P. Sólymos, J. Toms, Steven M. Matsuoka, S. Cumming, Nicole Barker, W. Thogmartin, D. Stralberg, A. Crosby, Francisco V. Dénes, S. Haché, C. L. Mahon, F. Schmiegelow, E. Bayne
ABSTRACT Estimating the population abundance of landbirds is a challenging task complicated by the amount, type, and quality of available data. Avian conservationists have relied on population estimates from Partners in Flight (PIF), which primarily uses roadside data from the North American Breeding Bird Survey (BBS). However, the BBS was not designed to estimate population sizes. Therefore, we set out to compare the PIF approach with spatially explicit models incorporating roadside and off-road point-count surveys. We calculated population estimates for 81 landbird species in Bird Conservation Region 6 in Alberta, Canada, using land cover and climate as predictors. We also developed a framework to evaluate how the differences between the detection distance, time-of-day, roadside count, and habitat representation adjustments explain discrepancies between the 2 estimators. We showed that the key assumptions of the PIF population estimator were commonly violated in this region, and that the 2 approaches provided different population estimates for most species. The average differences between estimators were explained by differences in the detection-distance and time-of-day components, but these adjustments left much unexplained variation among species. Differences in the roadside count and habitat representation components explained most of the among-species variation. The variation caused by these factors was large enough to change the population ranking of the species. The roadside count bias needs serious attention when roadside surveys are used to extrapolate over off-road areas. Habitat representation bias is likely prevalent in regions sparsely and non-representatively sampled by roadside surveys, such as the boreal region of North America, and thus population estimates for these regions need to be treated with caution for certain species. Additional sampling and integrated modeling of available data sources can contribute towards more accurate population estimates for conservation in remote areas of North America.
{"title":"Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada","authors":"P. Sólymos, J. Toms, Steven M. Matsuoka, S. Cumming, Nicole Barker, W. Thogmartin, D. Stralberg, A. Crosby, Francisco V. Dénes, S. Haché, C. L. Mahon, F. Schmiegelow, E. Bayne","doi":"10.1093/condor/duaa007","DOIUrl":"https://doi.org/10.1093/condor/duaa007","url":null,"abstract":"ABSTRACT Estimating the population abundance of landbirds is a challenging task complicated by the amount, type, and quality of available data. Avian conservationists have relied on population estimates from Partners in Flight (PIF), which primarily uses roadside data from the North American Breeding Bird Survey (BBS). However, the BBS was not designed to estimate population sizes. Therefore, we set out to compare the PIF approach with spatially explicit models incorporating roadside and off-road point-count surveys. We calculated population estimates for 81 landbird species in Bird Conservation Region 6 in Alberta, Canada, using land cover and climate as predictors. We also developed a framework to evaluate how the differences between the detection distance, time-of-day, roadside count, and habitat representation adjustments explain discrepancies between the 2 estimators. We showed that the key assumptions of the PIF population estimator were commonly violated in this region, and that the 2 approaches provided different population estimates for most species. The average differences between estimators were explained by differences in the detection-distance and time-of-day components, but these adjustments left much unexplained variation among species. Differences in the roadside count and habitat representation components explained most of the among-species variation. The variation caused by these factors was large enough to change the population ranking of the species. The roadside count bias needs serious attention when roadside surveys are used to extrapolate over off-road areas. Habitat representation bias is likely prevalent in regions sparsely and non-representatively sampled by roadside surveys, such as the boreal region of North America, and thus population estimates for these regions need to be treated with caution for certain species. Additional sampling and integrated modeling of available data sources can contribute towards more accurate population estimates for conservation in remote areas of North America.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43294185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Dayer, Eduardo A. Silva‐Rodríguez, S. Albert, M. Chapman, Benjamin Zukowski, J. Ibarra, Gemara Gifford, A. Echeverri, A. Martínez-Salinas, Claudia Sepúlveda-Luque
ABSTRACT As the global human population increases, and many bird populations in the Neotropics and the rest of the world continue to decline, the study of the intersection of humans, birds, and conservation has become more relevant than ever. The field of conservation social science is an interdisciplinary field that applies the social sciences and humanities to examine research questions that have implications for biodiversity conservation, and encompasses disciplines as diverse as psychology, economics, and political ecology. An understanding of the human dimensions of biodiversity conservation issues can be an essential element in the success or failure of a conservation initiative, policy, or practice. The purpose of this article is to provide an understanding of the growing body of conservation social science relevant to Neotropical bird conservation research and to demonstrate its importance. We discuss how this research can contribute to addressing 5 major threats to bird conservation in the Neotropics, including future research needs, and we provide 3 case studies of bird conservation social science projects, demonstrating the insights that can be gained. We close with a discussion of how conservation biologists and ornithologists can most effectively work with conservation social scientists.
