首页 > 最新文献

Computer-Aided Design最新文献

英文 中文
Minimal surface-guided higher-order mesh generation for CAD models 为 CAD 模型生成最小曲面引导的高阶网格
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-10-01 DOI: 10.1016/j.cad.2024.103810
Kaixin Yu , Bohan Wang , Xuejuan Chen , Ying He , Jianjun Chen
This paper presents a novel method for generating higher-order meshes for CAD surfaces by leveraging minimal surface theory to improve element shapes. We explore the concept of higher-order mesh distortion through deformation gradients and introduce an energy function designed to minimize the surface area of these meshes, providing a theoretical justification for its effectiveness in untangling. The process of mesh generation starts with segmenting CAD surfaces into linear elements, followed by the insertion of higher-order nodes within these elements. These nodes are then projected onto the CAD surface to form the initial higher-order elements. By optimizing energy functions related to minimal surfaces and the projection distances, we achieve high-quality, geometrically accurate higher-order surface meshes. Our method has been validated on complex geometries, showcasing its potential in creating effective higher-order meshes for industrial CAD models.
本文提出了一种新方法,利用最小曲面理论改进元素形状,为 CAD 曲面生成高阶网格。我们通过变形梯度探索了高阶网格变形的概念,并引入了旨在最小化这些网格表面积的能量函数,为其在解缠方面的有效性提供了理论依据。网格生成过程首先是将 CAD 表面分割成线性元素,然后在这些元素中插入高阶节点。然后将这些节点投影到 CAD 表面,形成初始高阶元素。通过优化与最小曲面和投影距离相关的能量函数,我们获得了高质量、几何精度高的高阶曲面网格。我们的方法已在复杂几何图形上得到验证,展示了其为工业 CAD 模型创建有效高阶网格的潜力。
{"title":"Minimal surface-guided higher-order mesh generation for CAD models","authors":"Kaixin Yu ,&nbsp;Bohan Wang ,&nbsp;Xuejuan Chen ,&nbsp;Ying He ,&nbsp;Jianjun Chen","doi":"10.1016/j.cad.2024.103810","DOIUrl":"10.1016/j.cad.2024.103810","url":null,"abstract":"<div><div>This paper presents a novel method for generating higher-order meshes for CAD surfaces by leveraging minimal surface theory to improve element shapes. We explore the concept of higher-order mesh distortion through deformation gradients and introduce an energy function designed to minimize the surface area of these meshes, providing a theoretical justification for its effectiveness in untangling. The process of mesh generation starts with segmenting CAD surfaces into linear elements, followed by the insertion of higher-order nodes within these elements. These nodes are then projected onto the CAD surface to form the initial higher-order elements. By optimizing energy functions related to minimal surfaces and the projection distances, we achieve high-quality, geometrically accurate higher-order surface meshes. Our method has been validated on complex geometries, showcasing its potential in creating effective higher-order meshes for industrial CAD models.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103810"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary recognition of ship planar components from point clouds based on trimmed delaunay triangulation 基于修剪三角测量法的点云船舶平面部件边界识别
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-27 DOI: 10.1016/j.cad.2024.103808
Puhao Lei , Zhen Chen , Runli Tao , Jun Li , Yuchi Hao
A vision-based boundary detector is crucial for intelligent processing of ship planar components due to its automatically identifying workpiece edges. However, traditional methods suffer from many issues such as low accuracy and excessive detection errors for these workpieces with complex shape profiles. This paper proposes a trimmed Delaunay triangulation method (TDT) for recognizing boundary edges of planar workpieces from point clouds. It begins by distinguishing the difference of binary image pixel generated from point cloud to eliminate redundant points far away from plane boundary. Then, a triangulation trimming algorithm is developed to extract the edge points from the simplified points. Finally, complete plane boundary is reconstructed by a clustering-and-fitting method from the extracted edge points. Experimental results from multiple angles show that average absolute errors of straight edges and angles recognition are 1.29 mm and 1.04° respectively, which demonstrate that TDT has a high identification accuracy and robustness of plane boundary edge.
