Olufeyisayo B. Ilesanmi, Xue Liang, F. Oboh-Ikuenobe, J. Rogers, M. Abdelsalam, Jordan A. Feight, E. C. Witt
Unmanned aerial systems (UAS) provide a framework for recording perishable surficial data or information. Open fractures exhibiting regular en-echelon patterns were captured by a 12-megapixel, FL-9 mm camera attached to a Phantom IV UAS over the epicenter of the magnitude (Mw) 5.8 earthquake of September 3, 2016, 15 months later. The Digital Surface Models (DSMs) and orthoimagery offered a spatial resolution (∼1 cm) sufficient to identify small-scale plastic deformations that appear to be controlled by en-echelon joint sets developed in the underlying formation. The fissure boundaries and intersections are remarkably linear and sharp. They appeared to have been recently formed, presumably by seismic swarms believed to have been associated with wastewater injection. The DSMs revealed a series of conjugate patterns suggestive of regional systematic joints with apparent subsidence of infilling up to 50 cm. The earthquakes emanated from the Precambrian metamorphic basement, with epicentral clusters at ∼5- and 8-km depths. Low energy release from depths >1.5 km appears to be locally attenuated by an unconsolidated “soil cap,” which likely formed an impedance contrast. The maximum deformation direction from the cumulative energy of earthquakes correlates with a wrench fault tectonics model that could conceivably produce the observed en-echelon joint sets observed in the orthoimagery and DSMs. These features were observed within 275 m of the reported Mw 5.8 epicenter. The remarkably linear repeating pattern of deformation appears to express fissures that preserve the wrench fault fractures generated by the Mw 5.8 earthquake emanating from discontinuity suites within marine sandstone, shale, and limestone of Pennsylvanian to Permian age.
{"title":"UAS-Derived Surficial Deformation around the Epicenter of the 2016 Mw 5.8 Pawnee, Oklahoma, USA, Earthquake","authors":"Olufeyisayo B. Ilesanmi, Xue Liang, F. Oboh-Ikuenobe, J. Rogers, M. Abdelsalam, Jordan A. Feight, E. C. Witt","doi":"10.2113/eeg-2359","DOIUrl":"https://doi.org/10.2113/eeg-2359","url":null,"abstract":"\u0000 Unmanned aerial systems (UAS) provide a framework for recording perishable surficial data or information. Open fractures exhibiting regular en-echelon patterns were captured by a 12-megapixel, FL-9 mm camera attached to a Phantom IV UAS over the epicenter of the magnitude (Mw) 5.8 earthquake of September 3, 2016, 15 months later. The Digital Surface Models (DSMs) and orthoimagery offered a spatial resolution (∼1 cm) sufficient to identify small-scale plastic deformations that appear to be controlled by en-echelon joint sets developed in the underlying formation. The fissure boundaries and intersections are remarkably linear and sharp. They appeared to have been recently formed, presumably by seismic swarms believed to have been associated with wastewater injection. The DSMs revealed a series of conjugate patterns suggestive of regional systematic joints with apparent subsidence of infilling up to 50 cm. The earthquakes emanated from the Precambrian metamorphic basement, with epicentral clusters at ∼5- and 8-km depths. Low energy release from depths >1.5 km appears to be locally attenuated by an unconsolidated “soil cap,” which likely formed an impedance contrast. The maximum deformation direction from the cumulative energy of earthquakes correlates with a wrench fault tectonics model that could conceivably produce the observed en-echelon joint sets observed in the orthoimagery and DSMs. These features were observed within 275 m of the reported Mw 5.8 epicenter. The remarkably linear repeating pattern of deformation appears to express fissures that preserve the wrench fault fractures generated by the Mw 5.8 earthquake emanating from discontinuity suites within marine sandstone, shale, and limestone of Pennsylvanian to Permian age.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"85 1","pages":"449-462"},"PeriodicalIF":0.9,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82872356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wildfires burn vegetation over large areas of land, removing ground cover and frequently increasing potential for erosion-related hazards, such as debris flows, soil loss, and increased sedimentation downstream. Reseeding and mulching are two techniques used to prevent erosion and foster re-establishment of native plant species. However, design guidelines and specifications for reseeding and mulching programs are scattered in the literature, impeding efforts to follow best practices when preparing mitigation plans. This article summarizes guidelines and specifications for both reseeding and mulching and applies them in a sample GIS-based reseeding and mulching design for a basin burned in 2018 by the 416 Fire, Colorado. In addition to relying only on remote data, the method presented here aids operators and management personnel in making quick assessments of mitigation needs and areas suitable for mitigation, allowing for prompt responses to time-sensitive erosion hazards.