{"title":"Applying conservation social science to study the human dimensions of Neotropical bird conservation","authors":"A. Dayer, Eduardo A. Silva‐Rodríguez, S. Albert, M. Chapman, Benjamin Zukowski, J. Ibarra, Gemara Gifford, A. Echeverri, A. Martínez-Salinas, Claudia Sepúlveda-Luque","doi":"10.1093/condor/duaa021","DOIUrl":"https://doi.org/10.1093/condor/duaa021","url":null,"abstract":"ABSTRACT As the global human population increases, and many bird populations in the Neotropics and the rest of the world continue to decline, the study of the intersection of humans, birds, and conservation has become more relevant than ever. The field of conservation social science is an interdisciplinary field that applies the social sciences and humanities to examine research questions that have implications for biodiversity conservation, and encompasses disciplines as diverse as psychology, economics, and political ecology. An understanding of the human dimensions of biodiversity conservation issues can be an essential element in the success or failure of a conservation initiative, policy, or practice. The purpose of this article is to provide an understanding of the growing body of conservation social science relevant to Neotropical bird conservation research and to demonstrate its importance. We discuss how this research can contribute to addressing 5 major threats to bird conservation in the Neotropics, including future research needs, and we provide 3 case studies of bird conservation social science projects, demonstrating the insights that can be gained. We close with a discussion of how conservation biologists and ornithologists can most effectively work with conservation social scientists.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44156624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leila S. Duchac, D. B. Lesmeister, Katie M. Dugger, Zachary J. Ruff, Raymond J. Davis
Passive acoustic monitoring using autonomous recording units (ARUs) is a fast-growing area of wildlife research especially for rare, cryptic species that vocalize. Northern Spotted Owl (Strix occidentalis caurina) populations have been monitored since the mid-1980s using mark–recapture methods. To evaluate an alternative survey method, we used ARUs to detect calls of Northern Spotted Owls and Barred Owls (S. varia), a congener that has expanded its range into the Pacific Northwest and threatens Northern Spotted Owl persistence. We set ARUs at 30 500-ha hexagons (150 ARU stations) with recent Northern Spotted Owl activity and high Barred Owl density within Northern Spotted Owl demographic study areas in Oregon and Washington, and set ARUs to record continuously each night from March to July, 2017. We reviewed spectrograms (visual representations of sound) and tagged target vocalizations to extract calls from ~160,000 hr of recordings. Even in a study area with low occupancy rates on historical territories (Washington’s Olympic Peninsula), the probability of detecting a Northern Spotted Owl when it was present in a hexagon exceeded 0.95 after 3 weeks of recording. Environmental noise, mainly from rain, wind, and streams, decreased detection probabilities for both species over all study areas. Using demographic information about known Northern Spotted Owls, we found that weekly detection probabilities of Northern Spotted Owls were higher when ARUs were closer to known nests and activity centers and when owls were paired, suggesting passive acoustic data alone could help locate Northern Spotted Owl pairs on the landscape. These results demonstrate that ARUs can effectively detect Northern Spotted Owls when they are present, even in a landscape with high Barred Owl density, thereby facilitating the use of passive, occupancy-based study designs to monitor Northern Spotted Owl populations.
