Pub Date : 2024-07-30DOI: 10.1016/j.csl.2024.101699
Nimra Zaheer , Agha Ali Raza , Mudassir Shabbir
The aim of conversational speech processing is to analyze human conversations in natural settings. It finds numerous applications in personality traits identification, speech therapy, speaker identification and verification, speech emotion detection, and speaker diarization. However, large-scale annotated datasets required for feature extraction and conversational model training only exist for a handful of languages (e.g. English, Mandarin, and French) as the gathering, cleaning, and annotation of such datasets is tedious, time-consuming, and expensive. We propose two scalable, language-agnostic algorithms for automatically generating multi-speaker, variable-length, spontaneous conversations. These algorithms synthesize conversations using existing non-conversational speech datasets. We also contribute the resulting datasets (283 hours, 50 speakers). As a comparison, we also gathered the first spontaneous conversational dataset for Urdu (24 hours, 212 speakers) from public talk shows. Using speaker diarization as an example, we evaluate our datasets and report the first baseline diarization error rates (DER) for Urdu (25% for synthetic dataset-based models, and 29% for natural conversations). Our conversational speech generation technique allows training speaker diarization pipelines without the need for preparing huge conversational repositories.
{"title":"Conversations in the wild: Data collection, automatic generation and evaluation","authors":"Nimra Zaheer , Agha Ali Raza , Mudassir Shabbir","doi":"10.1016/j.csl.2024.101699","DOIUrl":"10.1016/j.csl.2024.101699","url":null,"abstract":"<div><p>The aim of conversational speech processing is to analyze human conversations in natural settings. It finds numerous applications in personality traits identification, speech therapy, speaker identification and verification, speech emotion detection, and speaker diarization. However, large-scale annotated datasets required for feature extraction and conversational model training only exist for a handful of languages (e.g. English, Mandarin, and French) as the gathering, cleaning, and annotation of such datasets is tedious, time-consuming, and expensive. We propose two scalable, language-agnostic algorithms for automatically generating multi-speaker, variable-length, spontaneous conversations. These algorithms synthesize conversations using existing non-conversational speech datasets. We also contribute the resulting datasets (283 hours, 50 speakers). As a comparison, we also gathered the first spontaneous conversational dataset for Urdu (24 hours, 212 speakers) from public talk shows. Using speaker diarization as an example, we evaluate our datasets and report the first baseline diarization error rates (DER) for Urdu (25% for synthetic dataset-based models, and 29% for natural conversations). Our conversational speech generation technique allows training speaker diarization pipelines without the need for preparing huge conversational repositories.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101699"},"PeriodicalIF":3.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000822/pdfft?md5=3c965afd5ed1a80b86a1318a77699ef7&pid=1-s2.0-S0885230824000822-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.csl.2024.101697
Atheer Algherairy , Moataz Ahmed
Large Language Models (LLMs) have gained widespread popularity due to their instruction-following abilities. In this study, we evaluate their ability in simulating user interactions for task-oriented dialogue (TOD) systems. Our findings demonstrate that prompting LLMs reveals their promising capabilities for training and testing dialogue policies, eliminating the need for domain expertise in crafting complex rules or relying on large annotated data, as required by traditional simulators. The results show that the dialogue system trained with the ChatGPT simulator achieves a success rate of 59%, comparable to a 62% success rate of the dialogue system trained with the manual-rules, agenda-based user simulator (ABUS). Furthermore, the dialogue system trained with the ChatGPT simulator demonstrates better generalization ability compared to the dialogue system trained with the ABUS. Its success rate outperforms that of the dialogue system trained with the ABUS by 4% on GenTUS, 5% on the ChatGPT Simulator, and 3% on the Llama simulator. Nevertheless, LLM-based user simulators provide challenging environment, lexically rich, diverse, and random responses. Llama simulator outperforms the human reference in all lexical diversity metrics with a margin of 0.66 in SE, 0.39 in CE, 0.01 in MSTTR, 0.04 in HDD, and 0.55 in MTLD, while the ChatGPT simulator achieves comparable results. This ultimately contributes to enhancing the system’s ability to generalize more effectively.
