首页 > 最新文献

Discrete Optimization最新文献

英文 中文
Convexifying multilinear sets with cardinality constraints: Structural properties, nested case and extensions 具有基数约束的凸化多线性集:结构性质,嵌套情况和扩展
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-09-16 DOI: 10.1016/j.disopt.2023.100804
Rui Chen , Sanjeeb Dash , Oktay Günlük

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called properness) and observe that under these conditions the convex hull description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.

二元变量的多重线性函数的最小化问题是一个研究得很好的NP难问题。这个问题的标准线性化的解集称为多线性集。我们研究了它的基数约束版本,它具有非零变量数量的上界和下界。我们把这个问题的标准线性化的解集称为具有基数约束的多线性集。我们刻画了这些多线性项上的一组条件(称为适当性),并观察到在这些条件下,该集的凸包描述是可通过扩展公式处理的。然后,当多线性项具有嵌套结构时,我们给出了凸包的显式多面体描述。我们的描述具有指数数量的不等式,这些不等式可以在多项式时间内分离。最后,我们将这些不等式推广到一般情况下的有效不等式。
{"title":"Convexifying multilinear sets with cardinality constraints: Structural properties, nested case and extensions","authors":"Rui Chen ,&nbsp;Sanjeeb Dash ,&nbsp;Oktay Günlük","doi":"10.1016/j.disopt.2023.100804","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100804","url":null,"abstract":"<div><p><span>The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called </span><em>properness</em><span>) and observe that under these conditions the convex hull<span> description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.</span></span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100804"},"PeriodicalIF":1.1,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
More on online weighted edge coloring 更多关于在线加权边缘着色
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-09-13 DOI: 10.1016/j.disopt.2023.100803
Leah Epstein

We revisit online weighted edge coloring. In this problem, weighted edges of a graph are presented one by one, to be colored with positive integers. It is required that for every vertex, all its edges of every common color will have a total weight not exceeding 1. We provide an improved upper bound on the performance of a greedy algorithm First Fit for the case of arbitrary weights, and for the case of weights not exceeding 12. Here, the meaning of First Fit is that every edge is colored with a color of the smallest index that will keep the coloring valid. This improves the state-of-the-art with respect to online algorithms for this variant of edge coloring. We also show new lower bounds on the performance of any online algorithm with weights in (0,1t], for any integer t2.

我们重新访问在线加权边缘着色。在这个问题中,图的加权边被逐个地表示,用正整数着色。要求对于每个顶点,其每种常见颜色的所有边的总权重不超过1。对于任意权重的情况和权重不超过12的情况,我们提供了贪婪算法First Fit性能的改进上界。这里,First Fit的含义是,每个边都用最小索引的颜色着色,以保持着色的有效性。这改进了关于这种边缘着色变体的在线算法的最先进技术。对于任意整数t≥2,我们还给出了权重为(0,1t]的任何在线算法性能的新下界。
{"title":"More on online weighted edge coloring","authors":"Leah Epstein","doi":"10.1016/j.disopt.2023.100803","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100803","url":null,"abstract":"<div><p><span><span>We revisit online weighted edge coloring. In this problem, weighted edges of a graph are presented one by one, to be colored with positive integers. It is required that for every vertex, all its edges of every common color will have a total weight not exceeding 1. We provide an improved upper bound on the performance of a </span>greedy algorithm First Fit for the case of arbitrary weights, and for the case of weights not exceeding </span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Here, the meaning of First Fit is that every edge is colored with a color of the smallest index that will keep the coloring valid. This improves the state-of-the-art with respect to online algorithms for this variant of edge coloring. We also show new lower bounds on the performance of any online algorithm with weights in <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac><mo>]</mo></mrow></math></span>, for any integer <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100803"},"PeriodicalIF":1.1,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing extremal triangle-free graphs using integer programming 用整数规划构造无极值三角形图
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-09-05 DOI: 10.1016/j.disopt.2023.100802
Ali Erdem Banak, Tınaz Ekim, Z. Caner Taşkın

