Pub Date : 2022-05-01DOI: 10.1016/j.disopt.2021.100657
Piyashat Sripratak , Abraham P. Punnen , Tamon Stephen
We consider the Bipartite Boolean Quadratic Programming Problem (BQP01), which generalizes the well-known Boolean quadratic programming problem (QP01). The model has applications in graph theory, matrix factorization and bioinformatics, among others. The primary focus of this paper is on studying the structure of the Bipartite Boolean Quadric Polytope (BQP) resulting from a linearization of a quadratic integer programming formulation of BQP01.
We present some basic properties and partial relaxations of BQP, as well as some families of facets and valid inequalities. We find facet-defining inequalities including a family of odd-cycle inequalities. We discuss various approaches to obtain a valid inequality and facets from those of the related Boolean quadric polytope. The key strategy is based on rounding coefficients, and it is applied to the families of clique and cut inequalities in BQP.
{"title":"The Bipartite Boolean Quadric Polytope","authors":"Piyashat Sripratak , Abraham P. Punnen , Tamon Stephen","doi":"10.1016/j.disopt.2021.100657","DOIUrl":"10.1016/j.disopt.2021.100657","url":null,"abstract":"<div><p>We consider the <span><em>Bipartite Boolean </em><em>Quadratic Programming</em><em> Problem</em></span><span> (BQP01), which generalizes the well-known Boolean quadratic programming problem (QP01). The model has applications in graph theory, matrix factorization and bioinformatics, among others. The primary focus of this paper is on studying the structure of the </span><span><em>Bipartite Boolean Quadric </em><em>Polytope</em></span> (BQP<span><math><msup><mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msup></math></span><span>) resulting from a linearization of a quadratic integer programming formulation of BQP01.</span></p><p>We present some basic properties and partial relaxations of BQP<span><math><msup><mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msup></math></span><span>, as well as some families of facets and valid inequalities. We find facet-defining inequalities including a family of odd-cycle inequalities. We discuss various approaches to obtain a valid inequality and facets from those of the related Boolean quadric polytope. The key strategy is based on rounding<span> coefficients, and it is applied to the families of clique and cut inequalities in BQP</span></span><span><math><msup><mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"44 ","pages":"Article 100657"},"PeriodicalIF":1.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.disopt.2021.100657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127255795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.1016/j.disopt.2020.100567
Daniel Bienstock , Yuri Faenza , Igor Malinović , Monaldo Mastrolilli , Ola Svensson , Mark Zuckerberg
The min knapsack problem appears as a major component in the structure of capacitated covering problems. Its polyhedral relaxations have been extensively studied, leading to strong relaxations for networking, scheduling and facility location problems.
A valid inequality with for a min knapsack instance is said to have pitch