignancy of NSCLC cells. Bioinformatic tools and dual-luciferase reporter assay were used to identify the miRNA regulator of FNDC1 in NSCLC cells. Our data revealed the upregulation of FNDC1 at mRNA and protein levels in NSCLC tumor tissues cancer cell lines, compared with normal counterparts. NSCLC patients with higher FNDC1 expression suffered from a poorer overall survival. FNDC1 knockdown significantly suppressed the proliferation, migration and invasion of NSCLC cells, and had an inhibitory effect on tube formation. We further demonstrated that miR-143-3p was an upstream regulator of FNDC1 and miR-143-3p expression was repressed in NSCLC samples. Similar to FNDC1 knockdown, miR-143-3p overexpression inhibited the growth, migration and invasion of NSCLC cells. FNDC1 overexpression could partially rescue the effect of miR-143-3p overexpression. FNDC1 silencing also suppressed the tumorigenesis of NSCLC cells in mouse model. In conclusion, FNDC1 promotes the malignant prototypes of NSCLC cells. miR-143-3p is a negative regulator of FNDC1 in NSCLC cells, which may serve as a promising therapeutic target in NSCLC.
{"title":"The role of miR-143-3p/FNDC1 axis on the progression of non-small cell lung cancer.","authors":"Zhanshu Ma, Qi Gao, Wenjing Xin, Lei Wang, Yan Chen, Chang Su, Songyan Gao, Ruiling Sun","doi":"10.4081/ejh.2023.3577","DOIUrl":"https://doi.org/10.4081/ejh.2023.3577","url":null,"abstract":"<p><p>The study aimed to explore the functional role of fibronectin type III domain containing 1 (FNDC1) in nonsmall cell lung cancer (NSCLC), as well as the mechanism governing its expression. The expression levels of FNDC1 and related genes in tissue and cell samples were detected by qRT-PCR. Kaplan-Meier analysis was employed to analyze the association between FNDC1 level and the overall survival of NSCLC patients. Functional experiments such as CCK-8 proliferation, colony formation, EDU staining, migration and invasion assays were conducted to investigate the functional role of FNDC1 in regulating the malignancy of NSCLC cells. Bioinformatic tools and dual-luciferase reporter assay were used to identify the miRNA regulator of FNDC1 in NSCLC cells. Our data revealed the upregulation of FNDC1 at mRNA and protein levels in NSCLC tumor tissues cancer cell lines, compared with normal counterparts. NSCLC patients with higher FNDC1 expression suffered from a poorer overall survival. FNDC1 knockdown significantly suppressed the proliferation, migration and invasion of NSCLC cells, and had an inhibitory effect on tube formation. We further demonstrated that miR-143-3p was an upstream regulator of FNDC1 and miR-143-3p expression was repressed in NSCLC samples. Similar to FNDC1 knockdown, miR-143-3p overexpression inhibited the growth, migration and invasion of NSCLC cells. FNDC1 overexpression could partially rescue the effect of miR-143-3p overexpression. FNDC1 silencing also suppressed the tumorigenesis of NSCLC cells in mouse model. In conclusion, FNDC1 promotes the malignant prototypes of NSCLC cells. miR-143-3p is a negative regulator of FNDC1 in NSCLC cells, which may serve as a promising therapeutic target in NSCLC.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4a/43/ejh-67-2-3577.PMC10203978.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10299164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The details of immune molecules' expression in desmoid tumors (DTs) remain unclear. This study aimed to determine the expression status of the programmed death-1/programmed death ligand 1 (PD1/PD-L1) immune checkpoint mechanism in DTs. The study included patients with DTs (n=9) treated at our institution between April 2006 and December 2012. Immunostaining for CD4, CD8, PD-1, PD-L1, interleukin-2 (IL-2), and interferon-gamma (IFN-γ) was performed on pathological specimens harvested during the biopsy. The positivity rate of each immune component was calculated as the number of positive cells/total cells. The positivity rate was quantified and correlations between the positivity rates of each immune molecule were also investigated. Immune molecules other than PD-1 were stained in tumor cells and intra-tumor infiltrating lymphocytes. The mean ± SD expression rates of β-catenin, CD4, CD8, PD-1, PD-L1, IL-2, and IFN-ɤ were 43.9±18.9, 14.6±6.80, 0.75±4.70, 0±0, 5.1±6.73, 8.75±6.38, and 7.03±12.1, respectively. The correlation between β-catenin and CD4 was positively moderate (r=0.49); β-catenin and PD-L1, positively weak (r=0.25); CD4 and PD-L1, positively medium (r=0.36); CD8 and IL-2, positively medium (r=0.38); CD8 and IFN-ɤ, positively weak (r=0.28); and IL-2 and IFN-ɤ, positively medium (r=0.36). Our findings suggest that PD-L1-centered immune checkpoint mechanisms may be involved in the tumor microenvironment of DTs.
