Lung cancer is prone to bone metastasis, and osteopontin (OPN) has an important significance in maintaining bone homeostasis. The goal of this study was to explore the impact of OPN level on bone metabolism and the molecular mechanism of inhibiting bone metastasis in non-small cell lung cancer (NSCLC). The expression of OPN in NSCLC was ascertained by Western blot and immunohistochemistry, and the correlation between the expression level of OPN and survival of patients was analyzed. Then the shRNA technology was applied to reduce the expression of OPN in NSCLC cells, and CCK-8 assay was carried out to investigate the effect of low expression of OPN on the proliferation of NSCLC cells. In addition, the effects of low expression of OPN on osteoclast differentiation, osteoblast generation and mineralization were studied using osteoclast precursor RAW264.7 and human osteoblast SaOS-2 cells, and whether OPN could regulate miR-34c/ Notch pathway to affect bone metabolism was further explored. The findings showed that the high level of OPN in NSCLC was closely related to the poor prognosis of patients and the abnormal proliferation of NSCLC cell lines. The suppression of OPN was beneficial to inhibit the differentiation of osteoclasts and promote the mineralization of osteoblasts. Besides, this study confirmed that the deletion of OPN can regulate bone metabolism through the regulation of miR-34c/Notch1 pathway, which will contribute to inhibiting the occurrence of osteolytic bone metastasis in NSCLC.
{"title":"Deletion of osteopontin in non-small cell lung cancer cells affects bone metabolism by regulating miR-34c/Notch1 axis: a clue to bone metastasis.","authors":"Jing Guo, Chang-Yong Tong, Jian-Guang Shi, Xin-Jian Li, Xue-Qin Chen","doi":"10.4081/ejh.2023.3631","DOIUrl":"https://doi.org/10.4081/ejh.2023.3631","url":null,"abstract":"<p><p>Lung cancer is prone to bone metastasis, and osteopontin (OPN) has an important significance in maintaining bone homeostasis. The goal of this study was to explore the impact of OPN level on bone metabolism and the molecular mechanism of inhibiting bone metastasis in non-small cell lung cancer (NSCLC). The expression of OPN in NSCLC was ascertained by Western blot and immunohistochemistry, and the correlation between the expression level of OPN and survival of patients was analyzed. Then the shRNA technology was applied to reduce the expression of OPN in NSCLC cells, and CCK-8 assay was carried out to investigate the effect of low expression of OPN on the proliferation of NSCLC cells. In addition, the effects of low expression of OPN on osteoclast differentiation, osteoblast generation and mineralization were studied using osteoclast precursor RAW264.7 and human osteoblast SaOS-2 cells, and whether OPN could regulate miR-34c/ Notch pathway to affect bone metabolism was further explored. The findings showed that the high level of OPN in NSCLC was closely related to the poor prognosis of patients and the abnormal proliferation of NSCLC cell lines. The suppression of OPN was beneficial to inhibit the differentiation of osteoclasts and promote the mineralization of osteoblasts. Besides, this study confirmed that the deletion of OPN can regulate bone metabolism through the regulation of miR-34c/Notch1 pathway, which will contribute to inhibiting the occurrence of osteolytic bone metastasis in NSCLC.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 3","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/09/ejh-67-3-3631.PMC10476534.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guangbao He, Yibo He, Hongwei Ni, Kai Wang, Yijun Zhu, Yang Bao
It has been shown that dexmedetomidine (Dex) could attenuate postoperative cognitive dysfunction (POCD) via targeting circular RNAs (circRNAs). Circ-Shank3 has been found to be involved in the neuroprotective effects of Dex against POCD. However, the role of circ-Shank3 in POCD remains largely unknown. Reverse transcription quantitative PCR (RT-qPCR) was performed to detect circ-Shank3 and miR-140-3p levels in lipopolysaccharide (LPS)-treated microglia BV-2 cells in the absence or presence of Dex. The relationship among circ-Shank3, miR-140-3p and TLR4 was confirmed by dual-luciferase reporter assay. Additionally, Western blot and immunofluorescence (IF) assays were conducted to evaluate TLR4, p65 and Iba-1 or CD11b levels in cells. In this study, we found that Dex notably decreased circ-Shank3 and TLR4 levels and elevated miR-140-3p level in LPS-treated BV2 cells. Mechanistically, circ-Shank3 harbor miR-140-3p, functioning as a miRNA sponge, and then miR-140-3p targeted the 3'-UTR of TLR4. Additionally, Dex treatment significantly reduced TLR4 level and phosphorylation of p65, and decreased the expressions of microglia markers Iba-1 and CD11b in LPS-treated BV2 cells. As expected, silenced circ-Shank3 further reduced TLR4, p65 and Iba-1 and CD11b levels in LPS-treated BV2 cells in the presence of Dex, whereas these phenomena were reversed by miR-140-3p inhibitor. Collectively, our results found that Dex could attenuate the neuroinflammation and microglia activation in BV2 cells exposed to LPS via targeting circ-Shank3/miR-140-3p/TLR4 axis. Our results might shed a new light on the mechanism of Dex for the treatment of POCD.