利用自主录音装置(ARUs)进行被动声监测是野生动物研究的一个快速发展的领域,特别是对稀有的、会发声的神秘物种。北斑猫头鹰(Strix occidentalis caurina)种群自20世纪80年代中期以来一直使用标记-再捕获方法进行监测。为了评估另一种调查方法,我们使用ARUs来检测北斑猫头鹰和横斑猫头鹰(S. varia)的叫声,横斑猫头鹰是一种同系物,已将其活动范围扩大到太平洋西北地区,并威胁到北斑猫头鹰的持久性。我们在俄勒冈州和华盛顿州的北斑猫头鹰人口研究区内设置了30个500公顷的六边形(150个ARU站),这些区域最近有北斑猫头鹰活动,并且斑猫头鹰密度高,并设置了ARUs,从2017年3月至7月每晚连续记录。我们回顾了声谱图(声音的视觉表示),并标记了目标发声,从约160,000小时的录音中提取了呼叫。即使是在历史上占有率较低的研究区域(华盛顿的奥林匹克半岛),经过3周的记录,当一只北斑猫头鹰出现在六边形中时,发现它的概率也超过了0.95。在所有研究区域,主要来自雨、风和溪流的环境噪声降低了这两种物种的检测概率。利用已知的北方斑点猫头鹰的人口统计信息,我们发现当ARUs靠近已知的巢穴和活动中心以及猫头鹰配对时,北方斑点猫头鹰的每周检测概率更高,这表明被动声学数据单独可以帮助定位景观中的北方斑点猫头鹰对。这些结果表明,即使在横斑猫头鹰密度很高的景观中,ARUs也能有效地探测到北方斑点猫头鹰的存在,从而促进了使用被动的、基于占用的研究设计来监测北方斑点猫头鹰的种群。
{"title":"Passive acoustic monitoring effectively detects Northern Spotted Owls and Barred Owls over a range of forest conditions","authors":"Leila S. Duchac, D. B. Lesmeister, Katie M. Dugger, Zachary J. Ruff, Raymond J. Davis","doi":"10.1093/condor/duaa017","DOIUrl":"https://doi.org/10.1093/condor/duaa017","url":null,"abstract":"\u0000 Passive acoustic monitoring using autonomous recording units (ARUs) is a fast-growing area of wildlife research especially for rare, cryptic species that vocalize. Northern Spotted Owl (Strix occidentalis caurina) populations have been monitored since the mid-1980s using mark–recapture methods. To evaluate an alternative survey method, we used ARUs to detect calls of Northern Spotted Owls and Barred Owls (S. varia), a congener that has expanded its range into the Pacific Northwest and threatens Northern Spotted Owl persistence. We set ARUs at 30 500-ha hexagons (150 ARU stations) with recent Northern Spotted Owl activity and high Barred Owl density within Northern Spotted Owl demographic study areas in Oregon and Washington, and set ARUs to record continuously each night from March to July, 2017. We reviewed spectrograms (visual representations of sound) and tagged target vocalizations to extract calls from ~160,000 hr of recordings. Even in a study area with low occupancy rates on historical territories (Washington’s Olympic Peninsula), the probability of detecting a Northern Spotted Owl when it was present in a hexagon exceeded 0.95 after 3 weeks of recording. Environmental noise, mainly from rain, wind, and streams, decreased detection probabilities for both species over all study areas. Using demographic information about known Northern Spotted Owls, we found that weekly detection probabilities of Northern Spotted Owls were higher when ARUs were closer to known nests and activity centers and when owls were paired, suggesting passive acoustic data alone could help locate Northern Spotted Owl pairs on the landscape. These results demonstrate that ARUs can effectively detect Northern Spotted Owls when they are present, even in a landscape with high Barred Owl density, thereby facilitating the use of passive, occupancy-based study designs to monitor Northern Spotted Owl populations.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46809494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conor C. Egan, B. F. Blackwell, E. Fernández‐Juricic, Page E. Klug
{"title":"Corrigendum: Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?","authors":"Conor C. Egan, B. F. Blackwell, E. Fernández‐Juricic, Page E. Klug","doi":"10.1093/condor/duaa025","DOIUrl":"https://doi.org/10.1093/condor/duaa025","url":null,"abstract":"","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45735089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meredith E. Kernbach, V. Cassone, T. Unnasch, Lynn B. Martin
ABSTRACT Artificial light at night (ALAN) has become a pervasive anthropogenic stressor for both humans and wildlife. Although many negative impacts of ALAN on human health have been identified, the consequences for infectious disease dynamics are largely unexplored. With the increase in popularity of energy efficient light-emitting diodes (LEDs), the effects of spectral composition of ALAN have also come into question. Previous studies showed that exposure to low levels of incandescent ALAN extended the infectious period of House Sparrows (Passer domesticus) infected with West Nile virus (WNV) without affecting mortality rates, thus increasing the pathogen initial