{"title":"Prompting large language models for user simulation in task-oriented dialogue systems","authors":"Atheer Algherairy , Moataz Ahmed","doi":"10.1016/j.csl.2024.101697","DOIUrl":"10.1016/j.csl.2024.101697","url":null,"abstract":"<div><p>Large Language Models (LLMs) have gained widespread popularity due to their instruction-following abilities. In this study, we evaluate their ability in simulating user interactions for task-oriented dialogue (TOD) systems. Our findings demonstrate that prompting LLMs reveals their promising capabilities for training and testing dialogue policies, eliminating the need for domain expertise in crafting complex rules or relying on large annotated data, as required by traditional simulators. The results show that the dialogue system trained with the ChatGPT simulator achieves a success rate of 59%, comparable to a 62% success rate of the dialogue system trained with the manual-rules, agenda-based user simulator (ABUS). Furthermore, the dialogue system trained with the ChatGPT simulator demonstrates better generalization ability compared to the dialogue system trained with the ABUS. Its success rate outperforms that of the dialogue system trained with the ABUS by 4% on GenTUS, 5% on the ChatGPT Simulator, and 3% on the Llama simulator. Nevertheless, LLM-based user simulators provide challenging environment, lexically rich, diverse, and random responses. Llama simulator outperforms the human reference in all lexical diversity metrics with a margin of 0.66 in SE, 0.39 in CE, 0.01 in MSTTR, 0.04 in HDD, and 0.55 in MTLD, while the ChatGPT simulator achieves comparable results. This ultimately contributes to enhancing the system’s ability to generalize more effectively.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101697"},"PeriodicalIF":3.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000809/pdfft?md5=81b644a0e6ced84bc9ba93092c2f49b3&pid=1-s2.0-S0885230824000809-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.csl.2024.101700
Yan Cong
Evaluating students' textual response is a common and critical task in language research and education practice. However, manual assessment can be tedious and may lack consistency, posing challenges for both scientific discovery and frontline teaching. Leveraging state-of-the-art large language models (LLMs), we aim to define and operationalize LLM-Surprisal, a numeric representation of the interplay between lexical diversity and syntactic complexity, and to empirically and theoretically demonstrate its relevance for automatic writing assessment and Chinese L2 (second language) learners’ English writing development. We developed an LLM-based natural language processing pipeline that can automatically compute text Surprisal scores. By comparing Surprisal metrics with the widely used classic indices in L2 studies, we extended the usage of computational metrics in Chinese learners’ L2 English writing. Our analyses suggested that LLM-Surprisals can distinguish L2 from L1 (first language) writing, index L2 development stages, and predict scores provided by human professionals. This indicated that the Surprisal dimension may manifest itself as critical aspects in L2 development. The relative advantages and disadvantages of these approaches were discussed in depth. We concluded that LLMs are promising tools that can enhance L2 research. Our showcase paves the way for more nuanced approaches to computationally assessing and understanding L2 development. Our pipelines and findings will inspire language teachers, learners, and researchers to operationalize LLMs in an innovative and accessible manner.
{"title":"Demystifying large language models in second language development research","authors":"Yan Cong","doi":"10.1016/j.csl.2024.101700","DOIUrl":"10.1016/j.csl.2024.101700","url":null,"abstract":"<div><p>Evaluating students' textual response is a common and critical task in language research and education practice. However, manual assessment can be tedious and may lack consistency, posing challenges for both scientific discovery and frontline teaching. Leveraging state-of-the-art large language models (LLMs), we aim to define and operationalize LLM-Surprisal, a numeric representation of the interplay between lexical diversity and syntactic complexity, and to empirically and theoretically demonstrate its relevance for automatic writing assessment and Chinese L2 (second language) learners’ English writing development. We developed an LLM-based natural language processing pipeline that can automatically compute text Surprisal scores. By comparing Surprisal metrics with the widely used classic indices in L2 studies, we extended the usage of computational metrics in Chinese learners’ L2 English writing. Our analyses suggested that LLM-Surprisals can distinguish L2 from L1 (first language) writing, index L2 development stages, and predict scores provided by human professionals. This indicated that the Surprisal dimension may manifest itself as critical aspects in L2 development. The relative advantages and disadvantages of these approaches were discussed in depth. We concluded that LLMs are promising tools that can enhance L2 research. Our showcase paves the way for more nuanced approaches to computationally assessing and understanding L2 development. Our pipelines and findings will inspire language teachers, learners, and researchers to operationalize LLMs in an innovative and accessible manner.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101700"},"PeriodicalIF":3.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000834/pdfft?md5=88083b1a8544dcbd7f01cce3a7d527d7&pid=1-s2.0-S0885230824000834-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.csl.2024.101696
Liv Ziegfeld , Daan Di Scala , Anita H.M. Cremers
The prevalence of conversational interfaces is rapidly rising, since improved algorithms allow for remarkable proficiency in understanding and generating natural language. This also holds for Conversational Recommender Systems (CRS), that benefit from information being provided by the user in the course of the dialogue to offer personalized recommendations. However, the challenge remains eliciting the user's characteristics and preferences in a way that leads to the most optimal user experience. Hence, the current research was aimed at investigating the effect of different Preference Elicitation (PE) methods on the user experience of a CRS. We introduce two axes across which PE methods can be classified, namely the degree of system prompt guidance and the level of user input restriction. We built three versions of a CRS to conduct a between-subjects experiment which compared three conditions: high guidance-high restriction, high guidance-low restriction and low guidance-low restriction. We tested their effect on ten constructs of user experience measures on 66 European participants, all working in agriculture or forestry.
The study did not find any significant effects of the three preference elicitation methods on all user experience constructs collected through questionnaires. However, we did find significant differences in terms of the objective measures chat duration (Speed), response time (Cognitive Demand) and recommendation performance (Accuracy of Recommended Items). Regarding the recommendation performance, it was found that the preference elicitation methods with high guidance led to a higher match score than the condition with low guidance. The certainty score was highest in the condition with high guidance and high input restriction. Finally, we found through a question at the end of the conversation that users who were satisfied with the recommendation responded more positively to six out of ten user experience constructs. This suggests that satisfaction with the recommendation performance is a crucial factor in the user experience of CRSs.