{"title":"Dexmedetomidine attenuates neuroinflammation and microglia activation in LPS-stimulated BV2 microglia cells through targeting circ-Shank3/miR-140-3p/TLR4 axis.","authors":"Guangbao He, Yibo He, Hongwei Ni, Kai Wang, Yijun Zhu, Yang Bao","doi":"10.4081/ejh.2023.3766","DOIUrl":"https://doi.org/10.4081/ejh.2023.3766","url":null,"abstract":"<p><p>It has been shown that dexmedetomidine (Dex) could attenuate postoperative cognitive dysfunction (POCD) via targeting circular RNAs (circRNAs). Circ-Shank3 has been found to be involved in the neuroprotective effects of Dex against POCD. However, the role of circ-Shank3 in POCD remains largely unknown. Reverse transcription quantitative PCR (RT-qPCR) was performed to detect circ-Shank3 and miR-140-3p levels in lipopolysaccharide (LPS)-treated microglia BV-2 cells in the absence or presence of Dex. The relationship among circ-Shank3, miR-140-3p and TLR4 was confirmed by dual-luciferase reporter assay. Additionally, Western blot and immunofluorescence (IF) assays were conducted to evaluate TLR4, p65 and Iba-1 or CD11b levels in cells. In this study, we found that Dex notably decreased circ-Shank3 and TLR4 levels and elevated miR-140-3p level in LPS-treated BV2 cells. Mechanistically, circ-Shank3 harbor miR-140-3p, functioning as a miRNA sponge, and then miR-140-3p targeted the 3'-UTR of TLR4. Additionally, Dex treatment significantly reduced TLR4 level and phosphorylation of p65, and decreased the expressions of microglia markers Iba-1 and CD11b in LPS-treated BV2 cells. As expected, silenced circ-Shank3 further reduced TLR4, p65 and Iba-1 and CD11b levels in LPS-treated BV2 cells in the presence of Dex, whereas these phenomena were reversed by miR-140-3p inhibitor. Collectively, our results found that Dex could attenuate the neuroinflammation and microglia activation in BV2 cells exposed to LPS via targeting circ-Shank3/miR-140-3p/TLR4 axis. Our results might shed a new light on the mechanism of Dex for the treatment of POCD.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 3","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/f9/ejh-67-3-3766.PMC10476535.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the digestive system, there exists one common malignant tumor, known as gastric cancer. It is the third most prevalent type of tumor among different tumors worldwide. It has been reported that long noncoding RNAs (lncRNAs), participate in various biological processes of gastric cancer. However, there are still many lncRNAs with unknown functions, and we discovered a novel lncRNA designated as FBXO18-AS. Whether lncRNAFBXO18-AS participates in gastric cancer progression is still unknown. Bioinformatic analysis, immunohistochemistry, Western blotting, and qPCR were carried out to explore FBXO18-AS and TGF-β1 expression. In addition, EdU, MTS, migration and transwell assays were performed to investigate the invasion, proliferation and migration of gastric cancer in vitro. We first discovered that FBXO18-AS expression was upregulated in gastric cancer and linked to poorer outcomes among patients with gastric cancer. Then, we confirmed that FBXO18-AS promoted the proliferation, invasion, migration, and an EMT-like process in gastric cancer in vivo and in vitro. Mechanistically, FBXO18-AS was found to be involved in the progression of gastric cancer by modulating TGF-β1/Smad signaling. Therefore, it might offer a possible biomarker for gastric cancer diagnosis and an effective strategy for clinical treatment.