{"title":"Clinicopathological assessment of PD-1/PD-L1 immune checkpoint expression in desmoid tumors.","authors":"Kazuhiko Hashimoto, Shunji Nishimura, Yu Shinyashiki, Tomohiko Ito, Ryosuke Kakinoki, Masao Akagi","doi":"10.4081/ejh.2023.3688","DOIUrl":"https://doi.org/10.4081/ejh.2023.3688","url":null,"abstract":"<p><p>The details of immune molecules' expression in desmoid tumors (DTs) remain unclear. This study aimed to determine the expression status of the programmed death-1/programmed death ligand 1 (PD1/PD-L1) immune checkpoint mechanism in DTs. The study included patients with DTs (n=9) treated at our institution between April 2006 and December 2012. Immunostaining for CD4, CD8, PD-1, PD-L1, interleukin-2 (IL-2), and interferon-gamma (IFN-γ) was performed on pathological specimens harvested during the biopsy. The positivity rate of each immune component was calculated as the number of positive cells/total cells. The positivity rate was quantified and correlations between the positivity rates of each immune molecule were also investigated. Immune molecules other than PD-1 were stained in tumor cells and intra-tumor infiltrating lymphocytes. The mean ± SD expression rates of β-catenin, CD4, CD8, PD-1, PD-L1, IL-2, and IFN-ɤ were 43.9±18.9, 14.6±6.80, 0.75±4.70, 0±0, 5.1±6.73, 8.75±6.38, and 7.03±12.1, respectively. The correlation between β-catenin and CD4 was positively moderate (r=0.49); β-catenin and PD-L1, positively weak (r=0.25); CD4 and PD-L1, positively medium (r=0.36); CD8 and IL-2, positively medium (r=0.38); CD8 and IFN-ɤ, positively weak (r=0.28); and IL-2 and IFN-ɤ, positively medium (r=0.36). Our findings suggest that PD-L1-centered immune checkpoint mechanisms may be involved in the tumor microenvironment of DTs.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/df/ejh-67-2-3688.PMC10184173.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9467135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Cajas, Emanuel Guajardo, Sergio Jara-Rosales, Claudio Nuñez, Renato Vargas, Victor Carriel, Antonio Campos, Luis Milla, Pedro Orihuela, Carlos Godoy-Guzman
In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.
{"title":"Molecules involved in the sperm interaction in the human uterine tube: a histochemical and immunohistochemical approach.","authors":"David Cajas, Emanuel Guajardo, Sergio Jara-Rosales, Claudio Nuñez, Renato Vargas, Victor Carriel, Antonio Campos, Luis Milla, Pedro Orihuela, Carlos Godoy-Guzman","doi":"10.4081/ejh.2023.3513","DOIUrl":"https://doi.org/10.4081/ejh.2023.3513","url":null,"abstract":"<p><p>In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/4d/ejh-67-2-3513.PMC10141343.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9361292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Hu, Ran Tao, Xiaoyun Hu, Haibo Wu, Jianjun Xu
Acute pancreatitis is an inflammatory response in the pancreas, involving activation of pancreatic enzymes. Severe acute pancreatitis (SAP) often causes systemic complications that affect distant organs, including the lungs. The aim of this study was to explore the therapeutic potential of piperlonguminine on SAP-induced lung injury in rat models. Acute pancreatitis was induced in rats by repetitive injections with 4% sodium taurocholate. Histological examination and biochemical assays were used to assess the severity of lung injury, including tissue damage, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory cytokines. We found that piperlonguminine significantly ameliorated pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening in rats with SAP. In addition, NOX2, NOX4, ROS, and inflammatory cytokine levels in pulmonary tissues were notably decreased in piperlonguminine-treated rats. Piperlonguminine also attenuated the expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). Together, our findings demonstrate for the first time that piperlonguminine can ameliorate acute pancreatitis-induced lung injury via inhibitory modulation of inflammatory responses by suppression of the TLR4/NF-κB signaling pathway.