基于视觉的边界检测器可自动识别工件边缘,对船舶平面部件的智能加工至关重要。然而,传统的方法存在许多问题,例如精度低、检测误差过大,无法识别形状复杂的工件。本文提出了一种修剪德劳内三角测量法(TDT),用于从点云中识别平面工件的边界边缘。该方法首先区分由点云生成的二值图像像素的差异,以消除远离平面边界的冗余点。然后,开发一种三角形修剪算法,从简化点中提取边缘点。最后,通过聚类和拟合方法从提取的边缘点重建完整的平面边界。多角度的实验结果表明,直线边缘和角度识别的平均绝对误差分别为 1.29 mm 和 1.04°,这表明 TDT 对平面边界边缘具有较高的识别精度和鲁棒性。
{"title":"Boundary recognition of ship planar components from point clouds based on trimmed delaunay triangulation","authors":"Puhao Lei ,&nbsp;Zhen Chen ,&nbsp;Runli Tao ,&nbsp;Jun Li ,&nbsp;Yuchi Hao","doi":"10.1016/j.cad.2024.103808","DOIUrl":"10.1016/j.cad.2024.103808","url":null,"abstract":"<div><div>A vision-based boundary detector is crucial for intelligent processing of ship planar components due to its automatically identifying workpiece edges. However, traditional methods suffer from many issues such as low accuracy and excessive detection errors for these workpieces with complex shape profiles. This paper proposes a trimmed Delaunay triangulation method (TDT) for recognizing boundary edges of planar workpieces from point clouds. It begins by distinguishing the difference of binary image pixel generated from point cloud to eliminate redundant points far away from plane boundary. Then, a triangulation trimming algorithm is developed to extract the edge points from the simplified points. Finally, complete plane boundary is reconstructed by a clustering-and-fitting method from the extracted edge points. Experimental results from multiple angles show that average absolute errors of straight edges and angles recognition are 1.29 mm and 1.04° respectively, which demonstrate that TDT has a high identification accuracy and robustness of plane boundary edge.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103808"},"PeriodicalIF":3.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks eCAD-Net:利用深度神经网络从呆板的 B-Rep 模型重建可编辑的参数化 CAD 模型
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-24 DOI: 10.1016/j.cad.2024.103806
Chao Zhang , Arnaud Polette , Romain Pinquié , Gregorio Carasi , Henri De Charnace , Jean-Philippe Pernot
This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.
本文介绍了一种能够从哑巴 B-Rep 模型重建可编辑参数化 CAD 模型的新型框架。首先,每个 B-Rep 模型都使用基于 UV 图的网络友好形式表示,然后将其作为 eCAD-Net 的输入,eCAD-Net 是一种基于深度神经网络的新算法,可从图中预测基于特征的 CAD 建模序列。然后,使用特征匹配算法对序列进行缩放和微调,该算法可从输入的哑计算机辅助设计模型中检索精确的参数值。然后在一系列 CAD 建模操作中转换输出序列,在任何 CAD 建模器中创建可编辑的参数化 CAD 模型。本文提供了一个经过清理的数据集,用于学习和验证所提出的方法。实验结果表明,在此类重建任务中,我们的方法优于现有方法,而且它输出的可编辑参数化 CAD 模型与现有 CAD 建模器兼容,可用于下游工程应用。
{"title":"eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks","authors":"Chao Zhang ,&nbsp;Arnaud Polette ,&nbsp;Romain Pinquié ,&nbsp;Gregorio Carasi ,&nbsp;Henri De Charnace ,&nbsp;Jean-Philippe Pernot","doi":"10.1016/j.cad.2024.103806","DOIUrl":"10.1016/j.cad.2024.103806","url":null,"abstract":"<div><div>This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103806"},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical integration on 2D/3D arbitrary domains: Adaptive quadrature/cubature rule for domains with curved boundaries 二维/三维任意域的数值积分:具有弯曲边界的域的自适应正交/余角规则
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-24 DOI: 10.1016/j.cad.2024.103807
Nafiseh Niknejadi, Bijan Boroomand
This paper introduces an efficient quadrature rule for domains with curved boundaries in 2D/3D. Building upon our previous work focused on polytopes (Comput. Methods Appl. Mech. Engrg. 403 (2023) 115,726), we extend this method to handle volume/boundary integration on domains with general configurations and boundaries. In this method, we approximate a generic function using a finite number of orthogonal polynomials, and we obtain the coefficients of these polynomials through the integration points. The physical domain is enclosed by a fictitious rectangular/cuboidal domain, where a tensor-product of Gauss quadrature points is primarily considered. To locate the integration points that are strictly within the domain under consideration (e.g., the physical 3D domain itself or its mapped boundaries), we form a system of algebraic equations whose dimensions depend solely on the number of polynomials, not the number of quadrature points which may be significantly larger. This allows us to construct a full-rank square coefficient matrix, leading to the uniqueness of the solution, and the system of equations is then solved through a straightforward inverse process. To evaluate the integral of the polynomials, we transform the integration over the domain under consideration into an equivalent integration along the domain's boundaries using the divergence theorem. For 2D cases, we perform the boundary integration using Gauss points along the curved lines. In 3D cases, we provide an efficient algorithm for computing the boundary integrals over curved surfaces. We present several integration problems involving two and three-dimensional curved regions to demonstrate the accuracy and efficiency of the proposed method.