{"title":"LncRNA FBXO18-AS promotes gastric cancer progression by TGF-β1/Smad signaling.","authors":"Yiming Zhang, Wanqiong Zheng, Liang Zhang, Yechun Gu, Lihe Zhu, Yingpeng Huang","doi":"10.4081/ejh.2023.3667","DOIUrl":"https://doi.org/10.4081/ejh.2023.3667","url":null,"abstract":"<p><p>For the digestive system, there exists one common malignant tumor, known as gastric cancer. It is the third most prevalent type of tumor among different tumors worldwide. It has been reported that long noncoding RNAs (lncRNAs), participate in various biological processes of gastric cancer. However, there are still many lncRNAs with unknown functions, and we discovered a novel lncRNA designated as FBXO18-AS. Whether lncRNAFBXO18-AS participates in gastric cancer progression is still unknown. Bioinformatic analysis, immunohistochemistry, Western blotting, and qPCR were carried out to explore FBXO18-AS and TGF-β1 expression. In addition, EdU, MTS, migration and transwell assays were performed to investigate the invasion, proliferation and migration of gastric cancer in vitro. We first discovered that FBXO18-AS expression was upregulated in gastric cancer and linked to poorer outcomes among patients with gastric cancer. Then, we confirmed that FBXO18-AS promoted the proliferation, invasion, migration, and an EMT-like process in gastric cancer in vivo and in vitro. Mechanistically, FBXO18-AS was found to be involved in the progression of gastric cancer by modulating TGF-β1/Smad signaling. Therefore, it might offer a possible biomarker for gastric cancer diagnosis and an effective strategy for clinical treatment.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/81/ejh-67-2-3667.PMC10334307.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9829062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corneal epithelium can resist the invasion of external pathogenic factors to protect the eye from external pathogens. Sodium hyaluronate (SH) has been confirmed to promote corneal epithelial wound healing. However, the mechanism by which SH protects against corneal epithelial injury (CEI) is not fully understood. CEI model mice were made by scratching the mouse corneal epithelium, and in vitro model of CEI were constructed via curettage of corneal epithelium or ultraviolet radiation. The pathologic structure and level of connective tissue growth factor (CTGF) expression were confirmed by Hematoxylin and Eosin staining and immunohistochemistry. CTGF expression was detected by an IHC assay. The levels of CTGF, TGF-β, COLA1A, FN, LC3B, Beclin1, and P62 expression were monitored by RT-qPCR, ELISA, Western blotting or immunofluorescence staining. Cell proliferation was detected by the CCK-8 assay and EdU staining. Our results showed that SH could markedly upregulate CTGF expression and downregulate miR-18a expression in the CEI model mice. Additionally, SH could attenuate corneal epithelial tissue injury, and enhance the cell proliferation and autophagy pathways in the CEI model mice. Meanwhile, overexpression of miR-18a reversed the effect of SHs on cell proliferation and autophagy in CEI model mice. Moreover, our data showed that SH could induce the proliferation, autophagy, and migration of CEI model cells by downregulating miR-18a. Down-regulation of miR-18a plays a significant role in the ability of SH to promote corneal epithelial wound healing. Our results provide a theoretical basis for targeting miR-18a to promote corneal wound healing.