reproductive rate (R0) by ∼41%. Here, we asked whether exposure to broad-spectrum (3000 K [Kelvin; unit of color temperature]) ALAN suppressed melatonin, a hormone implicated in ALAN-induced physiological consequences, in House Sparrows. We then asked whether amber-hue bulbs (1800 K) could ameliorate the effects of WNV on individual sparrows, and whether broad-spectrum or blue-rich bulbs (3000 K and 5000 K, respectively) could exacerbate them. We found that exposure to low intensity (∼5 lux) broad-spectrum (3000 K) ALAN significantly suppressed melatonin levels throughout the night. Second, we found that exposure to broad-spectrum and blue-rich (3000 + 5000 K) lights did not affect WNV viremia but did increase WNV-induced mortality. Conversely, birds exposed to amber-hue (1800 K) ALAN had lower viremia and mortality rates similar to controls (i.e. natural light conditions). This study demonstrates that ALAN affects melatonin regulation in birds, but this effect, as well as ALAN influences on infectious disease responses, can be ameliorated by particular lighting technologies.
{"title":"Broad-spectrum light pollution suppresses melatonin and increases West Nile virus–induced mortality in House Sparrows (Passer domesticus)","authors":"Meredith E. Kernbach, V. Cassone, T. Unnasch, Lynn B. Martin","doi":"10.1093/condor/duaa018","DOIUrl":"https://doi.org/10.1093/condor/duaa018","url":null,"abstract":"ABSTRACT Artificial light at night (ALAN) has become a pervasive anthropogenic stressor for both humans and wildlife. Although many negative impacts of ALAN on human health have been identified, the consequences for infectious disease dynamics are largely unexplored. With the increase in popularity of energy efficient light-emitting diodes (LEDs), the effects of spectral composition of ALAN have also come into question. Previous studies showed that exposure to low levels of incandescent ALAN extended the infectious period of House Sparrows (Passer domesticus) infected with West Nile virus (WNV) without affecting mortality rates, thus increasing the pathogen initial reproductive rate (R0) by ∼41%. Here, we asked whether exposure to broad-spectrum (3000 K [Kelvin; unit of color temperature]) ALAN suppressed melatonin, a hormone implicated in ALAN-induced physiological consequences, in House Sparrows. We then asked whether amber-hue bulbs (1800 K) could ameliorate the effects of WNV on individual sparrows, and whether broad-spectrum or blue-rich bulbs (3000 K and 5000 K, respectively) could exacerbate them. We found that exposure to low intensity (∼5 lux) broad-spectrum (3000 K) ALAN significantly suppressed melatonin levels throughout the night. Second, we found that exposure to broad-spectrum and blue-rich (3000 + 5000 K) lights did not affect WNV viremia but did increase WNV-induced mortality. Conversely, birds exposed to amber-hue (1800 K) ALAN had lower viremia and mortality rates similar to controls (i.e. natural light conditions). This study demonstrates that ALAN affects melatonin regulation in birds, but this effect, as well as ALAN influences on infectious disease responses, can be ameliorated by particular lighting technologies.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45945379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT The Atlantic Forest is the second largest tropical moist forest domain in South America after the Amazon, home to over 800 bird species (223 endemics or 27% of the avifauna). With only 28% of the original vegetation left, mostly fragmented and altered, the Atlantic Forest is a hotspot for bird conservation. We first introduce the extent, vegetation types, and exploitation history of the domain, and the composition and biogeographic affinities of its birds. We then provide an overview of the knowledge gathered so far on the ways Atlantic Forest birds thrive in the often-fragmented landscape, highlighting the landscape features that influence their occurrence and movement behavior. We end with the conservation issues affecting the Atlantic Forest birds and the actions hitherto taken to address them, including the establishment of conservation units, forest restoration, and rewilding.