会话界面的普及率正在迅速上升,因为经过改进的算法可以非常熟练地理解和生成自然语言。对话推荐系统(CRS)也是如此,该系统利用用户在对话过程中提供的信息来提供个性化推荐。然而,如何获取用户的特征和偏好,从而带来最佳的用户体验,仍然是一项挑战。因此,目前的研究旨在调查不同的偏好激发(PE)方法对 CRS 用户体验的影响。我们引入了两个轴来对 PE 方法进行分类,即系统提示引导的程度和用户输入限制的程度。我们制作了三个版本的 CRS,进行了主体间实验,比较了三种情况:高引导-高限制、高引导-低限制和低引导-低限制。我们在 66 名欧洲参与者(均从事农业或林业工作)身上测试了这三种方法对十项用户体验指标的影响。研究没有发现三种偏好激发方法对通过问卷收集的所有用户体验指标有任何显著影响。不过,我们确实发现在客观测量聊天持续时间(速度)、响应时间(认知需求)和推荐性能(推荐项目的准确性)方面存在明显差异。在推荐性能方面,我们发现高引导性的偏好激发方法比低引导性的条件下匹配得分更高。高指导性和高输入限制条件下的确定性得分最高。最后,我们通过对话结束时的一个问题发现,对推荐感到满意的用户对十个用户体验构面中的六个作出了更积极的回应。这表明,对推荐性能的满意度是 CRS 用户体验的一个关键因素。
{"title":"The effect of preference elicitation methods on the user experience in conversational recommender systems","authors":"Liv Ziegfeld , Daan Di Scala , Anita H.M. Cremers","doi":"10.1016/j.csl.2024.101696","DOIUrl":"10.1016/j.csl.2024.101696","url":null,"abstract":"<div><p>The prevalence of conversational interfaces is rapidly rising, since improved algorithms allow for remarkable proficiency in understanding and generating natural language. This also holds for Conversational Recommender Systems (CRS), that benefit from information being provided by the user in the course of the dialogue to offer personalized recommendations. However, the challenge remains eliciting the user's characteristics and preferences in a way that leads to the most optimal user experience. Hence, the current research was aimed at investigating the effect of different Preference Elicitation (PE) methods on the user experience of a CRS. We introduce two axes across which PE methods can be classified, namely the degree of system prompt guidance and the level of user input restriction. We built three versions of a CRS to conduct a between-subjects experiment which compared three conditions: high guidance-high restriction, high guidance-low restriction and low guidance-low restriction. We tested their effect on ten constructs of user experience measures on 66 European participants, all working in agriculture or forestry.</p><p>The study did not find any significant effects of the three preference elicitation methods on all user experience constructs collected through questionnaires. However, we did find significant differences in terms of the objective measures chat duration (Speed), response time (Cognitive Demand) and recommendation performance (Accuracy of Recommended Items). Regarding the recommendation performance, it was found that the preference elicitation methods with high guidance led to a higher match score than the condition with low guidance. The certainty score was highest in the condition with high guidance and high input restriction. Finally, we found through a question at the end of the conversation that users who were satisfied with the recommendation responded more positively to six out of ten user experience constructs. This suggests that satisfaction with the recommendation performance is a crucial factor in the user experience of CRSs.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101696"},"PeriodicalIF":3.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000792/pdfft?md5=2468411a22f6c0a2ba9f84281b96dacc&pid=1-s2.0-S0885230824000792-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.csl.2024.101698
Burcu Ünlütabak, Onur Bal
Theory of mind (ToM), understanding others’ mental states, is a defining skill belonging to humans. Research assessing LLMs’ ToM performance yields conflicting findings and leads to discussions about whether and how they could show ToM understanding. Psychological research indicates that the characteristics of a specific language can influence how mental states are represented and communicated. Thus, it is reasonable to expect language characteristics to influence how LLMs communicate with humans, especially when the conversation involves references to mental states. This study examines how these characteristics affect LLMs’ ToM performance by evaluating GPT 3.5 and 4 performances in English and Turkish. Turkish provides an excellent contrast to English since Turkish has a different syntactic structure and special verbs, san- and zannet-, meaning “falsely believe.” Using Open AI's Chat Completion API, we collected responses from GPT models for first- and second-order ToM scenarios in English and Turkish. Our innovative approach combined completion prompts and open-ended questions within the same chat session, offering deep insights into models’ reasoning processes. Our data showed that while GPT models can respond accurately to standard ToM tasks (100% accuracy), their performance deteriorates (below chance level) with slight modifications. This high sensitivity suggests a lack of robustness in ToM performance. GPT 4 outperformed its predecessor, GPT 3.5, showing improvement in ToM performance to some extent. The models generally performed better when tasks were presented in English than in Turkish. These findings indicate that GPT models cannot reliably pass first-order and second-order ToM tasks in either of the languages yet. The findings have significant implications for Explainability of LLMs by highlighting challenges and biases that they face when simulating human-like ToM understanding in different languages.