角膜上皮可以抵御外界致病因子的入侵,保护眼睛免受外界病原体的侵害。透明质酸钠(SH)已被证实能促进角膜上皮伤口愈合。然而,透明质酸钠防止角膜上皮损伤(CEI)的机制尚未完全明了。通过搔抓小鼠角膜上皮制作了CEI模型小鼠,并通过刮除角膜上皮或紫外线照射构建了CEI体外模型。病理结构和结缔组织生长因子(CTGF)的表达水平通过苏木精和伊红染色及免疫组化进行了确认。CTGF 的表达是通过 IHC 检测的。通过 RT-qPCR、ELISA、Western 印迹或免疫荧光染色监测 CTGF、TGF-β、COLA1A、FN、LC3B、Beclin1 和 P62 的表达水平。细胞增殖通过 CCK-8 检测法和 EdU 染色法进行检测。我们的研究结果表明,SH 能显著上调 CTGF 的表达,并下调 CEI 模型小鼠体内 miR-18a 的表达。此外,SH 还能减轻 CEI 模型小鼠的角膜上皮组织损伤,增强细胞增殖和自噬通路。同时,过量表达 miR-18a 会逆转 SH 对 CEI 模型小鼠细胞增殖和自噬的影响。此外,我们的数据还表明,SH 可通过下调 miR-18a 诱导 CEI 模型细胞的增殖、自噬和迁移。miR-18a的下调在SH促进角膜上皮伤口愈合的能力中起着重要作用。我们的研究结果为靶向 miR-18a 促进角膜伤口愈合提供了理论依据。
{"title":"Sodium hyaluronate promotes proliferation, autophagy, and migration of corneal epithelial cells by downregulating miR-18a in the course of corneal epithelial injury.","authors":"Yingzhuo Guo, Hua Wang","doi":"10.4081/ejh.2023.3663","DOIUrl":"10.4081/ejh.2023.3663","url":null,"abstract":"<p><p>Corneal epithelium can resist the invasion of external pathogenic factors to protect the eye from external pathogens. Sodium hyaluronate (SH) has been confirmed to promote corneal epithelial wound healing. However, the mechanism by which SH protects against corneal epithelial injury (CEI) is not fully understood. CEI model mice were made by scratching the mouse corneal epithelium, and in vitro model of CEI were constructed via curettage of corneal epithelium or ultraviolet radiation. The pathologic structure and level of connective tissue growth factor (CTGF) expression were confirmed by Hematoxylin and Eosin staining and immunohistochemistry. CTGF expression was detected by an IHC assay. The levels of CTGF, TGF-β, COLA1A, FN, LC3B, Beclin1, and P62 expression were monitored by RT-qPCR, ELISA, Western blotting or immunofluorescence staining. Cell proliferation was detected by the CCK-8 assay and EdU staining. Our results showed that SH could markedly upregulate CTGF expression and downregulate miR-18a expression in the CEI model mice. Additionally, SH could attenuate corneal epithelial tissue injury, and enhance the cell proliferation and autophagy pathways in the CEI model mice. Meanwhile, overexpression of miR-18a reversed the effect of SHs on cell proliferation and autophagy in CEI model mice. Moreover, our data showed that SH could induce the proliferation, autophagy, and migration of CEI model cells by downregulating miR-18a. Down-regulation of miR-18a plays a significant role in the ability of SH to promote corneal epithelial wound healing. Our results provide a theoretical basis for targeting miR-18a to promote corneal wound healing.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/0a/ejh-67-2-3663.PMC10334306.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9772350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoyue Liu, Cunzhi Yin, Mingjiang Qian, Xuan Xiao, Hang Wu, Fujian Fu
The mortality and morbidity rates of ovarian cancer (OC) are high, but the underlying mechanisms of OC have not been characterized. In this study, we determined the role of Rho GTPase Activating Protein 30 (ARHGAP30) in OC progression. We measured ARHGAP30 abundance in OC tissue samples and cells using immunohistochemistry (IHC) and RT-qPCR. EdU, transwell, and annexin V/PI apoptosis assays were used to evaluate proliferation, invasiveness, and apoptosis of OC cells, respectively. The results showed that ARHGAP30 was overexpressed in OC tissue samples and cells. Inhibition of ARHGAP30 suppressed growth and metastasis of OC cells, and enhanced apoptosis. Knockdown of ARHGAP30 in OC cells significantly inhibited the PI3K/AKT/mTOR pathway. Treatment with the PI3K/AKT/mTOR pathway inhibitor buparlisib simulated the effects of ARHGAP30 knockdown on growth, invasiveness, and apoptosis of OC cells. Following buparlisib treatment, the expression levels of p-PI3K, p-AKT, and p-mTOR were significantly decreased. Furthermore, buparlisib inhibited the effects of ARHGAP30 upregulation on OC cell growth and invasiveness. In conclusion, ARHGAP30 regulated the PI3K/AKT/mTOR pathway to promote progression of OC.