{"title":"Living in a fragmented world: Birds in the Atlantic Forest","authors":"M. A. Pizo, V. Tonetti","doi":"10.1093/condor/duaa023","DOIUrl":"https://doi.org/10.1093/condor/duaa023","url":null,"abstract":"ABSTRACT The Atlantic Forest is the second largest tropical moist forest domain in South America after the Amazon, home to over 800 bird species (223 endemics or 27% of the avifauna). With only 28% of the original vegetation left, mostly fragmented and altered, the Atlantic Forest is a hotspot for bird conservation. We first introduce the extent, vegetation types, and exploitation history of the domain, and the composition and biogeographic affinities of its birds. We then provide an overview of the knowledge gathered so far on the ways Atlantic Forest birds thrive in the often-fragmented landscape, highlighting the landscape features that influence their occurrence and movement behavior. We end with the conservation issues affecting the Atlantic Forest birds and the actions hitherto taken to address them, including the establishment of conservation units, forest restoration, and rewilding.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47491275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT An understanding of how tropical bird communities might respond to climate change and other types of environmental stressors seems particularly urgent, yet we still lack, except for a few sites, even snapshot inventories of avian richness and abundances across most of the tropics. Such benchmark measurements of tropical bird species richness and abundances could provide opportunities for future repeat surveys and, therefore, strong insight into degrees and pace of change in community organization over time. The challenges of creating a network of benchmarked sites include high variation in detectability among species, general rarity of many species that creates hurdles for use of modern bird counting methods aimed at controlling for variation in detectability, and lack of a standardized protocol to create repeatable inventories. We argue that reasonably complete inventories of tropical bird communities require use of multiple survey techniques to provide internal calibrations of abundance estimates and require multiple visits to improve completeness of richness inventories. We suggest that a network of large (50–100 ha) plots scattered across the tropics can also provide insights into geographic variation in and drivers of avian community structure analogous to insights provided by the Smithsonian Center for Tropical Forest Science Forest Global Earth Observatory network of forest dynamics plots. Perhaps most importantly, large plots provide opportunities for use of multiple survey techniques to estimate abundances while also using some exactly repeatable survey techniques that can greatly improve abilities to quantify change over time. We provide guidance on establishment of and survey methods for large tropical bird plots as well as important recommendations for collection and archiving of metadata to safeguard the long-term utility of valuable benchmark data.
{"title":"Creating benchmark measurements of tropical forest bird communities in large plots","authors":"W. Robinson, J. Curtis","doi":"10.1093/condor/duaa015","DOIUrl":"https://doi.org/10.1093/condor/duaa015","url":null,"abstract":"ABSTRACT An understanding of how tropical bird communities might respond to climate change and other types of environmental stressors seems particularly urgent, yet we still lack, except for a few sites, even snapshot inventories of avian richness and abundances across most of the tropics. Such benchmark measurements of tropical bird species richness and abundances could provide opportunities for future repeat surveys and, therefore, strong insight into degrees and pace of change in community organization over time. The challenges of creating a network of benchmarked sites include high variation in detectability among species, general rarity of many species that creates hurdles for use of modern bird counting methods aimed at controlling for variation in detectability, and lack of a standardized protocol to create repeatable inventories. We argue that reasonably complete inventories of tropical bird communities require use of multiple survey techniques to provide internal calibrations of abundance estimates and require multiple visits to improve completeness of richness inventories. We suggest that a network of large (50–100 ha) plots scattered across the tropics can also provide insights into geographic variation in and drivers of avian community structure analogous to insights provided by the Smithsonian Center for Tropical Forest Science Forest Global Earth Observatory network of forest dynamics plots. Perhaps most importantly, large plots provide opportunities for use of multiple survey techniques to estimate abundances while also using some exactly repeatable survey techniques that can greatly improve abilities to quantify change over time. We provide guidance on establishment of and survey methods for large tropical bird plots as well as important recommendations for collection and archiving of metadata to safeguard the long-term utility of valuable benchmark data.