The maximum number of edges in a graph with matching number m and maximum degree d has been determined in Chvátal and Hanson (1976) and Balachandran and Khare (2009), where some extremal graphs have also been provided. Then, a new question has emerged: how the maximum edge count is affected by forbidding some subgraphs occurring in these extremal graphs? In Ahanjideh et al. (2022), the problem is solved in triangle-free graphs for dm, and for d<m with either Z(d)m<2d or d6, where Z(d) is approximately 5d/4. The authors derived structural properties of triangle-free extremal graphs, which allows us to focus on constructing small extremal components to form an extremal graph. Based on these findings, in this paper, we develop an integer programming formulation for constructing extremal graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital Branching to reduce symmetry. We also implement our integer programming formulation so that the feasible region is restricted iteratively. Using a combination of the two approaches, we expand the solution into d10 instead of d6 for m>d. Our results endorse the formula for the number of edges in all extremal triangle-free graphs conjectured in Ahanjideh et al. (2022).

Chvátal和Hanson(1976)以及Balachandran和Khare(2009)已经确定了具有匹配数m和最大度d的图中的最大边数,其中还提供了一些极值图。然后,一个新的问题出现了:禁止在这些极值图中出现一些子图,如何影响最大边数?在Ahanjideh等人(2022)中,对于d≥m,并且对于d<;m,其中Z(d)≤m<;2d或d≤6,其中Z(d)约为5d/4。作者推导了无三角形极值图的结构性质,这使我们能够专注于构造小的极值分量来形成极值图。基于这些发现,本文提出了一个构造极值图的整数规划公式。由于我们的公式是高度对称的,我们使用我们自己的轨道分支实现来减少对称性。我们还实现了我们的整数规划公式,从而迭代地限制可行区域。使用这两种方法的组合,我们将解扩展为d≤10,而不是m>;d.我们的结果支持Ahanjideh等人(2022)推测的所有极值无三角形图的边数公式。
{"title":"Constructing extremal triangle-free graphs using integer programming","authors":"Ali Erdem Banak,&nbsp;Tınaz Ekim,&nbsp;Z. Caner Taşkın","doi":"10.1016/j.disopt.2023.100802","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100802","url":null,"abstract":"<div><p><span>The maximum number of edges in a graph with matching number </span><span><math><mi>m</mi></math></span><span> and maximum degree </span><span><math><mi>d</mi></math></span><span> has been determined in Chvátal and Hanson (1976) and Balachandran and Khare (2009), where some extremal graphs have also been provided. Then, a new question has emerged: how the maximum edge count is affected by forbidding some subgraphs occurring in these extremal graphs? In Ahanjideh et al. (2022), the problem is solved in triangle-free graphs for </span><span><math><mrow><mi>d</mi><mo>≥</mo><mi>m</mi></mrow></math></span>, and for <span><math><mrow><mi>d</mi><mo>&lt;</mo><mi>m</mi></mrow></math></span> with either <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>2</mn><mi>d</mi></mrow></math></span> or <span><math><mrow><mi>d</mi><mo>≤</mo><mn>6</mn></mrow></math></span>, where <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> is approximately <span><math><mrow><mn>5</mn><mi>d</mi><mo>/</mo><mn>4</mn></mrow></math></span><span>. The authors derived structural properties of triangle-free extremal graphs, which allows us to focus on constructing small extremal components to form an extremal graph. Based on these findings, in this paper, we develop an integer programming formulation for constructing extremal graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital Branching to reduce symmetry. We also implement our integer programming formulation so that the feasible region is restricted iteratively. Using a combination of the two approaches, we expand the solution into </span><span><math><mrow><mi>d</mi><mo>≤</mo><mn>10</mn></mrow></math></span> instead of <span><math><mrow><mi>d</mi><mo>≤</mo><mn>6</mn></mrow></math></span> for <span><math><mrow><mi>m</mi><mo>&gt;</mo><mi>d</mi></mrow></math></span>. Our results endorse the formula for the number of edges in all extremal triangle-free graphs conjectured in Ahanjideh et al. (2022).</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100802"},"PeriodicalIF":1.1,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principled deep neural network training through linear programming 原理深度神经网络训练通过线性规划
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-08-01 DOI: 10.1016/j.disopt.2023.100795
Daniel Bienstock , Gonzalo Muñoz , Sebastian Pokutta