{"title":"2020 Student Professional Paper - Graduate Level Integrating Design Parameters for Reseeding and Mulching after Wildfire: An Example from the 416 Fire, Colorado","authors":"A. Graber","doi":"10.2113/eeg-d-20-00089","DOIUrl":"https://doi.org/10.2113/eeg-d-20-00089","url":null,"abstract":"\u0000 Wildfires burn vegetation over large areas of land, removing ground cover and frequently increasing potential for erosion-related hazards, such as debris flows, soil loss, and increased sedimentation downstream. Reseeding and mulching are two techniques used to prevent erosion and foster re-establishment of native plant species. However, design guidelines and specifications for reseeding and mulching programs are scattered in the literature, impeding efforts to follow best practices when preparing mitigation plans. This article summarizes guidelines and specifications for both reseeding and mulching and applies them in a sample GIS-based reseeding and mulching design for a basin burned in 2018 by the 416 Fire, Colorado. In addition to relying only on remote data, the method presented here aids operators and management personnel in making quick assessments of mitigation needs and areas suitable for mitigation, allowing for prompt responses to time-sensitive erosion hazards.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"38 1","pages":"383-392"},"PeriodicalIF":0.9,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73662782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The technology of permeable reactive barriers (PRB) is one of the most frequently developed methods for protecting soil and water from pollution. These barriers are zones filled with reactive material in which contaminants are immobilized and/or their concentration is reduced to the limit values during the flow of contaminated groundwater. This article presents a study on the efficiency of the removal of contaminants from the post-processing water from the underground coal gasification (UCG) process. The tests were carried out in a laboratory using a flow-through reactor design. The post-processing water came from a UCG experiment carried out in the Barbara mine, Mikołów, Poland. Activated coal, zeolite, and nano-iron were used as the reactive materials in the experiment. The obtained results were compared to tests carried out with reference water (artificial) with strictly defined characteristics. Research has shown that activated carbon is the most effective material used in the reaction zone for removing organic contaminants from groundwater generated during the coal conversion process. A new feature is the use of PRB in a georeactor zone during the UCG process to limit the potential risk of contamination spreading in the case of uncontrolled and unpredictable operation, in emergency situations related to gas leaks into the environment, during underground fires, and for water polluted by high-toxicity substances.
{"title":"The Effectiveness of Reactive Materials for Contaminant Removal in the Process of Coal Conversion","authors":"J. Grabowski, A. Tokarz","doi":"10.2113/eeg-2328","DOIUrl":"https://doi.org/10.2113/eeg-2328","url":null,"abstract":"\u0000 The technology of permeable reactive barriers (PRB) is one of the most frequently developed methods for protecting soil and water from pollution. These barriers are zones filled with reactive material in which contaminants are immobilized and/or their concentration is reduced to the limit values during the flow of contaminated groundwater. This article presents a study on the efficiency of the removal of contaminants from the post-processing water from the underground coal gasification (UCG) process. The tests were carried out in a laboratory using a flow-through reactor design. The post-processing water came from a UCG experiment carried out in the Barbara mine, Mikołów, Poland. Activated coal, zeolite, and nano-iron were used as the reactive materials in the experiment. The obtained results were compared to tests carried out with reference water (artificial) with strictly defined characteristics. Research has shown that activated carbon is the most effective material used in the reaction zone for removing organic contaminants from groundwater generated during the coal conversion process. A new feature is the use of PRB in a georeactor zone during the UCG process to limit the potential risk of contamination spreading in the case of uncontrolled and unpredictable operation, in emergency situations related to gas leaks into the environment, during underground fires, and for water polluted by high-toxicity substances.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"6 1","pages":"493-505"},"PeriodicalIF":0.9,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83562024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reference springs can result in improved conceptual models of groundwater flow and an expanded understanding of the temporal variations in flow, temperature, and chemistry that may be expected for related springs. The reference spring concept is patterned off of the common practice of establishing reference sites to establish benchmark ecological conditions. We use the term “reference spring” to indicate a spring that is minimally disturbed and representative of a geologically related group of springs. Seven reference springs were selected from six previously defined groups that represent over 400 springs in Wisconsin, United States. Geologic cross-sections were constructed for each reference spring site, and springs were monitored for flow, spring-water temperature, and chemistry for up to 4 years, revealing new relationships within and between groups. Examples include: a range of temperature conditions that can be related to the depth of groundwater circulation for springs discharging from layered bedrock uplands, and differences in thermal patterns and specific conductance that can be related to the permeability and solubility of surficial glacial deposits for springs emanating from uneven glacial terrain. The results suggest that establishing reference springs may be a useful approach in other regions where geologically related groups of spring have been identified.