急性胰腺炎是胰腺的一种炎症反应,涉及胰酶的激活。重症急性胰腺炎(SAP)通常会引起全身并发症,影响包括肺部在内的远处器官。本研究旨在探索哌隆氨宁对大鼠模型中 SAP 诱导的肺损伤的治疗潜力。大鼠通过重复注射 4% 牛磺胆酸钠诱发急性胰腺炎。组织学检查和生化检测用于评估肺损伤的严重程度,包括组织损伤以及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶 2(NOX2)、烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶 4(NOX4)、活性氧(ROS)和炎症细胞因子的水平。我们发现,哌隆芦胺能明显改善 SAP 大鼠的肺结构变形、出血、肺间质水肿和肺泡增厚。此外,哌隆烟碱治疗的大鼠肺组织中的 NOX2、NOX4、ROS 和炎性细胞因子水平明显下降。哌隆烟碱还能降低toll样受体4(TLR4)和核因子卡巴B(NF-κB)的表达水平。综上所述,我们的研究结果首次证明哌隆烟碱可通过抑制 TLR4/NF-κB 信号通路来抑制炎症反应,从而改善急性胰腺炎引起的肺损伤。
{"title":"Effects of piperlonguminine on lung injury in severe acute pancreatitis <em>via</em> the TLR4/NF-κB pathway.","authors":"Qian Hu, Ran Tao, Xiaoyun Hu, Haibo Wu, Jianjun Xu","doi":"10.4081/ejh.2023.3639","DOIUrl":"10.4081/ejh.2023.3639","url":null,"abstract":"<p><p>Acute pancreatitis is an inflammatory response in the pancreas, involving activation of pancreatic enzymes. Severe acute pancreatitis (SAP) often causes systemic complications that affect distant organs, including the lungs. The aim of this study was to explore the therapeutic potential of piperlonguminine on SAP-induced lung injury in rat models. Acute pancreatitis was induced in rats by repetitive injections with 4% sodium taurocholate. Histological examination and biochemical assays were used to assess the severity of lung injury, including tissue damage, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory cytokines. We found that piperlonguminine significantly ameliorated pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening in rats with SAP. In addition, NOX2, NOX4, ROS, and inflammatory cytokine levels in pulmonary tissues were notably decreased in piperlonguminine-treated rats. Piperlonguminine also attenuated the expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). Together, our findings demonstrate for the first time that piperlonguminine can ameliorate acute pancreatitis-induced lung injury via inhibitory modulation of inflammatory responses by suppression of the TLR4/NF-κB signaling pathway.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/91/ejh-67-2-3639.PMC10080291.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9650550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. However, it is very difficult to distinguish PTC from benign carcinoma. Thus, specific diagnostic biomarkers are actively pursued. Previous studies observed that Nrf2 was highly expressed in PTC. Based on this research, we hypothesized that Nrf2 may serve as a novel specific diagnostic biomarker. A single-center retrospective study, including 60 patients with PTC and 60 patients with nodular goiter, who underwent thyroidectomy at the Central Theater General Hospital from 2018 to July 2020, was conducted. The clinical data of the patients were collected. Nrf2, BRAF V600E, CK-19, and Gal-3 proteins were compared from paraffin samples of the patients. Through this study, we obtained the following results: i) Nrf2 exhibits high abundance expression in PTC, but not in adjacent to PTC and nodular goiter; increased Nrf2 expression could serve as a valuable biomarker for PTC diagnosis; the sensitivity and specificity for the diagnosis of PTC were 96.70% and 89.40%, respectively. ii) Nrf2 also shows higher expression in PTC with lymph node metastasis, but not adjacent to PTC and nodular goiter, thus the increased Nrf2 expression might serve as a valuable predictor for lymph node metastasis in PTC patients; the sensitivity and specificity for the prediction in lymph node metastasis were 96.00% and 88.57%, respectively; excellent diagnostic agreements were found between Nrf2 and other routine parameters including HO-1, NQO1 and BRAF V600E. iii) The downstream molecular expression of Nrf2 including HO-1 and NQO1 consistently increased. In conclusion, Nrf2 displays a high abundance expression in human PTC, which leads to the higher expression of downstream transcriptional proteins: HO-1 and NQO1. Moreover, Nrf2 can be used as an extra biomarker for differential diagnosis of PTC and a predictive biomarker for lymph node metastasis of PTC.
