首页 > 最新文献

Distributed and Parallel Databases最新文献

英文 中文
GTraclus: a novel algorithm for local trajectory clustering on GPUs GTraclus:一种基于gpu的局部轨迹聚类算法
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-05-13 DOI: 10.1007/s10619-023-07429-x
Hamza Mustafa, Clark Barrus, Eleazar Leal, L. Gruenwald
{"title":"GTraclus: a novel algorithm for local trajectory clustering on GPUs","authors":"Hamza Mustafa, Clark Barrus, Eleazar Leal, L. Gruenwald","doi":"10.1007/s10619-023-07429-x","DOIUrl":"https://doi.org/10.1007/s10619-023-07429-x","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"1 1","pages":"1-22"},"PeriodicalIF":1.2,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41457663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out-of-the-box library support for DBMS operations on GPUs 对GPU上DBMS操作的开箱即用库支持
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-05-10 DOI: 10.1007/s10619-023-07431-3
H. Subramanian, B. Gurumurthy, Gabriel Campero Durand, David Broneske, Gunter Saake
{"title":"Out-of-the-box library support for DBMS operations on GPUs","authors":"H. Subramanian, B. Gurumurthy, Gabriel Campero Durand, David Broneske, Gunter Saake","doi":"10.1007/s10619-023-07431-3","DOIUrl":"https://doi.org/10.1007/s10619-023-07431-3","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"1 1","pages":"1-21"},"PeriodicalIF":1.2,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43321757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights on atomic synchronization for sort-based group-by on GPUs gpu上基于排序的分组原子同步的新见解
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-04-24 DOI: 10.1007/s10619-023-07424-2
B. Gurumurthy, David Broneske, Martin Schäler, Thilo Pionteck, Gunter Saake
{"title":"Novel insights on atomic synchronization for sort-based group-by on GPUs","authors":"B. Gurumurthy, David Broneske, Martin Schäler, Thilo Pionteck, Gunter Saake","doi":"10.1007/s10619-023-07424-2","DOIUrl":"https://doi.org/10.1007/s10619-023-07424-2","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"1 1","pages":"1-23"},"PeriodicalIF":1.2,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45602617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STIF: Intuitionistic fuzzy Gaussian membership function with statistical transformation weight of evidence and information value for private information preservation. STIF:用于私人信息保存的具有证据和信息值的统计变换权重的直觉模糊高斯隶属函数。
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-04-21 DOI: 10.1007/s10619-023-07423-3
G Sathish Kumar, K Premalatha

Data sharing to the multiple organizations are essential for analysis in many situations. The shared data contains the individual's private and sensitive information and results in privacy breach. To overcome the privacy challenges, privacy preserving data mining (PPDM) has progressed as a solution. This work addresses the problem of PPDM by proposing statistical transformation with intuitionistic fuzzy (STIF) algorithm for data perturbation. The STIF algorithm contains statistical methods weight of evidence, information value and intuitionistic fuzzy Gaussian membership function. The STIF algorithm is applied on three benchmark datasets adult income, bank marketing and lung cancer. The classifier models decision tree, random forest, extreme gradient boost and support vector machines are used for accuracy and performance analysis. The results show that the STIF algorithm achieves 99% of accuracy for adult income dataset and 100% accuracy for both bank marketing and lung cancer datasets. Further, the results highlights that the STIF algorithm outperforms in data perturbation capacity and privacy preserving capacity than the state-of-art algorithms without any information loss on both numerical and categorical data.