{"title":"Using Reference Springs to Describe Expected Flow, Temperature, and Chemistry Conditions for Geologically Related Groups of Springs","authors":"S. Swanson, Grace Graham, D. Hart","doi":"10.2113/eeg-2312r","DOIUrl":"https://doi.org/10.2113/eeg-2312r","url":null,"abstract":"\u0000 Reference springs can result in improved conceptual models of groundwater flow and an expanded understanding of the temporal variations in flow, temperature, and chemistry that may be expected for related springs. The reference spring concept is patterned off of the common practice of establishing reference sites to establish benchmark ecological conditions. We use the term “reference spring” to indicate a spring that is minimally disturbed and representative of a geologically related group of springs. Seven reference springs were selected from six previously defined groups that represent over 400 springs in Wisconsin, United States. Geologic cross-sections were constructed for each reference spring site, and springs were monitored for flow, spring-water temperature, and chemistry for up to 4 years, revealing new relationships within and between groups. Examples include: a range of temperature conditions that can be related to the depth of groundwater circulation for springs discharging from layered bedrock uplands, and differences in thermal patterns and specific conductance that can be related to the permeability and solubility of surficial glacial deposits for springs emanating from uneven glacial terrain. The results suggest that establishing reference springs may be a useful approach in other regions where geologically related groups of spring have been identified.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"28 1","pages":"331-344"},"PeriodicalIF":0.9,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88179616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foreword to the Environmental & Engineering Geoscience Journal Special Edition on Springs","authors":"A. Springer","doi":"10.2113/eeg-26-03-03","DOIUrl":"https://doi.org/10.2113/eeg-26-03-03","url":null,"abstract":"","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"9 1","pages":"271-272"},"PeriodicalIF":0.9,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83467283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The source area of groundwater for springs discharging from lithologically variably perched aquifers is essential to understand when establishing baseline aquifer characteristics. Stratigraphic data from hydrostratigraphic outcrops and geochemical data from springs were used to characterize the hydrogeology of a remote, data-poor aquifer. This study focuses on the hydrogeological variability within the shallow karst-siliciclastic Coconino (C) aquifer on the Kaibab Plateau, north of Grand Canyon National Park. Stratigraphic data were collected from 8 locations, and 22 C aquifer springs were sampled for 18 months. Stable isotope analyses indicate that groundwater is biased to winter recharge in the form of snow and shows similar isotopic signature for groundwater storage areas for all C aquifer springs. Stratigraphic analyses show that the primary water-bearing unit in the C aquifer thins dramatically from south to north and has evaporite lithofacies directly above the unit. Principal component analysis (PCA) indicates that the hydrogeochemistry is influenced by SO42−, Cl−, Mg2+, Ca+, specific conductivity, alkalinity, and δD variability. The stratigraphic variability influences geochemistry at multiple locations and has geochemical variabilities that correlate with changing lithology. Based on the PCA results, groundwater sub-basins were delineated based on geochemical variability. This study provides new analytical tools for land managers and karst hydrogeologists to evaluate lithologically complex aquifers by evaluating the stratigraphy and with high-resolution data. Cost-effective stratigraphic analyses and high-resolution spring sampling can and should be used to evaluate lithologically complex aquifers in remote, data-poor regions.