{"title":"LncRNA gadd7 promotes mitochondrial membrane potential decrease and apoptosis of alveolar type II epithelial cells by positively regulating MFN1 in an <i>in vitro</i> model of hyperoxia-induced acute lung injury.","authors":"Guoyue Liu, Cunzhi Yin, Mingjiang Qian, Xuan Xiao, Hang Wu, Fujian Fu","doi":"10.4081/ejh.2023.3535","DOIUrl":"10.4081/ejh.2023.3535","url":null,"abstract":"<p><p>The mortality and morbidity rates of ovarian cancer (OC) are high, but the underlying mechanisms of OC have not been characterized. In this study, we determined the role of Rho GTPase Activating Protein 30 (ARHGAP30) in OC progression. We measured ARHGAP30 abundance in OC tissue samples and cells using immunohistochemistry (IHC) and RT-qPCR. EdU, transwell, and annexin V/PI apoptosis assays were used to evaluate proliferation, invasiveness, and apoptosis of OC cells, respectively. The results showed that ARHGAP30 was overexpressed in OC tissue samples and cells. Inhibition of ARHGAP30 suppressed growth and metastasis of OC cells, and enhanced apoptosis. Knockdown of ARHGAP30 in OC cells significantly inhibited the PI3K/AKT/mTOR pathway. Treatment with the PI3K/AKT/mTOR pathway inhibitor buparlisib simulated the effects of ARHGAP30 knockdown on growth, invasiveness, and apoptosis of OC cells. Following buparlisib treatment, the expression levels of p-PI3K, p-AKT, and p-mTOR were significantly decreased. Furthermore, buparlisib inhibited the effects of ARHGAP30 upregulation on OC cell growth and invasiveness. In conclusion, ARHGAP30 regulated the PI3K/AKT/mTOR pathway to promote progression of OC.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/58/ejh-67-2-3535.PMC10277814.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The workshop, organized by the PhD Course in Nanosciences and Advanced Technologies, aims to create a forum on hot topics of current interest in Nanoscience and Nanotechnology such as Nanomedicine, Biotechnology, Energy-nanotech, Environmental nanoscience, Green nanotechnology, Nanoengineering.
{"title":"Proceedings of the workshop NANO23@uniVR - 8-9 June 2023, University of Verona, Italy.","authors":"The Scientific Committee","doi":"10.4081/ejh.2023.3778","DOIUrl":"10.4081/ejh.2023.3778","url":null,"abstract":"<p><p>The workshop, organized by the PhD Course in Nanosciences and Advanced Technologies, aims to create a forum on hot topics of current interest in Nanoscience and Nanotechnology such as Nanomedicine, Biotechnology, Energy-nanotech, Environmental nanoscience, Green nanotechnology, Nanoengineering.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41537572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metformin can enhance cancer cell chemosensitivity to anticancer drugs. IGF-1R is involved in cancer chemoresistance. The current study aimed to elucidate the role of metformin in osteosarcoma (OS) cell chemosensitivity modulation and identify its underlying mechanism in IGF-1R/miR-610/FEN1 signalling. IGF-1R, miR-610, and FEN1 were aberrantly expressed in OS and participated in apoptosis modulation; this effect was abated by metformin treatment. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-610. Moreover, metformin treatment decreased IGF-1R and FEN1 but elevated miR-610 expression. Metformin sensitised OS cells to cytotoxic agents, while FEN1 overexpression partly compromised metformin's sensitising effects. Furthermore, metformin was observed to enhance adriamycin's effects in a murine xenograft model. Metformin enhanced OS cell sensitivity to cytotoxic agents via the IGF-1R/miR-610/FEN1 signalling axis, highlighting its potential as an adjuvant during chemotherapy.