本文介绍了一种适用于二维/三维曲面域的高效正交规则。基于我们之前专注于多边形的工作(Comput.Methods Appl.Engrg.403 (2023) 115,726)的基础上,我们扩展了这一方法,以处理具有一般配置和边界的域的体积/边界积分。在这种方法中,我们使用有限个正交多项式逼近一个通用函数,并通过积分点获得这些多项式的系数。物理域由一个虚构的矩形/立方体域所包围,主要考虑高斯二次积分点的张量乘积。为了确定严格位于所考虑的域(例如物理三维域本身或其映射边界)内的积分点,我们形成了一个代数方程系统,其维度仅取决于多项式的数量,而不是正交点的数量,后者可能大得多。这样,我们就可以构建一个全秩平方系数矩阵,从而得到唯一的解,然后通过直接的逆过程求解方程组。为了评估多项式的积分,我们利用发散定理将考虑域的积分转换为沿域边界的等效积分。在二维情况下,我们使用沿曲线的高斯点进行边界积分。在三维情况下,我们提供了计算曲面边界积分的高效算法。我们提出了几个涉及二维和三维曲面区域的积分问题,以证明所提方法的准确性和效率。
{"title":"Numerical integration on 2D/3D arbitrary domains: Adaptive quadrature/cubature rule for domains with curved boundaries","authors":"Nafiseh Niknejadi,&nbsp;Bijan Boroomand","doi":"10.1016/j.cad.2024.103807","DOIUrl":"10.1016/j.cad.2024.103807","url":null,"abstract":"<div><div>This paper introduces an efficient quadrature rule for domains with curved boundaries in 2D/3D. Building upon our previous work focused on polytopes (Comput. Methods Appl. Mech. Engrg. 403 (2023) 115,726), we extend this method to handle volume/boundary integration on domains with general configurations and boundaries. In this method, we approximate a generic function using a finite number of orthogonal polynomials, and we obtain the coefficients of these polynomials through the integration points. The physical domain is enclosed by a fictitious rectangular/cuboidal domain, where a tensor-product of Gauss quadrature points is primarily considered. To locate the integration points that are strictly within the domain under consideration (e.g., the physical 3D domain itself or its mapped boundaries), we form a system of algebraic equations whose dimensions depend solely on the number of polynomials, not the number of quadrature points which may be significantly larger. This allows us to construct a full-rank square coefficient matrix, leading to the uniqueness of the solution, and the system of equations is then solved through a straightforward inverse process. To evaluate the integral of the polynomials, we transform the integration over the domain under consideration into an equivalent integration along the domain's boundaries using the divergence theorem. For 2D cases, we perform the boundary integration using Gauss points along the curved lines. In 3D cases, we provide an efficient algorithm for computing the boundary integrals over curved surfaces. We present several integration problems involving two and three-dimensional curved regions to demonstrate the accuracy and efficiency of the proposed method.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103807"},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-part kinematic constraint prediction for automatic generation of CAD model assemblies using graph convolutional networks 利用图卷积网络自动生成 CAD 模型装配的多部分运动学约束预测
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-21 DOI: 10.1016/j.cad.2024.103805
Lucas Vergez, Arnaud Polette, Jean-Philippe Pernot
This paper presents a machine learning-based approach to predict kinematic constraints between CAD models that have potentially never been assembled together before. During the learning phase, the algorithm is trained to predict the next-possible-constraints between a set of parts candidate to the assembly. Assemblies are represented in a new graph-based formalism that is capable of capturing features associated with parts, interfaces between parts and constraints between them. Using such a multi-level feature extraction strategy coupled to a state-by-state graph decomposition, the approach does not need to be trained on a large database. This formalism is used to model both the network input and output where the next-possible-constraints appear after evaluation. The core of the approach relies on a series of networks based on a link-prediction encoder–decoder architecture, integrating the capabilities of several convolutional networks trained in an end-to-end manner. A decision-making algorithm is added to post-process the output and drive the prediction process in finding one among the set of next-possible-constraints. This process is repeated until no more constraints can be added. The experimental results show that the proposed approach outperforms state-of-the-art methods on such assembly tasks. Although the state-by-state assembly algorithm is iterative, it still takes into account the whole set of parts as well as the whole set of constraints already predicted, and this makes it possible to handle constraint cycles, which is generally not possible when not considering multiple parts as input.