心智理论(ToM),即理解他人的心理状态,是人类的一项决定性技能。评估本地语言学习者心智理论表现的研究得出了相互矛盾的结论,并引发了关于他们是否以及如何表现出心智理论理解能力的讨论。心理学研究表明,特定语言的特点会影响心理状态的表达和交流方式。因此,我们有理由相信,语言特点会影响 LLM 与人类交流的方式,尤其是当对话涉及到心理状态时。本研究通过评估 GPT 3.5 和 4 在英语和土耳其语中的表现,探讨了这些语言特点如何影响本地语言学家的 ToM 表现。土耳其语与英语形成了很好的对比,因为土耳其语具有不同的句法结构和特殊动词 san- 和 zannet-,意为 "虚假地相信"。我们使用 Open AI 的聊天完成 API,收集了 GPT 模型在英语和土耳其语的一阶和二阶 ToM 场景中的反应。我们的创新方法在同一聊天会话中结合了完成提示和开放式问题,从而深入了解了模型的推理过程。我们的数据显示,虽然 GPT 模型可以准确地响应标准 ToM 任务(准确率为 100%),但只要稍加修改,其性能就会下降(低于偶然水平)。这种高敏感性表明 ToM 性能缺乏稳健性。GPT 4 的表现优于其前身 GPT 3.5,在一定程度上提高了 ToM 性能。当任务以英语呈现时,模型的表现普遍优于以土耳其语呈现时。这些发现表明,GPT 模型还不能可靠地通过两种语言中的一阶和二阶 ToM 任务。这些发现对 LLM 的可解释性具有重要意义,因为它们强调了 LLM 在不同语言中模拟类人 ToM 理解时所面临的挑战和偏差。
{"title":"Theory of mind performance of large language models: A comparative analysis of Turkish and English","authors":"Burcu Ünlütabak, Onur Bal","doi":"10.1016/j.csl.2024.101698","DOIUrl":"10.1016/j.csl.2024.101698","url":null,"abstract":"<div><p>Theory of mind (ToM), understanding others’ mental states, is a defining skill belonging to humans. Research assessing LLMs’ ToM performance yields conflicting findings and leads to discussions about whether and how they could show ToM understanding. Psychological research indicates that the characteristics of a specific language can influence how mental states are represented and communicated. Thus, it is reasonable to expect language characteristics to influence how LLMs communicate with humans, especially when the conversation involves references to mental states. This study examines how these characteristics affect LLMs’ ToM performance by evaluating GPT 3.5 and 4 performances in English and Turkish. Turkish provides an excellent contrast to English since Turkish has a different syntactic structure and special verbs, san- and zannet-, meaning “falsely believe.” Using Open AI's Chat Completion API, we collected responses from GPT models for first- and second-order ToM scenarios in English and Turkish. Our innovative approach combined completion prompts and open-ended questions within the same chat session, offering deep insights into models’ reasoning processes. Our data showed that while GPT models can respond accurately to standard ToM tasks (100% accuracy), their performance deteriorates (below chance level) with slight modifications. This high sensitivity suggests a lack of robustness in ToM performance. GPT 4 outperformed its predecessor, GPT 3.5, showing improvement in ToM performance to some extent. The models generally performed better when tasks were presented in English than in Turkish. These findings indicate that GPT models cannot reliably pass first-order and second-order ToM tasks in either of the languages yet. The findings have significant implications for <em>Explainability</em> of LLMs by highlighting challenges and biases that they face when simulating human-like ToM understanding in different languages.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101698"},"PeriodicalIF":3.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000810/pdfft?md5=e4a1b003e652ef2e0a652d3d4eaf2c3d&pid=1-s2.0-S0885230824000810-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.csl.2024.101694
Jiawen Zhang , Dongliang Han , Shuai Han , Heng Li , Wing-Kai Lam , Mingyu Zhang
Video understanding technology has become increasingly important in various disciplines, yet current approaches have primarily focused on lower comprehension level of video content, posing challenges for providing comprehensive and professional insights at a higher comprehension level. Video analysis plays a crucial role in athlete training and strategy development in racket sports. This study aims to demonstrate an innovative and higher-level video comprehension framework (ChatMatch), which integrates computer vision technologies with the cutting-edge large language models (LLM) to enable intelligent analysis and inference of racket sports videos. To examine the feasibility of this framework, we deployed a prototype of ChatMatch in the badminton in this study. A vision-based encoder was first proposed to extract the meta-features included the locations, actions, gestures, and action results of players in each frame of racket match videos, followed by a rule-based decoding method to transform the extracted information in both structured knowledge and unstructured knowledge. A set of LLM-based agents included namely task identifier, coach agent, statistician agent, and video manager, was developed through a prompt engineering and driven by an automated mechanism. The automatic collaborative interaction among the agents enabled the provision of a comprehensive response to professional inquiries from users. The validation findings showed that our vision models had excellent performances in meta-feature extraction, achieving a location identification accuracy of 0.991, an action recognition accuracy of 0.902, and a gesture recognition accuracy of 0.950. Additionally, a total of 100 questions were gathered from four proficient badminton players and one coach to evaluate the performance of the LLM-based agents, and the outcomes obtained from ChatMatch exhibited commendable results across general inquiries, statistical queries, and video retrieval tasks. These findings highlight the potential of using this approach that can offer valuable insights for athletes and coaches while significantly improve the efficiency of sports video analysis.