{"title":"Metformin sensitises osteosarcoma to chemotherapy <em>via</em> the IGF-1R/miR-610/FEN1 pathway.","authors":"Suwei Dong, Yanbin Xiao, Ziqiang Zhu, Xiang Ma, Zhuohui Peng, Jianping Kang, Jianqiang Wang, Yunqing Wang, Zhen Li","doi":"10.4081/ejh.2023.3612","DOIUrl":"https://doi.org/10.4081/ejh.2023.3612","url":null,"abstract":"<p><p>Metformin can enhance cancer cell chemosensitivity to anticancer drugs. IGF-1R is involved in cancer chemoresistance. The current study aimed to elucidate the role of metformin in osteosarcoma (OS) cell chemosensitivity modulation and identify its underlying mechanism in IGF-1R/miR-610/FEN1 signalling. IGF-1R, miR-610, and FEN1 were aberrantly expressed in OS and participated in apoptosis modulation; this effect was abated by metformin treatment. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-610. Moreover, metformin treatment decreased IGF-1R and FEN1 but elevated miR-610 expression. Metformin sensitised OS cells to cytotoxic agents, while FEN1 overexpression partly compromised metformin's sensitising effects. Furthermore, metformin was observed to enhance adriamycin's effects in a murine xenograft model. Metformin enhanced OS cell sensitivity to cytotoxic agents via the IGF-1R/miR-610/FEN1 signalling axis, highlighting its potential as an adjuvant during chemotherapy.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/47/7c/ejh-67-2-3612.PMC10230554.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9563915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high prevalence of prediabetes and diabetes globally has led to the widespread occurrence of severe complications, such as diabetic neuropathy, which is a result of chronic hyperglycemia. Studies have demonstrated that maternal diabetes can lead to neural tube defects by suppressing neurogenesis during neuroepithelium development. While aberrant autophagy has been associated with abnormal neuronal differentiation, the mechanism by which high glucose suppresses neural differentiation in stem cells remains unclear. Therefore, we developed a neuronal cell differentiation model of retinoic acid induced P19 cells to investigate the impact of high glucose on neuronal differentiation in vitro. Our findings indicate that high glucose (HG) hinders neuronal differentiation and triggers excessive. Furthermore, HG treatment significantly reduces the expression of markers for neurons (Tuj1) and glia (GFAP), while enhancing autophagic activity mediated by peroxisome proliferator-activated receptor gamma (PPARγ). By manipulating PPARγ activity through pharmacological approaches and genetically knocking it down using shRNA, we discovered that altering PPARγ activity affects the differentiation of neural stem cells exposed to HG. Our study reveals that PPARγ acts as a downstream mediator in high glucose-suppressed neural stem cell differentiation and that refining autophagic activity via PPARγ at an appropriate level could improve neuronal differentiation efficiency. Our data provide novel insights and potential therapeutic targets for the clinical management of gestational diabetes mellitus.