Deep learning has received much attention lately due to the impressive empirical performance achieved by training algorithms. Consequently, a need for a better theoretical understanding of these problems has become more evident and multiple works in recent years have focused on this task. In this work, using a unified framework, we show that there exists a polyhedron that simultaneously encodes, in its facial structure, all possible deep neural network training problems that can arise from a given architecture, activation functions, loss function, and sample size. Notably, the size of the polyhedral representation depends only linearly on the sample size, and a better dependency on several other network parameters is unlikely. Using this general result, we compute the size of the polyhedral encoding for commonly used neural network architectures. Our results provide a new perspective on training problems through the lens of polyhedral theory and reveal strong structure arising from these problems.

由于训练算法取得了令人印象深刻的经验性能,深度学习最近受到了广泛关注。因此,对这些问题有更好的理论理解的必要性变得更加明显,近年来的许多工作都集中在这一任务上。在这项工作中,使用统一的框架,我们证明了存在一个多面体,它在其面部结构中同时编码给定架构、激活函数、损失函数和样本量可能产生的所有可能的深度神经网络训练问题。值得注意的是,多面体表示的大小仅线性地取决于样本大小,并且不太可能更好地依赖于其他几个网络参数。使用这个一般结果,我们计算了常用神经网络架构的多面体编码的大小。我们的结果通过多面体理论的视角为训练问题提供了一个新的视角,并揭示了这些问题产生的强大结构。
{"title":"Principled deep neural network training through linear programming","authors":"Daniel Bienstock ,&nbsp;Gonzalo Muñoz ,&nbsp;Sebastian Pokutta","doi":"10.1016/j.disopt.2023.100795","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100795","url":null,"abstract":"<div><p><span>Deep learning<span> has received much attention lately due to the impressive empirical performance achieved by training algorithms. Consequently, a need for a better theoretical understanding of these problems has become more evident and multiple works in recent years have focused on this task. In this work, using a unified framework, we show that there exists a polyhedron that simultaneously encodes, in its facial structure, all possible </span></span>deep neural network<span> training problems that can arise from a given architecture, activation functions, loss function, and sample size. Notably, the size of the polyhedral representation depends only linearly on the sample size, and a better dependency on several other network parameters is unlikely. Using this general result, we compute the size of the polyhedral encoding for commonly used neural network architectures. Our results provide a new perspective on training problems through the lens of polyhedral theory and reveal strong structure arising from these problems.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"49 ","pages":"Article 100795"},"PeriodicalIF":1.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
On the Rényi–Ulam game with restricted size queries 关于限制大小查询的r<s:1> -乌拉姆游戏
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100772
Ádám X. Fraknói , Dávid Á. Márton , Dániel G. Simon , Dániel A. Lenger

We investigate the following version of the well-known Rényi–Ulam game. Two players – the Questioner and the Responder – play against each other. The Responder thinks of a number from the set {1,,n}, and the Questioner has to find this number. To do this, he can ask whether a chosen set of at most k elements contains the thought number. The Responder answers with YES or NO immediately, but during the game, he may lie at most times. The minimum number of queries needed for the Questioner to surely find the unknown element is denoted by RUk(n). First, we develop a highly effective tool that we call Convexity Lemma. By using this lemma, we give a general lower bound of RUk(n) and an upper bound which differs from the lower one by at most 2+1. We also give its exact value when n is sufficiently large compared to k. With these, we managed to improve and generalize the results obtained by Meng, Lin, and Yang in a 2013 paper about the case =1.