{"title":"Nrf2 as a novel diagnostic biomarker for papillary thyroid carcinoma.","authors":"Zhiyang Wang, Jing Li, Ziwei Liu, Ling Yue","doi":"10.4081/ejh.2023.3622","DOIUrl":"https://doi.org/10.4081/ejh.2023.3622","url":null,"abstract":"<p><p>Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. However, it is very difficult to distinguish PTC from benign carcinoma. Thus, specific diagnostic biomarkers are actively pursued. Previous studies observed that Nrf2 was highly expressed in PTC. Based on this research, we hypothesized that Nrf2 may serve as a novel specific diagnostic biomarker. A single-center retrospective study, including 60 patients with PTC and 60 patients with nodular goiter, who underwent thyroidectomy at the Central Theater General Hospital from 2018 to July 2020, was conducted. The clinical data of the patients were collected. Nrf2, BRAF V600E, CK-19, and Gal-3 proteins were compared from paraffin samples of the patients. Through this study, we obtained the following results: i) Nrf2 exhibits high abundance expression in PTC, but not in adjacent to PTC and nodular goiter; increased Nrf2 expression could serve as a valuable biomarker for PTC diagnosis; the sensitivity and specificity for the diagnosis of PTC were 96.70% and 89.40%, respectively. ii) Nrf2 also shows higher expression in PTC with lymph node metastasis, but not adjacent to PTC and nodular goiter, thus the increased Nrf2 expression might serve as a valuable predictor for lymph node metastasis in PTC patients; the sensitivity and specificity for the prediction in lymph node metastasis were 96.00% and 88.57%, respectively; excellent diagnostic agreements were found between Nrf2 and other routine parameters including HO-1, NQO1 and BRAF V600E. iii) The downstream molecular expression of Nrf2 including HO-1 and NQO1 consistently increased. In conclusion, Nrf2 displays a high abundance expression in human PTC, which leads to the higher expression of downstream transcriptional proteins: HO-1 and NQO1. Moreover, Nrf2 can be used as an extra biomarker for differential diagnosis of PTC and a predictive biomarker for lymph node metastasis of PTC.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bb/c5/ejh-67-2-3622.PMC10080292.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9281290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhi Wang, Guihua Jian, Teng Chen, Yiping Chen, Junhui Li, Niansong Wang
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and a growing public health problem worldwide. Losartan potassium (Los), an angiotensin II receptor blocker, has been used to treat DKD clinically. Recently, multi-herbal formula has been shown to exhibit therapeutic activities in DKD in China. Thus, we aimed to explore the protective effects of combination of Los and Qi-Bang-Yi-Shen formula (QBF) on DKD rats. Streptozotocin (STZ) injection was used to establish a rat model of DKD. Next, the bloodurea nitrogen (BUN), creatinine (CRE) and uric acid (UA) levels were detected in serum samples from DKD rats. Hematoxylin and eosin (H&E), periodic Acid Schiff (PAS) and Masson staining were performed to observe glomerular injury and glomerular fibrosis in DKD rats. In this study, we found that QBF or Los treatment could decrease serum BUN, CRE, UA levels and reduce urine albumin-to-creatinine ratio (ACR) in DKD rats. Additionally, QBF or Los treatment obviously inhibited glomerular mesangial expansion and glomerular fibrosis, attenuated glomerular injury in kidney tissues of DKD rats. Moreover, QBF or Los treatment significantly reduced PI3K, AKT and ERK1/2 protein expressions, but increased PPARγ level in kidney tissues of DKD rats. As expected, combined treatment of QBF and Los could exert enhanced reno-protective effects compared with the single treatment. Collectively, combination of QBF and Los could ameliorate renal injury and fibrosis in DKD rats via regulating PI3K/AKT, ERK and PPARγ signaling pathways. These findings highlight the therapeutic potential of QBF to prevent DKD progression.