本文提出了一种基于机器学习的方法,用于预测可能从未组装在一起的 CAD 模型之间的运动学约束。在学习阶段,对算法进行训练,以预测装配体候选零件集之间的下一个可能约束。装配体用一种新的基于图形的形式来表示,这种形式能够捕捉与零件相关的特征、零件之间的接口以及它们之间的约束。利用这种多层次特征提取策略和逐状态图分解,该方法无需在大型数据库中进行训练。这种形式主义既可用于网络输入建模,也可用于评估后出现下一个可能约束的输出建模。该方法的核心依赖于一系列基于链接预测编码器-解码器架构的网络,整合了以端到端方式训练的多个卷积网络的功能。此外,还添加了一种决策算法,用于对输出进行后处理,并驱动预测过程,从一组下一个可能的约束条件中找到一个。这一过程不断重复,直到无法再添加更多的约束条件为止。实验结果表明,在此类装配任务中,所提出的方法优于最先进的方法。虽然逐状态装配算法是迭代式的,但它仍然考虑到了整套零件以及已预测的整套约束,这使得它可以处理约束循环,而这在不考虑多个零件作为输入时通常是不可能的。
{"title":"Multi-part kinematic constraint prediction for automatic generation of CAD model assemblies using graph convolutional networks","authors":"Lucas Vergez,&nbsp;Arnaud Polette,&nbsp;Jean-Philippe Pernot","doi":"10.1016/j.cad.2024.103805","DOIUrl":"10.1016/j.cad.2024.103805","url":null,"abstract":"<div><div>This paper presents a machine learning-based approach to predict kinematic constraints between CAD models that have potentially never been assembled together before. During the learning phase, the algorithm is trained to predict the next-possible-constraints between a set of parts candidate to the assembly. Assemblies are represented in a new graph-based formalism that is capable of capturing features associated with parts, interfaces between parts and constraints between them. Using such a multi-level feature extraction strategy coupled to a state-by-state graph decomposition, the approach does not need to be trained on a large database. This formalism is used to model both the network input and output where the next-possible-constraints appear after evaluation. The core of the approach relies on a series of networks based on a link-prediction encoder–decoder architecture, integrating the capabilities of several convolutional networks trained in an end-to-end manner. A decision-making algorithm is added to post-process the output and drive the prediction process in finding one among the set of next-possible-constraints. This process is repeated until no more constraints can be added. The experimental results show that the proposed approach outperforms state-of-the-art methods on such assembly tasks. Although the state-by-state assembly algorithm is iterative, it still takes into account the whole set of parts as well as the whole set of constraints already predicted, and this makes it possible to handle constraint cycles, which is generally not possible when not considering multiple parts as input.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103805"},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient evaluation of Bernstein-Bézier coefficients of B-spline basis functions over one knot span 在一个节点跨度上高效评估 B-样条曲线基函数的伯恩斯坦-贝塞尔系数
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-19 DOI: 10.1016/j.cad.2024.103804
Filip Chudy, Paweł Woźny
New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-Bézier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.