{"title":"ChatMatch: Exploring the potential of hybrid vision–language deep learning approach for the intelligent analysis and inference of racket sports","authors":"Jiawen Zhang , Dongliang Han , Shuai Han , Heng Li , Wing-Kai Lam , Mingyu Zhang","doi":"10.1016/j.csl.2024.101694","DOIUrl":"10.1016/j.csl.2024.101694","url":null,"abstract":"<div><p>Video understanding technology has become increasingly important in various disciplines, yet current approaches have primarily focused on lower comprehension level of video content, posing challenges for providing comprehensive and professional insights at a higher comprehension level. Video analysis plays a crucial role in athlete training and strategy development in racket sports. This study aims to demonstrate an innovative and higher-level video comprehension framework (ChatMatch), which integrates computer vision technologies with the cutting-edge large language models (LLM) to enable intelligent analysis and inference of racket sports videos. To examine the feasibility of this framework, we deployed a prototype of ChatMatch in the badminton in this study. A vision-based encoder was first proposed to extract the meta-features included the locations, actions, gestures, and action results of players in each frame of racket match videos, followed by a rule-based decoding method to transform the extracted information in both structured knowledge and unstructured knowledge. A set of LLM-based agents included namely task identifier, coach agent, statistician agent, and video manager, was developed through a prompt engineering and driven by an automated mechanism. The automatic collaborative interaction among the agents enabled the provision of a comprehensive response to professional inquiries from users. The validation findings showed that our vision models had excellent performances in meta-feature extraction, achieving a location identification accuracy of 0.991, an action recognition accuracy of 0.902, and a gesture recognition accuracy of 0.950. Additionally, a total of 100 questions were gathered from four proficient badminton players and one coach to evaluate the performance of the LLM-based agents, and the outcomes obtained from ChatMatch exhibited commendable results across general inquiries, statistical queries, and video retrieval tasks. These findings highlight the potential of using this approach that can offer valuable insights for athletes and coaches while significantly improve the efficiency of sports video analysis.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101694"},"PeriodicalIF":3.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000779/pdfft?md5=2c72701b559ac872232548320e08722b&pid=1-s2.0-S0885230824000779-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.csl.2024.101693
Yuyan Wu, Romina Soledad Albornoz-De Luise, Miguel Arevalillo-Herráez
Conversational Intelligent Tutoring Systems (CITS) have drawn increasing interest in education because of their capacity to tailor learning experiences, improve user engagement, and contribute to the effective transfer of knowledge. Conversational agents employ advanced natural language techniques to engage in a convincing human-like tutorial conversation. In solving math word problems, a significant challenge arises in enabling the system to understand user utterances and accurately map extracted entities to the essential problem quantities required for problem-solving, despite the inherent ambiguity of human natural language. In this study, we propose two possible approaches to enhance the performance of a particular CITS designed to teach learners to solve arithmetic–algebraic word problems. Firstly, we propose an ensemble approach to intent classification and entity extraction, which combines the predictions made by two distinct individual models that use constraints defined by human experts. This approach leverages the intertwined nature of the intents and entities to yield a comprehensive understanding of the user’s utterance, ultimately aiming to enhance semantic accuracy. Secondly, we introduce an adapted Term Frequency-Inverse Document Frequency technique to associate entities with problem quantity descriptions. The evaluation was conducted on the AWPS and MATH-HINTS datasets, containing conversational data and a collection of arithmetical and algebraic math problems, respectively. The results demonstrate that the proposed ensemble approach outperforms individual models, and the proposed method for entity–quantity matching surpasses the performance of typical text semantic embedding models.