{"title":"The Qi-Bang-Yi-Shen formula ameliorates renal dysfunction and fibrosis in rats with diabetic kidney disease <em>via</em> regulating PI3K/AKT, ERK and PPARγ signaling pathways.","authors":"Zhi Wang, Guihua Jian, Teng Chen, Yiping Chen, Junhui Li, Niansong Wang","doi":"10.4081/ejh.2023.3648","DOIUrl":"https://doi.org/10.4081/ejh.2023.3648","url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and a growing public health problem worldwide. Losartan potassium (Los), an angiotensin II receptor blocker, has been used to treat DKD clinically. Recently, multi-herbal formula has been shown to exhibit therapeutic activities in DKD in China. Thus, we aimed to explore the protective effects of combination of Los and Qi-Bang-Yi-Shen formula (QBF) on DKD rats. Streptozotocin (STZ) injection was used to establish a rat model of DKD. Next, the bloodurea nitrogen (BUN), creatinine (CRE) and uric acid (UA) levels were detected in serum samples from DKD rats. Hematoxylin and eosin (H&E), periodic Acid Schiff (PAS) and Masson staining were performed to observe glomerular injury and glomerular fibrosis in DKD rats. In this study, we found that QBF or Los treatment could decrease serum BUN, CRE, UA levels and reduce urine albumin-to-creatinine ratio (ACR) in DKD rats. Additionally, QBF or Los treatment obviously inhibited glomerular mesangial expansion and glomerular fibrosis, attenuated glomerular injury in kidney tissues of DKD rats. Moreover, QBF or Los treatment significantly reduced PI3K, AKT and ERK1/2 protein expressions, but increased PPARγ level in kidney tissues of DKD rats. As expected, combined treatment of QBF and Los could exert enhanced reno-protective effects compared with the single treatment. Collectively, combination of QBF and Los could ameliorate renal injury and fibrosis in DKD rats via regulating PI3K/AKT, ERK and PPARγ signaling pathways. These findings highlight the therapeutic potential of QBF to prevent DKD progression.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/e2/ejh-67-1-3648.PMC10300429.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10081625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrogels based on various polymeric materials have been successfully developed in recent years for a variety of skin applications. Several studies have shown that hydrogels with regenerative, antibacterial, and antiinflammatory properties can provide faster and better healing outcomes, particularly in chronic diseases where the normal physiological healing process is significantly hampered. Various experimental tests are typically performed to assess these materials' ability to promote angiogenesis, re-epithelialization, and the production and maturation of new extracellular matrix. Immunohistochemistry is important in this context because it allows for the visualization of in situ target tissue factors involved in the various stages of wound healing using antibodies labelled with specific markers detectable with different microscopy techniques. This review provides an overview of the various immunohistochemical techniques that have been used in recent years to investigate the efficacy of various types of hydrogels in assisting skin healing processes. The large number of scientific articles published demonstrates immunohistochemistry's significant contribution to the development of engineered biomaterials suitable for treating skin injuries.