给出了 B-样条曲线基函数的新微分递推关系。利用这些关系,提出了一种在单节跨度上寻找 B-样条曲线基函数伯恩斯坦-贝塞尔系数的递归方法。该算法适用于任何节点序列,并具有渐近最优的计算复杂度。数值实验表明,与使用著名的 de Boor-Cox 公式的方法相比,新方法得出的结果保留了较高的位数。
{"title":"Efficient evaluation of Bernstein-Bézier coefficients of B-spline basis functions over one knot span","authors":"Filip Chudy,&nbsp;Paweł Woźny","doi":"10.1016/j.cad.2024.103804","DOIUrl":"10.1016/j.cad.2024.103804","url":null,"abstract":"<div><div>New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-Bézier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103804"},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational design of asymptotic geodesic hybrid gridshells via propagation algorithms 通过传播算法计算设计渐近大地混合网格壳
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-12 DOI: 10.1016/j.cad.2024.103800
Bolun Wang , Maryam Almaskin , Helmut Pottmann

Complex architectural structures may be built in a simple and cost-effective way if their geometry respects the fabrication constraints. Examples of such structures are provided by gridshells that are built from straight and flat slats which are bent on site so that they become tangential or normal to the design surface. Tangential slats follow geodesic curves on the surface, while normal slats are attached along asymptotic curves. Extending work by Frei Otto, Julius Natterer and others, who placed the slats tangentially, Eike Schling proposed structures which also contain slats normal to the reference surface. In the present paper we address those gridshells that consist of three families of bent elements, either tangential or normal to the design surface, and are arranged in a triangular web. We propose algorithms for the computational design of such webs that start from a boundary strip and propagate it, partially under additional guidance, to an entire web.

如果复杂建筑结构的几何形状符合制造限制,则可以用简单而经济的方式建造。网格壳就是此类结构的例子,网格壳由平直的板条制成,这些板条在现场弯曲,使其成为设计表面的切线或法线。切向板条沿着表面的测地曲线,而法线板条则沿着渐近曲线连接。弗雷-奥托(Frei Otto)、朱利叶斯-纳特勒(Julius Natterer)等人的工作是将板条切向放置,而艾克-施林(Eike Schling)则在此基础上提出了同样包含与基准面法线相连的板条的结构。在本文中,我们讨论了由三个弯曲元素系列组成的网格壳,它们或与设计表面相切,或与设计表面法线相切,并排列成三角形网状。我们提出了计算设计这种网状结构的算法,这种算法从边界条带开始,部分在额外的引导下传播到整个网状结构。
{"title":"Computational design of asymptotic geodesic hybrid gridshells via propagation algorithms","authors":"Bolun Wang ,&nbsp;Maryam Almaskin ,&nbsp;Helmut Pottmann","doi":"10.1016/j.cad.2024.103800","DOIUrl":"10.1016/j.cad.2024.103800","url":null,"abstract":"<div><p>Complex architectural structures may be built in a simple and cost-effective way if their geometry respects the fabrication constraints. Examples of such structures are provided by gridshells that are built from straight and flat slats which are bent on site so that they become tangential or normal to the design surface. Tangential slats follow geodesic curves on the surface, while normal slats are attached along asymptotic curves. Extending work by Frei Otto, Julius Natterer and others, who placed the slats tangentially, Eike Schling proposed structures which also contain slats normal to the reference surface. In the present paper we address those gridshells that consist of three families of bent elements, either tangential or normal to the design surface, and are arranged in a triangular web. We propose algorithms for the computational design of such webs that start from a boundary strip and propagate it, partially under additional guidance, to an entire web.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103800"},"PeriodicalIF":3.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524001271/pdfft?md5=c5c09a93ed9e03bddcee7eeb1f245a5d&pid=1-s2.0-S0010448524001271-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point containment algorithms for constructive solid geometry with unbounded primitives 无界基元构造实体几何的点包含算法
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-09-11 DOI: 10.1016/j.cad.2024.103803
Paul K. Romano , Patrick A. Myers , Seth R. Johnson , Aljaz̆ Kols̆ek , Patrick C. Shriwise

We present several algorithms for evaluating point containment in constructive solid geometry (CSG) trees with unbounded primitives. Three algorithms are presented based on postfix, prefix, and infix notations of the CSG binary expression tree. We show that prefix and infix notations enable short-circuiting logic, which reduces the number of primitives that must be checked during point containment. To evaluate the performance of the algorithms, each algorithm was implemented in the OpenMC Monte Carlo particle transport code, which relies on CSG to represent solid bodies through which subatomic particles travel. Two sets of tests were carried out. First, the execution time to generate a rasterized image of a 2D slice of three CSG models of varying complexity was measured. Use of both prefix and infix notations offered significant speedup over the postfix notation that has traditionally been used in particle transport codes, with infix resulting in a 6× reduction in execution time relative to postfix for a model of a tokamak fusion device. We then measured the execution time of neutron transport simulations of the same three models using each of the algorithms. The results and performance improvements reveal the same trends as for the rasterization test, with a 5.52× overall speedup using the infix notation relative to the original postfix notation in OpenMC for the tokamak model.