对话式智能辅导系统(CITS)因其能够定制学习体验、提高用户参与度和促进知识的有效传递而在教育领域引起越来越多的关注。对话式代理采用先进的自然语言技术,进行令人信服的仿人辅导对话。在解决数学单词问题时,尽管人类自然语言本身具有模糊性,但如何让系统理解用户的话语,并将提取的实体准确映射到解决问题所需的基本问题量上,仍是一个重大挑战。在本研究中,我们提出了两种可能的方法来提高特定 CITS 的性能,该 CITS 专门用于教授学习者解决算术-代数文字问题。首先,我们提出了一种意图分类和实体提取的集合方法,该方法结合了两个不同的单独模型所做的预测,这两个模型使用了人类专家定义的约束条件。这种方法利用意图和实体相互交织的特性,全面理解用户的语句,最终提高语义准确性。其次,我们引入了经调整的术语频率-反向文档频率技术,将实体与问题数量描述联系起来。评估是在 AWPS 和 MATH-HINTS 数据集上进行的,这两个数据集分别包含对话数据以及算术和代数数学问题集。结果表明,所提出的集合方法优于单个模型,而且所提出的实体-数量匹配方法超过了典型文本语义嵌入模型的性能。
{"title":"On improving conversational interfaces in educational systems","authors":"Yuyan Wu, Romina Soledad Albornoz-De Luise, Miguel Arevalillo-Herráez","doi":"10.1016/j.csl.2024.101693","DOIUrl":"10.1016/j.csl.2024.101693","url":null,"abstract":"<div><p>Conversational Intelligent Tutoring Systems (CITS) have drawn increasing interest in education because of their capacity to tailor learning experiences, improve user engagement, and contribute to the effective transfer of knowledge. Conversational agents employ advanced natural language techniques to engage in a convincing human-like tutorial conversation. In solving math word problems, a significant challenge arises in enabling the system to understand user utterances and accurately map extracted entities to the essential problem quantities required for problem-solving, despite the inherent ambiguity of human natural language. In this study, we propose two possible approaches to enhance the performance of a particular CITS designed to teach learners to solve arithmetic–algebraic word problems. Firstly, we propose an ensemble approach to intent classification and entity extraction, which combines the predictions made by two distinct individual models that use constraints defined by human experts. This approach leverages the intertwined nature of the intents and entities to yield a comprehensive understanding of the user’s utterance, ultimately aiming to enhance semantic accuracy. Secondly, we introduce an adapted Term Frequency-Inverse Document Frequency technique to associate entities with problem quantity descriptions. The evaluation was conducted on the AWPS and MATH-HINTS datasets, containing conversational data and a collection of arithmetical and algebraic math problems, respectively. The results demonstrate that the proposed ensemble approach outperforms individual models, and the proposed method for entity–quantity matching surpasses the performance of typical text semantic embedding models.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101693"},"PeriodicalIF":3.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000767/pdfft?md5=56f2f2395571e332090191dc68fc5505&pid=1-s2.0-S0885230824000767-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.csl.2024.101691
Francesco Sigona , Daniele P. Radicioni , Barbara Gili Fivela , Davide Colla , Matteo Delsanto , Enrico Mensa , Andrea Bolioli , Pietro Vigorelli
<div><h3>Introduction</h3><p>Automatic linguistic analysis can provide cost-effective, valuable clues to the diagnosis of cognitive difficulties and to therapeutic practice, and hence impact positively on wellbeing. In this work, we analyzed transcribed conversations between elderly individuals living with dementia and healthcare professionals. The material came from the Anchise 2022 Corpus, a large collection of transcripts of conversations in Italian recorded in naturalistic conditions. The aim of the work was to test the effectiveness of a number of automatic analyzes in finding correlations with the progression of dementia in individuals with cognitive decline as measured by the Mini-Mental State Examination (MMSE) score, which is the only psychometric-clinical information available on the participants in the conversations. Healthy controls (HC) were not considered in this study, nor does the corpus itself include HCs. The main innovation and strength of the work consists in the high ecological validity of the language analyzed (most of the literature to date concerns controlled language experiments); in the use of Italian (there is little corpora for Italian); in the size of the analyzed data (more than 200 conversations were considered); in the adoption of a wide range of NLP methods, that span from traditional morphosyntactic investigation to deep linguistic models for conducting analyzes such as through perplexity, sentiment (polarity) and emotions.</p></div><div><h3>Methods</h3><p>Analyzing real-world interactions not designed with computational analysis in mind, such as is the case of the Anchise Corpus, is particularly challenging. To achieve the research goals, a wide variety of tools were employed. These included traditional morphosyntactic analysis based on digital linguistic biomarkers (DLBs), transformer-based language models, sentiment and emotion analysis, and perplexity metrics. Analyzes were conducted both on the continuous range of MMSE values and on the severe/moderate/mild categorization suggested by AIFA (Italian Medicines Agency) guidelines, based on MMSE threshold values.</p></div><div><h3>Results and discussion</h3><p>Correlations between MMSE and individual DLBs were weak, up to 0.19 for positive, and -0.21 for negative correlation values. Nevertheless, some correlations were statistically significant and consistent with the literature, suggesting that people with a greater degree of impairment tend to show a reduced vocabulary, to have anomia, to adopt a more informal linguist register, and to display a simplified use of verbs, with a decrease in the use of participles, gerunds, subjunctive moods, modal verbs, as well as a flattening in the use of the tenses towards the present to the detriment of the past. The -0.26 inverse correlation between perplexity and MMSE suggests that perplexity captures slightly more specific linguistic information, which can complement the MMSE scores. In the categorization tasks, the clas