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41328674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT The Millennium Ecosystem Assessment described 4 classes of services or functions that ecosystems and their component parts deliver to the benefit of humans: provisioning, regulating, supporting, and cultural services. Birds, including Neotropical birds, provide a diverse array of services in all 4 classes. We review the literature describing ecosystem services provided by Neotropical birds, draw inference from studies of avian services in other regions when Neotropical studies are limited, and identify key information gaps. Neotropical birds provide provisioning services in the form of meat and eggs for food, and feathers for down and ornamentation. Regulating services are among the most valuable services provided by Neotropical birds, including pollination, pest control, seed dispersal, and scavenging. Neotropical birds also provide supporting services in the form of nutrient cycling, such as through the deposition of guano on offshore islands. Finally, Neotropical birds provide cultural services as pets (caged birds), sources of recreation (e.g., birdwatching, hunting), as well as by inspiring art, photography, and religious customs. Much remains to be learned about the ecology and natural history of many Neotropical birds before we can fully assign value—monetary, nonmaterial, or otherwise—to the services they provide. However, what we have learned to date makes it clear that humans benefit from birds through multiple services, including but not limited to pest reduction, pollination of some agricultural plants, and seed dispersal.
{"title":"Ecosystem services provided by Neotropical birds","authors":"N. Michel, C. Whelan, Gregory M. Verutes","doi":"10.1093/condor/duaa022","DOIUrl":"https://doi.org/10.1093/condor/duaa022","url":null,"abstract":"ABSTRACT The Millennium Ecosystem Assessment described 4 classes of services or functions that ecosystems and their component parts deliver to the benefit of humans: provisioning, regulating, supporting, and cultural services. Birds, including Neotropical birds, provide a diverse array of services in all 4 classes. We review the literature describing ecosystem services provided by Neotropical birds, draw inference from studies of avian services in other regions when Neotropical studies are limited, and identify key information gaps. Neotropical birds provide provisioning services in the form of meat and eggs for food, and feathers for down and ornamentation. Regulating services are among the most valuable services provided by Neotropical birds, including pollination, pest control, seed dispersal, and scavenging. Neotropical birds also provide supporting services in the form of nutrient cycling, such as through the deposition of guano on offshore islands. Finally, Neotropical birds provide cultural services as pets (caged birds), sources of recreation (e.g., birdwatching, hunting), as well as by inspiring art, photography, and religious customs. Much remains to be learned about the ecology and natural history of many Neotropical birds before we can fully assign value—monetary, nonmaterial, or otherwise—to the services they provide. However, what we have learned to date makes it clear that humans benefit from birds through multiple services, including but not limited to pest reduction, pollination of some agricultural plants, and seed dispersal.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43903247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle A. Lima, E. Call, T. Hodgman, D. Potter, S. Gallo, Erik J. Blomberg
ABSTRACT Owls play crucial roles in the environment and provide ecosystem services making them important to monitor and study. However, standardized methods for most species do not exist, and we lack understanding of the effects of many environmental variables and call-broadcast on detection of owls during surveys. We performed a multispecies occupancy analysis of owl monitoring data collected from 2004 to 2013 across the state of Maine to examine the effects of environmental variables, conspecific and heterospecific call-broadcast, and general survey protocols on detection of 3 forest owls: Northern Saw-whet Owl (Aegolius acadicus), Barred Owl (Strix varia), and Great Horned Owl (Bubo virginianus). We found that environmental variables such as cloud cover, precipitation, temperature, time of night, and wind had species-specific effects on detection probability, and ambient noise decreased detection probability for all species. Snow cover did not affect detection of any species. We also found that conspecific call-broadcast increased detection of each species, while heterospecific call-broadcast had variable effects. Specifically, we found that Long-eared and Barred owl broadcast increased the detection of Northern Saw-whet Owl, and our results suggest additional heterospecific effects may exist. Our study showed that, compared to the protocol of the Maine Owl Monitoring Program, surveys simultaneously examining all 3 of our focal species can increase efficiency and lower disturbance by only broadcasting Long-eared and Barred owl calls during a 10-min survey. We recommend that future owl surveys take into account species-specific effects of conspecific and heterospecific call-broadcast, and use our results when designing survey protocols that include one or more of our focal species.