在许多情况下,向多个组织共享数据对于分析至关重要。共享数据包含个人的私人和敏感信息,会导致隐私泄露。为了克服隐私挑战,隐私保护数据挖掘(PPDM)作为一种解决方案取得了进展。本文针对PPDM问题,提出了基于直觉模糊(STIF)算法的数据扰动统计变换。STIF算法包含统计方法证据权重、信息值和直觉模糊高斯隶属函数。STIF算法应用于成人收入、银行营销和癌症三个基准数据集。分类器模型决策树、随机森林、极端梯度提升和支持向量机用于精度和性能分析。结果表明,STIF算法对成人收入数据集的准确率为99%,对银行营销和癌症数据集的正确率均为100%。此外,结果强调,STIF算法在数据扰动能力和隐私保护能力方面优于现有技术的算法,在数值和分类数据上都没有任何信息损失。
{"title":"STIF: Intuitionistic fuzzy Gaussian membership function with statistical transformation weight of evidence and information value for private information preservation.","authors":"G Sathish Kumar,&nbsp;K Premalatha","doi":"10.1007/s10619-023-07423-3","DOIUrl":"10.1007/s10619-023-07423-3","url":null,"abstract":"<p><p>Data sharing to the multiple organizations are essential for analysis in many situations. The shared data contains the individual's private and sensitive information and results in privacy breach. To overcome the privacy challenges, privacy preserving data mining (PPDM) has progressed as a solution. This work addresses the problem of PPDM by proposing statistical transformation with intuitionistic fuzzy (STIF) algorithm for data perturbation. The STIF algorithm contains statistical methods weight of evidence, information value and intuitionistic fuzzy Gaussian membership function. The STIF algorithm is applied on three benchmark datasets adult income, bank marketing and lung cancer. The classifier models decision tree, random forest, extreme gradient boost and support vector machines are used for accuracy and performance analysis. The results show that the STIF algorithm achieves 99% of accuracy for adult income dataset and 100% accuracy for both bank marketing and lung cancer datasets. Further, the results highlights that the STIF algorithm outperforms in data perturbation capacity and privacy preserving capacity than the state-of-art algorithms without any information loss on both numerical and categorical data.</p>","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":" ","pages":"1-34"},"PeriodicalIF":1.2,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10073193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
S3QLRDF: distributed SPARQL query processing using Apache Spark—a comparative performance study S3QLRDF:使用Apache spark的分布式SPARQL查询处理-性能比较研究
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-24 DOI: 10.1007/s10619-023-07422-4
Mahmudul Hassan, S. Bansal
{"title":"S3QLRDF: distributed SPARQL query processing using Apache Spark—a comparative performance study","authors":"Mahmudul Hassan, S. Bansal","doi":"10.1007/s10619-023-07422-4","DOIUrl":"https://doi.org/10.1007/s10619-023-07422-4","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"1 1","pages":"1-41"},"PeriodicalIF":1.2,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45787936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Remote sensing imaging analysis and ubiquitous cloud-based mobile edge computing based intelligent forecast of forest tourism demand 基于遥感影像分析和无处不在的云移动边缘计算的森林旅游需求智能预测
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-01 DOI: 10.1007/s10619-021-07343-0
Rui Zhang, Jingran Zhang, Wukui Wang
{"title":"Remote sensing imaging analysis and ubiquitous cloud-based mobile edge computing based intelligent forecast of forest tourism demand","authors":"Rui Zhang, Jingran Zhang, Wukui Wang","doi":"10.1007/s10619-021-07343-0","DOIUrl":"https://doi.org/10.1007/s10619-021-07343-0","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"41 1","pages":"95-116"},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-021-07343-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentimental analysis from imbalanced code-mixed data using machine learning approaches. 使用机器学习方法对不平衡代码混合数据进行情感分析。
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-01 DOI: 10.1007/s10619-021-07331-4
R Srinivasan, C N Subalalitha

Knowledge discovery from various perspectives has become a crucial asset in almost all fields. Sentimental analysis is a classification task used to classify the sentence based on the meaning of their context. This paper addresses class imbalance problem which is one of the important issues in sentimental analysis. Not much works focused on sentimental analysis with imbalanced class label distribution. The paper also focusses on another aspect of the problem which involves a concept called "Code Mixing". Code mixed data consists of text alternating between two or more languages. Class imbalance distribution is a commonly noted phenomenon in a code-mixed data. The existing works have focused more on analyzing the sentiments in a monolingual data but not in a code-mixed data. This paper addresses all these issues and comes up with a solution to analyze sentiments for a class imbalanced code-mixed data using sampling technique combined with levenshtein distance metrics. Furthermore, this paper compares the performances of various machine learning approaches namely, Random Forest Classifier, Logistic Regression, XGBoost classifier, Support Vector Machine and Naïve Bayes Classifier using F1- Score.