{"title":"A computational analysis of transcribed speech of people living with dementia: The Anchise 2022 Corpus","authors":"Francesco Sigona , Daniele P. Radicioni , Barbara Gili Fivela , Davide Colla , Matteo Delsanto , Enrico Mensa , Andrea Bolioli , Pietro Vigorelli","doi":"10.1016/j.csl.2024.101691","DOIUrl":"10.1016/j.csl.2024.101691","url":null,"abstract":"<div><h3>Introduction</h3><p>Automatic linguistic analysis can provide cost-effective, valuable clues to the diagnosis of cognitive difficulties and to therapeutic practice, and hence impact positively on wellbeing. In this work, we analyzed transcribed conversations between elderly individuals living with dementia and healthcare professionals. The material came from the Anchise 2022 Corpus, a large collection of transcripts of conversations in Italian recorded in naturalistic conditions. The aim of the work was to test the effectiveness of a number of automatic analyzes in finding correlations with the progression of dementia in individuals with cognitive decline as measured by the Mini-Mental State Examination (MMSE) score, which is the only psychometric-clinical information available on the participants in the conversations. Healthy controls (HC) were not considered in this study, nor does the corpus itself include HCs. The main innovation and strength of the work consists in the high ecological validity of the language analyzed (most of the literature to date concerns controlled language experiments); in the use of Italian (there is little corpora for Italian); in the size of the analyzed data (more than 200 conversations were considered); in the adoption of a wide range of NLP methods, that span from traditional morphosyntactic investigation to deep linguistic models for conducting analyzes such as through perplexity, sentiment (polarity) and emotions.</p></div><div><h3>Methods</h3><p>Analyzing real-world interactions not designed with computational analysis in mind, such as is the case of the Anchise Corpus, is particularly challenging. To achieve the research goals, a wide variety of tools were employed. These included traditional morphosyntactic analysis based on digital linguistic biomarkers (DLBs), transformer-based language models, sentiment and emotion analysis, and perplexity metrics. Analyzes were conducted both on the continuous range of MMSE values and on the severe/moderate/mild categorization suggested by AIFA (Italian Medicines Agency) guidelines, based on MMSE threshold values.</p></div><div><h3>Results and discussion</h3><p>Correlations between MMSE and individual DLBs were weak, up to 0.19 for positive, and -0.21 for negative correlation values. Nevertheless, some correlations were statistically significant and consistent with the literature, suggesting that people with a greater degree of impairment tend to show a reduced vocabulary, to have anomia, to adopt a more informal linguist register, and to display a simplified use of verbs, with a decrease in the use of participles, gerunds, subjunctive moods, modal verbs, as well as a flattening in the use of the tenses towards the present to the detriment of the past. The -0.26 inverse correlation between perplexity and MMSE suggests that perplexity captures slightly more specific linguistic information, which can complement the MMSE scores. In the categorization tasks, the clas","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101691"},"PeriodicalIF":3.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000743/pdfft?md5=5a1457a7753032d3fdc01ffd4b14e74e&pid=1-s2.0-S0885230824000743-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposed a Parallel Speech Corpus of Northern-central Thai (PaSCoNT). The purpose of this research is not only to understand the different linguistic characteristics between Northern and Central Thai, but also to utilize this corpus for automatic speech recognition. The corpus is composed of speech data from dialogues of daily life among northern Thai people. We designed 2,000 Northern Thai sentences covering all phonemes, in collaboration with linguists specialized in the Northern Thai dialect. The samples in this study are 200 Northern Thai dialect speakers who had been living in Chiang Mai province for more than 18 years. The speech was recorded in both open and closed environments. In the speech recording, each speaker must read 100 pairs of Northern-Central Thai sentences to ensure that the speech data comes from the same speaker. In total, 100 h of speech were recorded: 50 h of Northern Thai and 50 h of Central Thai. Overall, PaSCoNT consists of 907,832 words and 6,279 vocabulary items. Statistical analysis of the PaSCoNT corpus revealed that 49.64 % of words in the lexicon belongs to the Northern Thai dialect, 50.36 % from the Central Thai dialect, and 1,621 vocabulary items appeared in both Northern and Central Thai. Statistical analysis is used to examine the difference in speech tempo, i.e. time per phoneme (TTP), syllable per minute (SPM), between Northern and Central Thai. The results revealed that there were statistically significant differences speech tempo between Central and Northern Thai. The TTP speaking and articulation rate of Central Thai is lower than Northern Thai whereas SPM speaking and articulation rate of Central Thai is higher than Northern Thai. The results also showed that the ASR model training using Northern Thai speech corpus provides the lower WER% when testing using Northern Thai testing speech data and provides the higher WER% when testing using Central Thai Testing speech data and vice versa. However, the ASR model training using the PaSCoNT speech corpus provides the lower WER% for both Northern Thai and Central Thai testing speech data.