{"title":"Environmental conditions and call-broadcast influence detection of eastern forest owls during standardized surveys","authors":"Kyle A. Lima, E. Call, T. Hodgman, D. Potter, S. Gallo, Erik J. Blomberg","doi":"10.1093/condor/duaa016","DOIUrl":"https://doi.org/10.1093/condor/duaa016","url":null,"abstract":"ABSTRACT Owls play crucial roles in the environment and provide ecosystem services making them important to monitor and study. However, standardized methods for most species do not exist, and we lack understanding of the effects of many environmental variables and call-broadcast on detection of owls during surveys. We performed a multispecies occupancy analysis of owl monitoring data collected from 2004 to 2013 across the state of Maine to examine the effects of environmental variables, conspecific and heterospecific call-broadcast, and general survey protocols on detection of 3 forest owls: Northern Saw-whet Owl (Aegolius acadicus), Barred Owl (Strix varia), and Great Horned Owl (Bubo virginianus). We found that environmental variables such as cloud cover, precipitation, temperature, time of night, and wind had species-specific effects on detection probability, and ambient noise decreased detection probability for all species. Snow cover did not affect detection of any species. We also found that conspecific call-broadcast increased detection of each species, while heterospecific call-broadcast had variable effects. Specifically, we found that Long-eared and Barred owl broadcast increased the detection of Northern Saw-whet Owl, and our results suggest additional heterospecific effects may exist. Our study showed that, compared to the protocol of the Maine Owl Monitoring Program, surveys simultaneously examining all 3 of our focal species can increase efficiency and lower disturbance by only broadcasting Long-eared and Barred owl calls during a 10-min survey. We recommend that future owl surveys take into account species-specific effects of conspecific and heterospecific call-broadcast, and use our results when designing survey protocols that include one or more of our focal species.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47613987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT For decades, ecologists have studied fundamental questions of how Amazonian biodiversity is maintained, and whether that diversity can persist following deforestation. The long history of avian research at the Biological Dynamics of Forest Fragments Project, near Manaus, Brazil, has helped advance this understanding in the context of a broader research program focused on rainforest fragments embedded in a dynamic matrix. By sampling birds beginning before fragments were isolated, in the late 1970s, and continuing the protocol to the present, our work has revealed community dynamics driven not just by area and isolation, but also by larger landscape patterns, particularly second growth recovery over decadal scales. Fragments permanently lose some bird species, but their communities need not follow a trajectory toward catastrophic change. Our challenge now is to determine under what conditions remnant patches and developing second growth can support not just the rich diversity of Amazonian rainforest species but also their population processes and emergent community properties.
{"title":"Birds in fragmented Amazonian rainforest: Lessons from 40 years at the Biological Dynamics of Forest Fragments Project","authors":"P. Stouffer","doi":"10.1093/condor/duaa005","DOIUrl":"https://doi.org/10.1093/condor/duaa005","url":null,"abstract":"ABSTRACT For decades, ecologists have studied fundamental questions of how Amazonian biodiversity is maintained, and whether that diversity can persist following deforestation. The long history of avian research at the Biological Dynamics of Forest Fragments Project, near Manaus, Brazil, has helped advance this understanding in the context of a broader research program focused on rainforest fragments embedded in a dynamic matrix. By sampling birds beginning before fragments were isolated, in the late 1970s, and continuing the protocol to the present, our work has revealed community dynamics driven not just by area and isolation, but also by larger landscape patterns, particularly second growth recovery over decadal scales. Fragments permanently lose some bird species, but their communities need not follow a trajectory toward catastrophic change. Our challenge now is to determine under what conditions remnant patches and developing second growth can support not just the rich diversity of Amazonian rainforest species but also their population processes and emergent community properties.","PeriodicalId":50624,"journal":{"name":"Condor","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41930775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}