{"title":"High glucose inhibits neural differentiation by excessive autophagy <em>via</em> peroxisome proliferator-activated receptor gamma.","authors":"Yin Pan, Di Qiu, Shu Chen, Xiaoxue Han, Ruiman Li","doi":"10.4081/ejh.2023.3691","DOIUrl":"https://doi.org/10.4081/ejh.2023.3691","url":null,"abstract":"<p><p>The high prevalence of prediabetes and diabetes globally has led to the widespread occurrence of severe complications, such as diabetic neuropathy, which is a result of chronic hyperglycemia. Studies have demonstrated that maternal diabetes can lead to neural tube defects by suppressing neurogenesis during neuroepithelium development. While aberrant autophagy has been associated with abnormal neuronal differentiation, the mechanism by which high glucose suppresses neural differentiation in stem cells remains unclear. Therefore, we developed a neuronal cell differentiation model of retinoic acid induced P19 cells to investigate the impact of high glucose on neuronal differentiation in vitro. Our findings indicate that high glucose (HG) hinders neuronal differentiation and triggers excessive. Furthermore, HG treatment significantly reduces the expression of markers for neurons (Tuj1) and glia (GFAP), while enhancing autophagic activity mediated by peroxisome proliferator-activated receptor gamma (PPARγ). By manipulating PPARγ activity through pharmacological approaches and genetically knocking it down using shRNA, we discovered that altering PPARγ activity affects the differentiation of neural stem cells exposed to HG. Our study reveals that PPARγ acts as a downstream mediator in high glucose-suppressed neural stem cell differentiation and that refining autophagic activity via PPARγ at an appropriate level could improve neuronal differentiation efficiency. Our data provide novel insights and potential therapeutic targets for the clinical management of gestational diabetes mellitus.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/19/ejh-67-2-3691.PMC10230556.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9931775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyan Chu, Jun Lou, Yun Yi, Linlin Zhong, Ouping Huang
The mortality and morbidity rates of ovarian cancer (OC) are high, but the underlying mechanisms of OC have not been characterized. In this study, we determined the role of Rho GTPase Activating Protein 30 (ARHGAP30) in OC progression. We measured ARHGAP30 abundance in OC tissue samples and cells using immunohistochemistry (IHC) and RT-qPCR. EdU, transwell, and annexin V/PI apoptosis assays were used to evaluate proliferation, invasiveness, and apoptosis of OC cells, respectively. The results showed that ARHGAP30 was overexpressed in OC tissue samples and cells. Inhibition of ARHGAP30 suppressed growth and metastasis of OC cells, and enhanced apoptosis. Knockdown of ARHGAP30 in OC cells significantly inhibited the PI3K/AKT/mTOR pathway. Treatment with the PI3K/AKT/mTOR pathway inhibitor buparlisib simulated the effects of ARHGAP30 knockdown on growth, invasiveness, and apoptosis of OC cells. Following buparlisib treatment, the expression levels of p-PI3K, p-AKT, and p-mTOR were significantly decreased. Furthermore, buparlisib inhibited the effects of ARHGAP30 upregulation on OC cell growth and invasiveness. In conclusion, ARHGAP30 regulated the PI3K/AKT/mTOR pathway to promote progression of OC.
{"title":"Knockdown of ARHGAP30 inhibits ovarian cancer cell proliferation, migration, and invasiveness by suppressing the PI3K/AKT/mTOR signaling pathway.","authors":"Xiaoyan Chu, Jun Lou, Yun Yi, Linlin Zhong, Ouping Huang","doi":"10.4081/ejh.2023.3653","DOIUrl":"https://doi.org/10.4081/ejh.2023.3653","url":null,"abstract":"<p><p>The mortality and morbidity rates of ovarian cancer (OC) are high, but the underlying mechanisms of OC have not been characterized. In this study, we determined the role of Rho GTPase Activating Protein 30 (ARHGAP30) in OC progression. We measured ARHGAP30 abundance in OC tissue samples and cells using immunohistochemistry (IHC) and RT-qPCR. EdU, transwell, and annexin V/PI apoptosis assays were used to evaluate proliferation, invasiveness, and apoptosis of OC cells, respectively. The results showed that ARHGAP30 was overexpressed in OC tissue samples and cells. Inhibition of ARHGAP30 suppressed growth and metastasis of OC cells, and enhanced apoptosis. Knockdown of ARHGAP30 in OC cells significantly inhibited the PI3K/AKT/mTOR pathway. Treatment with the PI3K/AKT/mTOR pathway inhibitor buparlisib simulated the effects of ARHGAP30 knockdown on growth, invasiveness, and apoptosis of OC cells. Following buparlisib treatment, the expression levels of p-PI3K, p-AKT, and p-mTOR were significantly decreased. Furthermore, buparlisib inhibited the effects of ARHGAP30 upregulation on OC cell growth and invasiveness. In conclusion, ARHGAP30 regulated the PI3K/AKT/mTOR pathway to promote progression of OC.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3b/42/ejh-67-2-3653.PMC10230553.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}