{"title":"PaSCoNT - Parallel Speech Corpus of Northern-central Thai for automatic speech recognition","authors":"Supawat Taerungruang , Phimphaka Taninpong , Vataya Chunwijitra , Sumonmas Thatphithakkul , Sawit Kasuriya , Viroj Inthanon , Pawat Paksaranuwat , Salinee Thumronglaohapun , Nawapon Nakharutai , Papangkorn Inkeaw , Jakramate Bootkrajang","doi":"10.1016/j.csl.2024.101692","DOIUrl":"10.1016/j.csl.2024.101692","url":null,"abstract":"<div><p>This paper proposed a Parallel Speech Corpus of Northern-central Thai (PaSCoNT). The purpose of this research is not only to understand the different linguistic characteristics between Northern and Central Thai, but also to utilize this corpus for automatic speech recognition. The corpus is composed of speech data from dialogues of daily life among northern Thai people. We designed 2,000 Northern Thai sentences covering all phonemes, in collaboration with linguists specialized in the Northern Thai dialect. The samples in this study are 200 Northern Thai dialect speakers who had been living in Chiang Mai province for more than 18 years. The speech was recorded in both open and closed environments. In the speech recording, each speaker must read 100 pairs of Northern-Central Thai sentences to ensure that the speech data comes from the same speaker. In total, 100 h of speech were recorded: 50 h of Northern Thai and 50 h of Central Thai. Overall, PaSCoNT consists of 907,832 words and 6,279 vocabulary items. Statistical analysis of the PaSCoNT corpus revealed that 49.64 % of words in the lexicon belongs to the Northern Thai dialect, 50.36 % from the Central Thai dialect, and 1,621 vocabulary items appeared in both Northern and Central Thai. Statistical analysis is used to examine the difference in speech tempo, i.e. time per phoneme (TTP), syllable per minute (SPM), between Northern and Central Thai. The results revealed that there were statistically significant differences speech tempo between Central and Northern Thai. The TTP speaking and articulation rate of Central Thai is lower than Northern Thai whereas SPM speaking and articulation rate of Central Thai is higher than Northern Thai. The results also showed that the ASR model training using Northern Thai speech corpus provides the lower WER% when testing using Northern Thai testing speech data and provides the higher WER% when testing using Central Thai Testing speech data and vice versa. However, the ASR model training using the PaSCoNT speech corpus provides the lower WER% for both Northern Thai and Central Thai testing speech data.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101692"},"PeriodicalIF":3.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000755/pdfft?md5=f97afe2aa357037c83c6473c50174543&pid=1-s2.0-S0885230824000755-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.csl.2024.101690
Lanqin Yuan, Marian-Andrei Rizoiu
Automatic identification of hateful and abusive content is vital in combating the spread of harmful online content and its damaging effects. Most existing works evaluate models by examining the generalization error on train–test splits on hate speech datasets. These datasets often differ in their definitions and labeling criteria, leading to poor generalization performance when predicting across new domains and datasets. This work proposes a new Multi-task Learning (MTL) pipeline that trains simultaneously across multiple hate speech datasets to construct a more encompassing classification model. Using a dataset-level leave-one-out evaluation (designating a dataset for testing and jointly training on all others), we trial the MTL detection on new, previously unseen datasets. Our results consistently outperform a large sample of existing work. We show strong results when examining the generalization error in train–test splits and substantial improvements when predicting on previously unseen datasets. Furthermore, we assemble a novel dataset, dubbed PubFigs, focusing on the problematic speech of American Public Political Figures. We crowdsource-label using Amazon MTurk more than 20,000 tweets and machine-label problematic speech in all the 305,235 tweets in PubFigs. We find that the abusive and hate tweeting mainly originates from right-leaning figures and relates to six topics, including Islam, women, ethnicity, and immigrants. We show that MTL builds embeddings that can simultaneously separate abusive from hate speech, and identify its topics.
{"title":"Generalizing Hate Speech Detection Using Multi-Task Learning: A Case Study of Political Public Figures","authors":"Lanqin Yuan, Marian-Andrei Rizoiu","doi":"10.1016/j.csl.2024.101690","DOIUrl":"10.1016/j.csl.2024.101690","url":null,"abstract":"<div><p>Automatic identification of hateful and abusive content is vital in combating the spread of harmful online content and its damaging effects. Most existing works evaluate models by examining the generalization error on train–test splits on hate speech datasets. These datasets often differ in their definitions and labeling criteria, leading to poor generalization performance when predicting across new domains and datasets. This work proposes a new Multi-task Learning (MTL) pipeline that trains simultaneously across multiple hate speech datasets to construct a more encompassing classification model. Using a dataset-level leave-one-out evaluation (designating a dataset for testing and jointly training on all others), we trial the MTL detection on new, previously unseen datasets. Our results consistently outperform a large sample of existing work. We show strong results when examining the generalization error in train–test splits and substantial improvements when predicting on previously unseen datasets. Furthermore, we assemble a novel dataset, dubbed <span>PubFigs</span>, focusing on the problematic speech of American Public Political Figures. We crowdsource-label using Amazon MTurk more than 20,000 tweets and machine-label problematic speech in all the 305,235 tweets in <span>PubFigs</span>. We find that the abusive and hate tweeting mainly originates from right-leaning figures and relates to six topics, including Islam, women, ethnicity, and immigrants. We show that MTL builds embeddings that can simultaneously separate abusive from hate speech, and identify its topics.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101690"},"PeriodicalIF":3.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000731/pdfft?md5=e169fb47936a2284a9d518194884b197&pid=1-s2.0-S0885230824000731-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}