我们研究了著名的Rényi–Ulam游戏的以下版本。两名选手——提问者和回答者——相互对抗。响应者想到集合{1,…,n}中的一个数字,提问者必须找到这个数字。要做到这一点,他可以询问一组最多k个元素是否包含思维数。响应者立即回答“是”或“否”,但在游戏中,他最多可能会撒谎ℓ 时间。提问者确定找到未知元素所需的最小查询次数由RU表示ℓk(n)。首先,我们开发了一个高效的工具,我们称之为凸性引理。利用这个引理,我们给出了RU的一般下界ℓk(n)和与下限相差至多2的上界ℓ+1.当n与k相比足够大时,我们也给出了它的精确值。通过这些,我们设法改进和推广了孟、林和杨在2013年一篇关于该情况的论文中获得的结果ℓ=1.
{"title":"On the Rényi–Ulam game with restricted size queries","authors":"Ádám X. Fraknói ,&nbsp;Dávid Á. Márton ,&nbsp;Dániel G. Simon ,&nbsp;Dániel A. Lenger","doi":"10.1016/j.disopt.2023.100772","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100772","url":null,"abstract":"<div><p>We investigate the following version of the well-known Rényi–Ulam game. Two players – the Questioner and the Responder – play against each other. The Responder thinks of a number from the set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>, and the Questioner has to find this number. To do this, he can ask whether a chosen set of at most <span><math><mi>k</mi></math></span> elements contains the thought number. The Responder answers with YES or NO immediately, but during the game, he may lie at most <span><math><mi>ℓ</mi></math></span> times. The minimum number of queries needed for the Questioner to surely find the unknown element is denoted by <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. First, we develop a highly effective tool that we call Convexity Lemma. By using this lemma, we give a general lower bound of <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and an upper bound which differs from the lower one by at most <span><math><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. We also give its exact value when <span><math><mi>n</mi></math></span> is sufficiently large compared to <span><math><mi>k</mi></math></span>. With these, we managed to improve and generalize the results obtained by Meng, Lin, and Yang in a 2013 paper about the case <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100772"},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polytope of binary sequences with bounded variation 具有有界变差的二进制序列的多面体
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100776
Christoph Buchheim, Maja Hügging

We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length n with bounded variation, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of O(nlogn), which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.

A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).

我们研究了在长度为n的具有有界变化的所有二进制向量集上优化线性目标函数的问题,其中后者被定义为具有不同值的连续项对的数量。这个问题在许多应用中都会自然出现,例如,在单元组合问题中,或者在离散服从有界总变差的二元最优控制问题时。我们研究了这个问题的两种变体。在第一种方法中,二元向量的变化在目标函数中受到惩罚,而在第二种方法中则受到硬约束的约束。我们表明,第一种变体很容易处理,而第二种变体更复杂,但仍然易于处理。对于后一种情况,我们通过分面诱导不等式给出了可行解凸包的完整多面体描述,并设计了一个精确的线性时间分离算法。完整性的证明还产生了一个运行时间为O(nlogn)的新的精确原始算法,它比直接的动态规划方法快得多。最后,我们设计了一个紧凑的扩展公式。本文的初步版本已发表在《第七届国际组合优化研讨会论文集》(ISCO 2022)上(Buchheim和Hügging,2022)。
{"title":"The polytope of binary sequences with bounded variation","authors":"Christoph Buchheim,&nbsp;Maja Hügging","doi":"10.1016/j.disopt.2023.100776","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100776","url":null,"abstract":"<div><p><span>We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length </span><span><math><mi>n</mi></math></span><span> with bounded variation<span>, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems<span> subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of </span></span></span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.</p><p>A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100776"},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum gradation in greyscales of graphs 灰度图的最小渐变
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100773
Natalia de Castro , María A. Garrido-Vizuete , Rafael Robles , María Trinidad Villar-Liñán