我们提出了几种算法,用于评估具有无界基元的构造实体几何(CSG)树中的点包含情况。我们介绍了基于 CSG 二进制表达式树的后缀、前缀和后缀符号的三种算法。我们表明,前缀和后缀符号可以实现短路逻辑,从而减少在点包含过程中必须检查的基元数量。为了评估这些算法的性能,我们在 OpenMC 蒙特卡洛粒子传输代码中实现了每种算法,该代码依赖 CSG 来表示亚原子粒子穿过的固体。我们进行了两组测试。首先,测量了三个不同复杂度的 CSG 模型生成二维切片光栅化图像的执行时间。与粒子传输代码传统上使用的后缀符号相比,前缀和后缀符号的使用都大大加快了速度,其中后缀符号使托卡马克核聚变装置模型的执行时间比后缀符号缩短了 6 倍。然后,我们使用每种算法测量了同样三个模型的中子输运模拟的执行时间。结果和性能改进显示了与光栅化测试相同的趋势,在托卡马克模型中,使用 infix 符号比 OpenMC 中的原始 postfix 符号总体速度提高了 5.52 倍。
{"title":"Point containment algorithms for constructive solid geometry with unbounded primitives","authors":"Paul K. Romano ,&nbsp;Patrick A. Myers ,&nbsp;Seth R. Johnson ,&nbsp;Aljaz̆ Kols̆ek ,&nbsp;Patrick C. Shriwise","doi":"10.1016/j.cad.2024.103803","DOIUrl":"10.1016/j.cad.2024.103803","url":null,"abstract":"<div><p>We present several algorithms for evaluating point containment in constructive solid geometry (CSG) trees with unbounded primitives. Three algorithms are presented based on postfix, prefix, and infix notations of the CSG binary expression tree. We show that prefix and infix notations enable short-circuiting logic, which reduces the number of primitives that must be checked during point containment. To evaluate the performance of the algorithms, each algorithm was implemented in the OpenMC Monte Carlo particle transport code, which relies on CSG to represent solid bodies through which subatomic particles travel. Two sets of tests were carried out. First, the execution time to generate a rasterized image of a 2D slice of three CSG models of varying complexity was measured. Use of both prefix and infix notations offered significant speedup over the postfix notation that has traditionally been used in particle transport codes, with infix resulting in a 6<span><math><mo>×</mo></math></span> reduction in execution time relative to postfix for a model of a tokamak fusion device. We then measured the execution time of neutron transport simulations of the same three models using each of the algorithms. The results and performance improvements reveal the same trends as for the rasterization test, with a 5.52<span><math><mo>×</mo></math></span> overall speedup using the infix notation relative to the original postfix notation in OpenMC for the tokamak model.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103803"},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524001301/pdfft?md5=8fddc42a59401cae480fb7d7905061a3&pid=1-s2.0-S0010448524001301-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tessellation and interactive visualization of four-dimensional spacetime geometries 四维时空几何图形的细分和交互式可视化
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-24 DOI: 10.1016/j.cad.2024.103792
Philip Claude Caplan

This paper addresses two problems needed to support four-dimensional (3d+t) spacetime numerical simulations. The first contribution is a general algorithm for producing conforming spacetime meshes of moving geometries. Here, the surface points of the geometry are embedded in a four-dimensional space as the geometry moves in time. The geometry is first tessellated at prescribed time steps and then these tessellations are connected in the parameter space of each geometry entity to form tetrahedra. In contrast to previous work, this approach allows the resolution of the geometry to be controlled at each time step. The only restriction on the algorithm is the requirement that no topological changes to the geometry are made (i.e. the hierarchical relations between all geometry entities are maintained) as the geometry moves in time. The validity of the final mesh topology is verified by ensuring the tetrahedralizations represent a closed 3-manifold. For some analytic problems, the 4d volume of the tetrahedralization is also verified. The second problem addressed in this paper is the design of a system to interactively visualize four-dimensional meshes when the 4d view changes, including tetrahedra (embedded in 4d) and pentatopes. Algorithms that either include or exclude a geometry shader are described, and the efficiency of each approach is then compared. Overall, the results suggest that visualizing tetrahedra (either those bounding the domain, or extracted from a pentatopal mesh) using a geometry shader achieves the highest frame rate, realizing interactive frame rates of at least 15 frames per second for meshes with about 50 million tetrahedra.