{"title":"Geochemical Variability in Karst-Siliciclastic Aquifer Spring Discharge, Kaibab Plateau, Grand Canyon","authors":"Alexander J. Wood, A. Springer, B. Tobin","doi":"10.2113/eeg-2345","DOIUrl":"https://doi.org/10.2113/eeg-2345","url":null,"abstract":"\u0000 The source area of groundwater for springs discharging from lithologically variably perched aquifers is essential to understand when establishing baseline aquifer characteristics. Stratigraphic data from hydrostratigraphic outcrops and geochemical data from springs were used to characterize the hydrogeology of a remote, data-poor aquifer. This study focuses on the hydrogeological variability within the shallow karst-siliciclastic Coconino (C) aquifer on the Kaibab Plateau, north of Grand Canyon National Park. Stratigraphic data were collected from 8 locations, and 22 C aquifer springs were sampled for 18 months. Stable isotope analyses indicate that groundwater is biased to winter recharge in the form of snow and shows similar isotopic signature for groundwater storage areas for all C aquifer springs. Stratigraphic analyses show that the primary water-bearing unit in the C aquifer thins dramatically from south to north and has evaporite lithofacies directly above the unit. Principal component analysis (PCA) indicates that the hydrogeochemistry is influenced by SO42−, Cl−, Mg2+, Ca+, specific conductivity, alkalinity, and δD variability. The stratigraphic variability influences geochemistry at multiple locations and has geochemical variabilities that correlate with changing lithology. Based on the PCA results, groundwater sub-basins were delineated based on geochemical variability. This study provides new analytical tools for land managers and karst hydrogeologists to evaluate lithologically complex aquifers by evaluating the stratigraphy and with high-resolution data. Cost-effective stratigraphic analyses and high-resolution spring sampling can and should be used to evaluate lithologically complex aquifers in remote, data-poor regions.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"60 1","pages":"367-381"},"PeriodicalIF":0.9,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87002270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Valley and Ridge Province (V&R) of the central Appalachians is rich in springs that support ecosystems, provide local water resources, and export water from the region. Although there has been extensive research on springs in the province, the focus has been on chemically variable karst springs. The purpose of this work is to identify common spring types found in the V&R based on an analysis of three regions. Three types of V&R springs are included in this comparison, and their relationship to more general classification systems is included. Headwater springs, located near ridge tops and along ridge flanks, are typically small, may be ephemeral, have localized flow paths, and are associated with siliciclastic units. Karst springs, generally located in the valleys, include both the more chemically variable limestone springs and the more stable dolomite springs. Thermal warm springs, with temperatures higher than the mean annual air temperature, are less common than the other spring types; they may be large and are typically associated with major thrust faults. The temperature, chemistry, and locations of the springs are controlled by the structural geology and topography as well as the formations and lithologies through which the recharge water travels. There is overlap in the water chemistry and storm responses of the spring groups, but some general trends can be identified, such as lower pH in the headwater springs. The V&R springs are critical resources, but their sustainability, chemistry, and hydrology need to be considered within the local geologic framework.
{"title":"Common Spring Types in the Valley and Ridge Province: There Is More than Karst","authors":"D. Vesper, E. Herman","doi":"10.2113/eeg-2321","DOIUrl":"https://doi.org/10.2113/eeg-2321","url":null,"abstract":"\u0000 The Valley and Ridge Province (V&R) of the central Appalachians is rich in springs that support ecosystems, provide local water resources, and export water from the region. Although there has been extensive research on springs in the province, the focus has been on chemically variable karst springs. The purpose of this work is to identify common spring types found in the V&R based on an analysis of three regions. Three types of V&R springs are included in this comparison, and their relationship to more general classification systems is included. Headwater springs, located near ridge tops and along ridge flanks, are typically small, may be ephemeral, have localized flow paths, and are associated with siliciclastic units. Karst springs, generally located in the valleys, include both the more chemically variable limestone springs and the more stable dolomite springs. Thermal warm springs, with temperatures higher than the mean annual air temperature, are less common than the other spring types; they may be large and are typically associated with major thrust faults. The temperature, chemistry, and locations of the springs are controlled by the structural geology and topography as well as the formations and lithologies through which the recharge water travels. There is overlap in the water chemistry and storm responses of the spring groups, but some general trends can be identified, such as lower pH in the headwater springs. The V&R springs are critical resources, but their sustainability, chemistry, and hydrology need to be considered within the local geologic framework.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"1 1","pages":"345-358"},"PeriodicalIF":0.9,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88076931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Frus, L. Crossey, C. Dahm, K. Karlstrom, L. Crowley
Located on the southeastern part of the Colorado Plateau, the Zuni Mountains are home to the endangered Zuni Bluehead Sucker (ZBS) (Catostomus discobolus yarrowi). A 4-year study was conducted on a low-flow (<80 cm3/s) hillslope spring and intermittent stream, that are home to one of the three remaining ZBS populations. Seasonal measurements of physical and hydrochemical parameters were used to estimate the contribution of groundwater to the stream and to identify geologic and hydrologic controls for the spring discharge. Seasonal concentrations and standard deviations (s) of Mg2+ were used to determine that the spring water (5.6 mg/L; s = 0.4) and surface water up-gradient from the spring input (10.7 mg/L; s = 11.2) is from different sources. Surface water down-gradient from the spring input maintain ZBS populations and is a mixture of spring water and up-gradient surface water. Mass solution mixing was used to determine spring water contributes up to 99 percent of the down-gradient water during drier seasons. Isotopes (δD, δ18O, 3H) indicate that the spring water has been recharged primarily from snowmelt within the last 70 years, while up-gradient surface water is seasonal runoff from rain and snowmelt. Continuous monitoring of dissolved oxygen (DO) mean concentrations (up-gradient = 1.6 mg/L and down-gradient = 5.7 mg/L) indicated that surface water up-gradient from the spring input are anoxic and unable to support ZBS. Surface water down-gradient from the spring input maintain appropriate DO concentrations due to perennially discharging spring waters re-aerating downstream habitats.
