We propose a near explosive random coefficient autoregressive model (NERC) to obtain predictive probabilities of the apparition and devolution of bubbles. The distribution of the autoregressive coefficient of this model is allowed to be centred at an O(T−α) distance of unity, with α ∈ (0, 1). When the expectation of the autoregressive coefficient lies on the explosive side of unity, the NERC helps to model the temporary explosiveness of time series and obtain related predictive probabilities. We study the asymptotic properties of the NERC and provide a procedure for inference on the parameters. In empirical illustrations, we estimate predictive probabilities of bubbles or flash crashes in financial asset prices.
{"title":"Probabilistic forecasting of bubbles and flash crashes","authors":"A. Banerjee, Guillaume Chevillon, M. Kratz","doi":"10.1093/ectj/utaa004","DOIUrl":"https://doi.org/10.1093/ectj/utaa004","url":null,"abstract":"We propose a near explosive random coefficient autoregressive model (NERC) to obtain predictive probabilities of the apparition and devolution of bubbles. The distribution of the autoregressive coefficient of this model is allowed to be centred at an O(T−α) distance of unity, with α ∈ (0, 1). When the expectation of the autoregressive coefficient lies on the explosive side of unity, the NERC helps to model the temporary explosiveness of time series and obtain related predictive probabilities. We study the asymptotic properties of the NERC and provide a procedure for inference on the parameters. In empirical illustrations, we estimate predictive probabilities of bubbles or flash crashes in financial asset prices.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utaa004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49186682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper develops a novel wild bootstrap procedure to construct robust bias-corrected valid confidence intervals for fuzzy regression discontinuity designs, providing an intuitive complement to existing robust bias-corrected methods. The confidence intervals generated by this procedure are valid under conditions similar to the procedures proposed by Calonico et al. (2014) and related literature. Simulations provide evidence that this new method is at least as accurate as the plug-in analytical corrections when applied to a variety of data-generating processes featuring endogeneity and clustering. Finally, we demonstrate its empirical relevance by revisiting Angrist and Lavy (1999) analysis of class size on student outcomes.
{"title":"Wild Bootstrap for Fuzzy Regression Discontinuity Designs: Obtaining Robust Bias-Corrected Confidence Intervals","authors":"Yang He, Otávio Bartalotti","doi":"10.1093/ECTJ/UTAA002","DOIUrl":"https://doi.org/10.1093/ECTJ/UTAA002","url":null,"abstract":"\u0000 This paper develops a novel wild bootstrap procedure to construct robust bias-corrected valid confidence intervals for fuzzy regression discontinuity designs, providing an intuitive complement to existing robust bias-corrected methods. The confidence intervals generated by this procedure are valid under conditions similar to the procedures proposed by Calonico et al. (2014) and related literature. Simulations provide evidence that this new method is at least as accurate as the plug-in analytical corrections when applied to a variety of data-generating processes featuring endogeneity and clustering. Finally, we demonstrate its empirical relevance by revisiting Angrist and Lavy (1999) analysis of class size on student outcomes.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ECTJ/UTAA002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46534519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: Semi-parametric analysis of efficiency and productivity using Gaussian processes","authors":"G. Emvalomatis","doi":"10.1093/ectj/utz021","DOIUrl":"https://doi.org/10.1093/ectj/utz021","url":null,"abstract":"","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"23 1","pages":"176-176"},"PeriodicalIF":1.9,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utz021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46251830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Index to The Econometrics Journal Volume 21","authors":"","doi":"10.1111/ectj.12119","DOIUrl":"https://doi.org/10.1111/ectj.12119","url":null,"abstract":"","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"21 3","pages":"354"},"PeriodicalIF":1.9,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71920657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}