本文解决了支持四维(3d+t)时空数值模拟所需的两个问题。第一个贡献是一种通用算法,用于生成移动几何体的符合时空网格。在这里,几何体的表面点会随着几何体的移动嵌入四维空间。首先在规定的时间步长内对几何体进行网格划分,然后在每个几何体的参数空间内将这些网格连接起来,形成四面体。与以往的工作不同,这种方法允许在每个时间步长控制几何体的分辨率。该算法的唯一限制是要求在几何体随时间移动时,几何体的拓扑结构不发生变化(即所有几何实体之间的层次关系保持不变)。通过确保四面体化代表一个封闭的 3-manifold,来验证最终网格拓扑的有效性。对于一些分析问题,还验证了四面体化的 4d 体积。本文解决的第二个问题是设计一个系统,以便在四维视图发生变化时交互式地可视化四维网格,包括四面体(嵌入到四维中)和五面体。本文描述了包含或不包含几何着色器的算法,然后比较了每种方法的效率。总体而言,研究结果表明,使用几何着色器可视化四面体(无论是域的边界四面体,还是从五面体网格中提取的四面体)可实现最高帧率,对于包含约 5000 万个四面体的网格,可实现至少每秒 15 帧的交互帧率。
{"title":"Tessellation and interactive visualization of four-dimensional spacetime geometries","authors":"Philip Claude Caplan","doi":"10.1016/j.cad.2024.103792","DOIUrl":"10.1016/j.cad.2024.103792","url":null,"abstract":"<div><p>This paper addresses two problems needed to support four-dimensional (<span><math><mrow><mn>3</mn><mi>d</mi><mo>+</mo><mi>t</mi></mrow></math></span>) spacetime numerical simulations. The first contribution is a general algorithm for producing conforming spacetime meshes of moving geometries. Here, the surface points of the geometry are embedded in a four-dimensional space as the geometry moves in time. The geometry is first tessellated at prescribed time steps and then these tessellations are connected in the parameter space of each geometry entity to form tetrahedra. In contrast to previous work, this approach allows the resolution of the geometry to be controlled at each time step. The only restriction on the algorithm is the requirement that no topological changes to the geometry are made (i.e. the hierarchical relations between all geometry entities are maintained) as the geometry moves in time. The validity of the final mesh topology is verified by ensuring the tetrahedralizations represent a closed 3-manifold. For some analytic problems, the <span><math><mrow><mn>4</mn><mi>d</mi></mrow></math></span> volume of the tetrahedralization is also verified. The second problem addressed in this paper is the design of a system to interactively visualize four-dimensional meshes when the <span><math><mrow><mn>4</mn><mi>d</mi></mrow></math></span> view changes, including tetrahedra (embedded in <span><math><mrow><mn>4</mn><mi>d</mi></mrow></math></span>) and pentatopes. Algorithms that either include or exclude a geometry shader are described, and the efficiency of each approach is then compared. Overall, the results suggest that visualizing tetrahedra (either those bounding the domain, or extracted from a pentatopal mesh) using a geometry shader achieves the highest frame rate, realizing interactive frame rates of at least 15 frames per second for meshes with about 50 million tetrahedra.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103792"},"PeriodicalIF":3.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524001192/pdfft?md5=e51e1de5cf978ffc80f6145b0ad55e2e&pid=1-s2.0-S0010448524001192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology-aware blending method for implicit heterogeneous porous model design 用于隐式异质多孔模型设计的拓扑感知混合法
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-08 DOI: 10.1016/j.cad.2024.103782
Depeng Gao, Yang Gao, Yuanzhi Zhang, Hongwei Lin