从不同角度发现知识已成为几乎所有领域的重要资产。情感分析是一种基于上下文意义对句子进行分类的分类任务。阶级失衡问题是情感分析中的一个重要问题。关注情感分析的作品不多,阶级标签分布不均。本文还关注了这个问题的另一个方面,涉及到一个叫做“代码混合”的概念。代码混合数据由在两种或多种语言之间交替的文本组成。类不平衡分布是代码混合数据中一个常见的现象。现有的工作更多地集中在分析单语数据中的情感,而不是代码混合数据中的情感。本文解决了所有这些问题,并提出了一种使用抽样技术结合levenshtein距离度量来分析类不平衡代码混合数据的情感的解决方案。此外,本文还比较了各种机器学习方法的性能,即随机森林分类器,逻辑回归,XGBoost分类器,支持向量机和Naïve贝叶斯分类器使用F1- Score。
{"title":"Sentimental analysis from imbalanced code-mixed data using machine learning approaches.","authors":"R Srinivasan,&nbsp;C N Subalalitha","doi":"10.1007/s10619-021-07331-4","DOIUrl":"https://doi.org/10.1007/s10619-021-07331-4","url":null,"abstract":"<p><p>Knowledge discovery from various perspectives has become a crucial asset in almost all fields. Sentimental analysis is a classification task used to classify the sentence based on the meaning of their context. This paper addresses class imbalance problem which is one of the important issues in sentimental analysis. Not much works focused on sentimental analysis with imbalanced class label distribution. The paper also focusses on another aspect of the problem which involves a concept called \"Code Mixing\". Code mixed data consists of text alternating between two or more languages. Class imbalance distribution is a commonly noted phenomenon in a code-mixed data. The existing works have focused more on analyzing the sentiments in a monolingual data but not in a code-mixed data. This paper addresses all these issues and comes up with a solution to analyze sentiments for a class imbalanced code-mixed data using sampling technique combined with levenshtein distance metrics. Furthermore, this paper compares the performances of various machine learning approaches namely, Random Forest Classifier, Logistic Regression, XGBoost classifier, Support Vector Machine and Naïve Bayes Classifier using F1- Score.</p>","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"41 1-2","pages":"37-52"},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-021-07331-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10797693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Challenges and future directions for energy, latency, and lifetime improvements in NVMs nvm在能量、延迟和寿命改进方面的挑战和未来方向
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-09-21 DOI: 10.1007/s10619-022-07421-x
Saeed Kargar, Faisal Nawab
{"title":"Challenges and future directions for energy, latency, and lifetime improvements in NVMs","authors":"Saeed Kargar, Faisal Nawab","doi":"10.1007/s10619-022-07421-x","DOIUrl":"https://doi.org/10.1007/s10619-022-07421-x","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"41 1","pages":"163 - 189"},"PeriodicalIF":1.2,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42940497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Virtual machines pre-copy live migration cost modeling and prediction: a survey 虚拟机预复制实时迁移成本建模和预测:一项调查
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-09-01 DOI: 10.1007/s10619-021-07387-2
M. E. Elsaid, Hazem M. Abbas, C. Meinel
{"title":"Virtual machines pre-copy live migration cost modeling and prediction: a survey","authors":"M. E. Elsaid, Hazem M. Abbas, C. Meinel","doi":"10.1007/s10619-021-07387-2","DOIUrl":"https://doi.org/10.1007/s10619-021-07387-2","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 1","pages":"441-474"},"PeriodicalIF":1.2,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Introduction to special issue on scientific and statistical data management in the age of AI 2021 人工智能时代的科学和统计数据管理特刊介绍2021
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-08-22 DOI: 10.1007/s10619-022-07420-y
Qiang Zhu, Xingquan Zhu, Yicheng Tu
{"title":"Introduction to special issue on scientific and statistical data management in the age of AI 2021","authors":"Qiang Zhu, Xingquan Zhu, Yicheng Tu","doi":"10.1007/s10619-022-07420-y","DOIUrl":"https://doi.org/10.1007/s10619-022-07420-y","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 1","pages":"201 - 204"},"PeriodicalIF":1.2,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47880509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Distributed and Parallel Databases
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1