In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered in lexicographical decreasing ordering and give rise to a new element of the graph: the gradation vector. We introduce the notion of minimum gradation vector as a new invariant for the graph and give polynomial algorithms to obtain it. These algorithms also output all greyscales that produce the minimum gradation vector. This way we tackle and solve a novel vectorial optimization problem in graphs that may generate more satisfactory solutions than those generated by known scalar optimization approaches.

在本文中,我们提出了图的灰度作为其顶点的着色的概念,该着色使用实区间[0,1]中的颜色。任何灰度都会通过为每条边指定其顶点颜色之间的非负差异来引发另一种颜色。这些边缘颜色是按字典递减顺序排列的,并产生了图形的一个新元素:渐变矢量。我们引入了最小灰度矢量作为图的一个新不变量的概念,并给出了获得它的多项式算法,这些算法还输出了产生最小灰度矢量的所有灰度。通过这种方式,我们解决了图中的一个新的矢量优化问题,该问题可能会产生比已知标量优化方法更令人满意的解。
{"title":"Minimum gradation in greyscales of graphs","authors":"Natalia de Castro ,&nbsp;María A. Garrido-Vizuete ,&nbsp;Rafael Robles ,&nbsp;María Trinidad Villar-Liñán","doi":"10.1016/j.disopt.2023.100773","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100773","url":null,"abstract":"<div><p>In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered in lexicographical decreasing ordering and give rise to a new element of the graph: the gradation vector. We introduce the notion of minimum gradation vector as a new invariant for the graph and give polynomial algorithms to obtain it. These algorithms also output all greyscales that produce the minimum gradation vector. This way we tackle and solve a novel vectorial optimization problem in graphs that may generate more satisfactory solutions than those generated by known scalar optimization approaches.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100773"},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the Mostar index for bipartite graphs and split graphs 二部图和分裂图的Mostar指数最大化
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100768
Štefko Miklavič , Johannes Pardey , Dieter Rautenbach , Florian Werner

Došlić et al. defined the Mostar index of a graph G as uvE(G)|nG(u,v)nG(v,u)|, where, for an edge uv of G, the term nG(u,v) denotes the number of vertices of G that have a smaller distance in G to u than to v. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order n is at most 318n3, and that the Mostar index of split graphs of order n is at most 427n3.

Došlić等人。定义图G的Mostar指数为∑uv∈E(G)|nG(u,v)−nG(v,u)|,其中,对于G的边uv,项nG(u,v)表示G的顶点数,这些顶点在G中与u的距离小于与v的距离。,我们证明了n阶二部图的Mostar指数至多为318n3,n阶分裂图的Mosstar指数至多为427n3。
{"title":"Maximizing the Mostar index for bipartite graphs and split graphs","authors":"Štefko Miklavič ,&nbsp;Johannes Pardey ,&nbsp;Dieter Rautenbach ,&nbsp;Florian Werner","doi":"10.1016/j.disopt.2023.100768","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100768","url":null,"abstract":"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mspace></mspace><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span><span>. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order </span><span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>18</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and that the Mostar index of split graphs of order <span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>27</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100768"},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Maximizing the Mostar index for bipartite graphs and split graphs 二部图和分裂图的Mostar指数最大化
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100768
Štefko Miklavič , Johannes Pardey , Dieter Rautenbach , Florian Werner

Došlić et al. defined the Mostar index of a graph G as uvE(G)|nG(u,v)nG(v,u)|, where, for an edge uv of G, the term nG(u,v) denotes the number of vertices of G that have a smaller distance in G to u than to v. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order n is at most 318n3, and that the Mostar index of split graphs of order n is at most 427n3.