{"title":"Influence of Desert Springs on Habitat of Endangered Zuni Bluehead Sucker (Catostomus discobolus yarrowi)","authors":"R. Frus, L. Crossey, C. Dahm, K. Karlstrom, L. Crowley","doi":"10.2113/eeg-2330","DOIUrl":"https://doi.org/10.2113/eeg-2330","url":null,"abstract":"\u0000 Located on the southeastern part of the Colorado Plateau, the Zuni Mountains are home to the endangered Zuni Bluehead Sucker (ZBS) (Catostomus discobolus yarrowi). A 4-year study was conducted on a low-flow (<80 cm3/s) hillslope spring and intermittent stream, that are home to one of the three remaining ZBS populations. Seasonal measurements of physical and hydrochemical parameters were used to estimate the contribution of groundwater to the stream and to identify geologic and hydrologic controls for the spring discharge. Seasonal concentrations and standard deviations (s) of Mg2+ were used to determine that the spring water (5.6 mg/L; s = 0.4) and surface water up-gradient from the spring input (10.7 mg/L; s = 11.2) is from different sources. Surface water down-gradient from the spring input maintain ZBS populations and is a mixture of spring water and up-gradient surface water. Mass solution mixing was used to determine spring water contributes up to 99 percent of the down-gradient water during drier seasons. Isotopes (δD, δ18O, 3H) indicate that the spring water has been recharged primarily from snowmelt within the last 70 years, while up-gradient surface water is seasonal runoff from rain and snowmelt. Continuous monitoring of dissolved oxygen (DO) mean concentrations (up-gradient = 1.6 mg/L and down-gradient = 5.7 mg/L) indicated that surface water up-gradient from the spring input are anoxic and unable to support ZBS. Surface water down-gradient from the spring input maintain appropriate DO concentrations due to perennially discharging spring waters re-aerating downstream habitats.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"174 1","pages":"313-329"},"PeriodicalIF":0.9,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76850869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article analytical information and facts about ancient monuments that play a main role in the 2500 years` history of Khiva, monuments of Museum reserve of Ichan Kala which locate on 26 hectares, The well Kheyvaq that is considered cultural and precious heritage of Khiva, The Gates of Ichan Kala and the walls in the length of 2600 meters that surround totally 54 ancient monuments, are presented.
{"title":"Ancient city connected with the name of the well “Kheyvaq”","authors":"Gavkhar Durdiyeva, A. Zargarov, E. Salayev","doi":"10.37023/ee.7.1.5","DOIUrl":"https://doi.org/10.37023/ee.7.1.5","url":null,"abstract":"In this article analytical information and facts about ancient monuments that play a main role in the 2500 years` history of Khiva, monuments of Museum reserve of Ichan Kala which locate on 26 hectares, The well Kheyvaq that is considered cultural and precious heritage of Khiva, The Gates of Ichan Kala and the walls in the length of 2600 meters that surround totally 54 ancient monuments, are presented.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"8 1","pages":"39-42"},"PeriodicalIF":0.9,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72712877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article is dedicated to the analysis and recommendations for the solution of a number of landscape problems related to architecture in the Khiva city. In particular, the advice is given on the use of methods such as "Chor-minor", "Chor-bag", which had existed in the Middle Ages.
{"title":"Integration of natural elements into the traditional house (of Khorezm region, Uzbekistan) for the climate improvement","authors":"B. Azizova, A. Osello","doi":"10.37023/ee.7.1.6","DOIUrl":"https://doi.org/10.37023/ee.7.1.6","url":null,"abstract":"This article is dedicated to the analysis and recommendations for the solution of a number of landscape problems related to architecture in the Khiva city. In particular, the advice is given on the use of methods such as \"Chor-minor\", \"Chor-bag\", which had existed in the Middle Ages.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"99 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74059896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}