Porous structures are materials consisting of minuscule pores, where the microstructure morphology significantly impacts their macroscopic properties. Integrating different porous structures through a blending method is indispensable to cater to diverse functional regions in heterogeneous models. Previous studies on blending methods for porous structures have mainly focused on controlling the shape of blending regions, yet they have fallen short in effectively addressing topological errors in blended structures. This paper introduces a new blending method that successfully addresses this issue. Initially, a novel initialization method is proposed, which includes distinct strategies for blending regions of varying complexities. Subsequently, we formulate the challenge of eliminating topological errors as an optimization problem based on persistent homology. Through iterative updates of control coefficients, this optimization problem is solved to generate a blended porous structure. Our approach not only avoids topological errors but also governs the shape and positioning of the blending region while remaining unchanged in the structure outside blending region. The experimental outcomes validate the effectiveness of our method in producing high-quality blended porous structures. Furthermore, these results highlight potential applications of our blending method in biomimetics and the design of high-stiffness mechanical heterogeneous models.

多孔结构是由微小孔隙组成的材料,其微观结构形态对其宏观特性有重大影响。要满足异质模型中不同功能区域的需求,通过混合方法整合不同的多孔结构是不可或缺的。以往关于多孔结构混合方法的研究主要集中在控制混合区域的形状,但在有效解决混合结构的拓扑误差方面还存在不足。本文介绍了一种新的混合方法,成功地解决了这一问题。首先,我们提出了一种新颖的初始化方法,其中包括针对不同复杂度混合区域的不同策略。随后,我们将消除拓扑误差的挑战表述为基于持久同源性的优化问题。通过控制系数的迭代更新,这一优化问题得以解决,从而生成混合多孔结构。我们的方法不仅能避免拓扑误差,还能控制混合区域的形状和定位,同时保持混合区域外的结构不变。实验结果验证了我们的方法在生成高质量混合多孔结构方面的有效性。此外,这些结果凸显了我们的混合方法在生物仿生学和高刚度机械异质模型设计中的潜在应用。
{"title":"Topology-aware blending method for implicit heterogeneous porous model design","authors":"Depeng Gao,&nbsp;Yang Gao,&nbsp;Yuanzhi Zhang,&nbsp;Hongwei Lin","doi":"10.1016/j.cad.2024.103782","DOIUrl":"10.1016/j.cad.2024.103782","url":null,"abstract":"<div><p>Porous structures are materials consisting of minuscule pores, where the microstructure morphology significantly impacts their macroscopic properties. Integrating different porous structures through a blending method is indispensable to cater to diverse functional regions in heterogeneous models. Previous studies on blending methods for porous structures have mainly focused on controlling the shape of blending regions, yet they have fallen short in effectively addressing topological errors in blended structures. This paper introduces a new blending method that successfully addresses this issue. Initially, a novel initialization method is proposed, which includes distinct strategies for blending regions of varying complexities. Subsequently, we formulate the challenge of eliminating topological errors as an optimization problem based on persistent homology. Through iterative updates of control coefficients, this optimization problem is solved to generate a blended porous structure. Our approach not only avoids topological errors but also governs the shape and positioning of the blending region while remaining unchanged in the structure outside blending region. The experimental outcomes validate the effectiveness of our method in producing high-quality blended porous structures. Furthermore, these results highlight potential applications of our blending method in biomimetics and the design of high-stiffness mechanical heterogeneous models.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"177 ","pages":"Article 103782"},"PeriodicalIF":3.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer-Aided Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1