{"title":"The contribution of immunohistochemistry to the development of hydrogels for skin repair and regeneration.","authors":"Flavia Carton","doi":"10.4081/ejh.2023.3679","DOIUrl":"https://doi.org/10.4081/ejh.2023.3679","url":null,"abstract":"<p><p>Hydrogels based on various polymeric materials have been successfully developed in recent years for a variety of skin applications. Several studies have shown that hydrogels with regenerative, antibacterial, and antiinflammatory properties can provide faster and better healing outcomes, particularly in chronic diseases where the normal physiological healing process is significantly hampered. Various experimental tests are typically performed to assess these materials' ability to promote angiogenesis, re-epithelialization, and the production and maturation of new extracellular matrix. Immunohistochemistry is important in this context because it allows for the visualization of in situ target tissue factors involved in the various stages of wound healing using antibodies labelled with specific markers detectable with different microscopy techniques. This review provides an overview of the various immunohistochemical techniques that have been used in recent years to investigate the efficacy of various types of hydrogels in assisting skin healing processes. The large number of scientific articles published demonstrates immunohistochemistry's significant contribution to the development of engineered biomaterials suitable for treating skin injuries.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/b0/ejh-67-1-3679.PMC10300430.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In memoriam of Prof. Stan Fakan.","authors":"Marco Biggiogera, Manuela Malatesta","doi":"10.4081/ejh.2023.3668","DOIUrl":"https://doi.org/10.4081/ejh.2023.3668","url":null,"abstract":"<p><p>In memoriam of Prof. Stan Fakan.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/2a/ejh-67-1-3668.PMC10300424.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of the study was to investigate the effect of artificial light with different spectral composition and distribution on axial growth in guinea pigs. Three-week-old guinea pigs were randomly assigned to groups exposed to natural light, low color temperature light-emitting diode (LED) light, two full spectrum artificial lights (E light and Julia light) and blue light filtered light with the same intensity. Axial lengths of guinea pigs' eyes were measured by A-scan ultrasonography prior to the experiment and every 2 weeks during the experiment. After light exposure for 12 weeks, retinal dopamine (DA), dihydroxy-phenylacetic acid (DOPAC) levels and DOPAC/DA ratio were analyzed by high-pressure liquid chromatography electrochemical detection and retinal histological structure was observed. Retinal melanopsin expression was detected using Western blot and immunohistochemistry. After exposed to different kinds of light with different spectrum for 4 weeks, the axial lengths of guinea pigs' eyes in LED group and Julia light group were significantly longer than those of natural light group. After 6 weeks, the axial lengths in LED light group were significantly longer than those of E light group and blue light filtered group. The difference between axial lengths in E light group and Julia light group showed statistical significance after 8 weeks (p<0.05). After 12 weeks of light exposure, the comparison of retinal DOPAC/DA ratio and melanopsin expression in each group was consistent with that of axial length. In guinea pigs, continuous full spectrum artificial light with no peak or valley can inhibit axial elongation via retinal dopaminergic and melanopsin system.
{"title":"Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs.","authors":"Xinyu Xu, Jiayu Shi, Chuanwei Zhang, Lixin Shi, Yujie Bai, Wei Shi, Yuliang Wang","doi":"10.4081/ejh.2023.3634","DOIUrl":"https://doi.org/10.4081/ejh.2023.3634","url":null,"abstract":"<p><p>The purpose of the study was to investigate the effect of artificial light with different spectral composition and distribution on axial growth in guinea pigs. Three-week-old guinea pigs were randomly assigned to groups exposed to natural light, low color temperature light-emitting diode (LED) light, two full spectrum artificial lights (E light and Julia light) and blue light filtered light with the same intensity. Axial lengths of guinea pigs' eyes were measured by A-scan ultrasonography prior to the experiment and every 2 weeks during the experiment. After light exposure for 12 weeks, retinal dopamine (DA), dihydroxy-phenylacetic acid (DOPAC) levels and DOPAC/DA ratio were analyzed by high-pressure liquid chromatography electrochemical detection and retinal histological structure was observed. Retinal