Došlić等人。定义图G的Mostar指数为∑uv∈E(G)|nG(u,v)−nG(v,u)|,其中,对于G的边uv,项nG(u,v)表示G的顶点数,这些顶点在G中与u的距离小于与v的距离。,我们证明了n阶二部图的Mostar指数至多为318n3,n阶分裂图的Mosstar指数至多为427n3。
{"title":"Maximizing the Mostar index for bipartite graphs and split graphs","authors":"Štefko Miklavič ,&nbsp;Johannes Pardey ,&nbsp;Dieter Rautenbach ,&nbsp;Florian Werner","doi":"10.1016/j.disopt.2023.100768","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100768","url":null,"abstract":"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mspace></mspace><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span><span>. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order </span><span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>18</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and that the Mostar index of split graphs of order <span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>27</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100768"},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the Rényi–Ulam game with restricted size queries 关于具有限制大小查询的Rényi–Ulam对策
IF 1.1 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100772
Ádám X. Fraknói , Dávid Á. Márton , Dániel G. Simon , Dániel A. Lenger

We investigate the following version of the well-known Rényi–Ulam game. Two players – the Questioner and the Responder – play against each other. The Responder thinks of a number from the set {1,,n}, and the Questioner has to find this number. To do this, he can ask whether a chosen set of at most k elements contains the thought number. The Responder answers with YES or NO immediately, but during the game, he may lie at most times. The minimum number of queries needed for the Questioner to surely find the unknown element is denoted by RUk(n). First, we develop a highly effective tool that we call Convexity Lemma. By using this lemma, we give a general lower bound of RUk(n) and an upper bound which differs from the lower one by at most 2+1. We also give its exact value when n is sufficiently large compared to k. With these, we managed to improve and generalize the results obtained by Meng, Lin, and Yang in a 2013 paper about the case =1.

我们研究了著名的Rényi–Ulam游戏的以下版本。两名选手——提问者和回答者——相互对抗。响应者想到集合{1,…,n}中的一个数字,提问者必须找到这个数字。要做到这一点,他可以询问一组最多k个元素是否包含思维数。响应者立即回答“是”或“否”,但在游戏中,他最多可能会撒谎ℓ 时间。提问者确定找到未知元素所需的最小查询次数由RU表示ℓk(n)。首先,我们开发了一个高效的工具,我们称之为凸性引理。利用这个引理,我们给出了RU的一般下界ℓk(n)和与下限相差至多2的上界ℓ+1.当n与k相比足够大时,我们也给出了它的精确值。通过这些,我们设法改进和推广了孟、林和杨在2013年一篇关于该情况的论文中获得的结果ℓ=1.
{"title":"On the Rényi–Ulam game with restricted size queries","authors":"Ádám X. Fraknói ,&nbsp;Dávid Á. Márton ,&nbsp;Dániel G. Simon ,&nbsp;Dániel A. Lenger","doi":"10.1016/j.disopt.2023.100772","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100772","url":null,"abstract":"<div><p>We investigate the following version of the well-known Rényi–Ulam game. Two players – the Questioner and the Responder – play against each other. The Responder thinks of a number from the set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>, and the Questioner has to find this number. To do this, he can ask whether a chosen set of at most <span><math><mi>k</mi></math></span> elements contains the thought number. The Responder answers with YES or NO immediately, but during the game, he may lie at most <span><math><mi>ℓ</mi></math></span> times. The minimum number of queries needed for the Questioner to surely find the unknown element is denoted by <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. First, we develop a highly effective tool that we call Convexity Lemma. By using this lemma, we give a general lower bound of <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and an upper bound which differs from the lower one by at most <span><math><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. We also give its exact value when <span><math><mi>n</mi></math></span> is sufficiently large compared to <span><math><mi>k</mi></math></span>. With these, we managed to improve and generalize the results obtained by Meng, Lin, and Yang in a 2013 paper about the case <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100772"},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1