melanopsin expression was detected using Western blot and immunohistochemistry. After exposed to different kinds of light with different spectrum for 4 weeks, the axial lengths of guinea pigs' eyes in LED group and Julia light group were significantly longer than those of natural light group. After 6 weeks, the axial lengths in LED light group were significantly longer than those of E light group and blue light filtered group. The difference between axial lengths in E light group and Julia light group showed statistical significance after 8 weeks (p<0.05). After 12 weeks of light exposure, the comparison of retinal DOPAC/DA ratio and melanopsin expression in each group was consistent with that of axial length. In guinea pigs, continuous full spectrum artificial light with no peak or valley can inhibit axial elongation via retinal dopaminergic and melanopsin system.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3a/5f/ejh-67-1-3634.PMC10300426.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Jiang, Chun-Hui Xu, Ying Zhao, Yun-Han Ji, Xin-Tao Wang, Ying Liu
Vascular endothelial cell (VEC) dysfunction is associated with the development of coronary heart disease (CHD). Long intergenic non-protein coding RNA 926 (LINC00926), a kind of long noncoding RNA (lncRNA), has been found to be abnormally expressed in CHD patients. However, the biological role of LINC00926 has not been reported. In our research, we intended to explore the regulatory mechanism of LINC00926 in hypoxia-exposed HUVEC cells (HUVECs). In our in vitro study, HUVECs were exposed under hypoxic conditions (5% O2) for 24 h. RT-qPCR and Western blotting assay were used to detect the mRNA and protein levels. CCK-8 assay, flow cytometry, transwell assay and in vitro angiogenesis assay were performed to measure cell proliferation, apoptosis, migration and tube formation, respectively. Bioinformatics analysis was applied to predict the target of LINC00926 and miR-3194-5p, which was verified by dual-luciferase reporter assays. The results showed that LINC00926 was highly expressed in CHD patients and hypoxia-exposed HUVECs. LINC00926 overexpression suppressed cell proliferation, migration and tube formation and increased cell apoptosis. MiR-3194-5p was a target of LINC00926 and can target binding to JAK1 3'UTR. LINC00926 could up-regulate JAK1 and p-STAT3 levels via miR-3194-5p. In addition, overexpressed LINC00926 suppressed cell proliferation, migration and tube formation and increased cell apoptosis via miR-3194-5p/JAK1/STAT3 axis. In summary, LINC00926 aggravated endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway in hypoxia-exposed HUVECs.
{"title":"LINC00926 is involved in hypoxia-induced vascular endothelial cell dysfunction <i>via</i> miR-3194-5p regulating JAK1/STAT3 signaling pathway.","authors":"Yong Jiang, Chun-Hui Xu, Ying Zhao, Yun-Han Ji, Xin-Tao Wang, Ying Liu","doi":"10.4081/ejh.2023.3526","DOIUrl":"https://doi.org/10.4081/ejh.2023.3526","url":null,"abstract":"<p><p>Vascular endothelial cell (VEC) dysfunction is associated with the development of coronary heart disease (CHD). Long intergenic non-protein coding RNA 926 (LINC00926), a kind of long noncoding RNA (lncRNA), has been found to be abnormally expressed in CHD patients. However, the biological role of LINC00926 has not been reported. In our research, we intended to explore the regulatory mechanism of LINC00926 in hypoxia-exposed HUVEC cells (HUVECs). In our in vitro study, HUVECs were exposed under hypoxic conditions (5% O2) for 24 h. RT-qPCR and Western blotting assay were used to detect the mRNA and protein levels. CCK-8 assay, flow cytometry, transwell assay and in vitro angiogenesis assay were performed to measure cell proliferation, apoptosis, migration and tube formation, respectively. Bioinformatics analysis was applied to predict the target of LINC00926 and miR-3194-5p, which was verified by dual-luciferase reporter assays. The results showed that LINC00926 was highly expressed in CHD patients and hypoxia-exposed HUVECs. LINC00926 overexpression suppressed cell proliferation, migration and tube formation and increased cell apoptosis. MiR-3194-5p was a target of LINC00926 and can target binding to JAK1 3'UTR. LINC00926 could up-regulate JAK1 and p-STAT3 levels via miR-3194-5p. In addition, overexpressed LINC00926 suppressed cell proliferation, migration and tube formation and increased cell apoptosis via miR-3194-5p/JAK1/STAT3 axis. In summary, LINC00926 aggravated endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway in hypoxia-exposed HUVECs.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/ad/ejh-67-1-3526.PMC10300425.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10061644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}