Pub Date : 2024-03-23DOI: 10.3390/microbiolres15020029
Patricia Restea, Ștefan Țigan, L. Fritea, L. Vicaș, E. Marian, M. Mureșan, Liana Stefan
The purpose of this research was to analyze the impact of SARS-CoV-2 infection on ionic calcium, total calcium and serum magnesium upon hospital admission, taking into account the association of type 2 diabetes as a metabolic comorbidity. Our study included 57 patients: a group of 28 patients without diabetes, but with SARS-CoV-2 virus infection, and a second group of 29 patients with type 2 diabetes and SARS-CoV-2 virus infection. The serum level of calcium and magnesium of the patients included in the study did not differ statistically significantly in those with type 2 diabetes compared to those without type 2 diabetes who were infected with the SARS-CoV-2 virus at the time of hospitalization. Ionic calcium, total calcium, and serum magnesium did not statistically significantly influence the survival of the patients with COVID-19 infection included in this research, but the type of infection severity (mild or moderate) did influence the survival rate. Concerning the diabetic patients, a statistically significant correlation was found between serum total calcium and total serum proteins, and another one between ionic calcium and uric acid, urea, and total cholesterol. Serum total calcium and D-dimers were statistically significantly correlated with being transferred to the intensive care unit. On the other hand, magnesium significantly correlated with lipids (triglycerides, total lipids) and inflammatory (fibrinogen, ESR) biomarkers.
{"title":"Serum Calcium and Magnesium Levels in Patients with Type 2 Diabetes and COVID-19 Infection Requiring Hospitalization—Correlations with Various Parameters","authors":"Patricia Restea, Ștefan Țigan, L. Fritea, L. Vicaș, E. Marian, M. Mureșan, Liana Stefan","doi":"10.3390/microbiolres15020029","DOIUrl":"https://doi.org/10.3390/microbiolres15020029","url":null,"abstract":"The purpose of this research was to analyze the impact of SARS-CoV-2 infection on ionic calcium, total calcium and serum magnesium upon hospital admission, taking into account the association of type 2 diabetes as a metabolic comorbidity. Our study included 57 patients: a group of 28 patients without diabetes, but with SARS-CoV-2 virus infection, and a second group of 29 patients with type 2 diabetes and SARS-CoV-2 virus infection. The serum level of calcium and magnesium of the patients included in the study did not differ statistically significantly in those with type 2 diabetes compared to those without type 2 diabetes who were infected with the SARS-CoV-2 virus at the time of hospitalization. Ionic calcium, total calcium, and serum magnesium did not statistically significantly influence the survival of the patients with COVID-19 infection included in this research, but the type of infection severity (mild or moderate) did influence the survival rate. Concerning the diabetic patients, a statistically significant correlation was found between serum total calcium and total serum proteins, and another one between ionic calcium and uric acid, urea, and total cholesterol. Serum total calcium and D-dimers were statistically significantly correlated with being transferred to the intensive care unit. On the other hand, magnesium significantly correlated with lipids (triglycerides, total lipids) and inflammatory (fibrinogen, ESR) biomarkers.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140387058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.3390/microbiolres15010028
Constant Gillot, J. Favresse, C. David, Vincent Maloteau, J. Dogné, J. Douxfils
Background: The detection of neutralizing anti-SARS-CoV-2 antibodies is important since they represent the subset of antibodies able to prevent the virus to invade human cells. The aim of this study is to evaluate the clinical performances of an in-house pseudovirus neutralization test (pVNT) versus a commercial surrogate neutralization test (sVNT). Material and Methods: A total of 114 RT-PCR positives samples from 75 COVID-19 patients were analyzed using a pVNT and an sVNT technique. Fifty-six pre-pandemic samples were also analyzed to assess the specificity of the two techniques. An analysis of the repeatability and the reproducibility of the pVNT was also performed. Results: A coefficient of variation (CV) of 10.27% for the repeatability of the pVNT was computed. For the reproducibility test, CVs ranged from 16.12% for low NAbs titer to 6.40% for high NAbs titer. Regarding the clinical sensitivity, 90 RT-PCR positive samples out of 114 were positive with the pVNT (78.94%), and 97 were positive with the sVNT (84.21%). About the clinical specificity, all 56 pre-pandemic samples were negative in both techniques. When comparing the sVNT to the pVNT, the specificity and sensibility were 66.67% (95%CI: 47.81–85.53%) and 98.88% (95%CI: 96.72–99.99%), respectively. Conclusions: The results obtained with the automated sVNT technique are consistent with those obtained with the pVNT technique developed in-house. The results of the various repeatability and reproducibility tests demonstrate the good robustness of the fully manual pVNT technique.
{"title":"An Evaluation of a SARS-CoV-2 Pseudovirus Neutralization Test and A Comparison to a SARS-CoV-2 Surrogate Virus Neutralization Test in a COVID-19 Long-Term Follow-Up Cohort","authors":"Constant Gillot, J. Favresse, C. David, Vincent Maloteau, J. Dogné, J. Douxfils","doi":"10.3390/microbiolres15010028","DOIUrl":"https://doi.org/10.3390/microbiolres15010028","url":null,"abstract":"Background: The detection of neutralizing anti-SARS-CoV-2 antibodies is important since they represent the subset of antibodies able to prevent the virus to invade human cells. The aim of this study is to evaluate the clinical performances of an in-house pseudovirus neutralization test (pVNT) versus a commercial surrogate neutralization test (sVNT). Material and Methods: A total of 114 RT-PCR positives samples from 75 COVID-19 patients were analyzed using a pVNT and an sVNT technique. Fifty-six pre-pandemic samples were also analyzed to assess the specificity of the two techniques. An analysis of the repeatability and the reproducibility of the pVNT was also performed. Results: A coefficient of variation (CV) of 10.27% for the repeatability of the pVNT was computed. For the reproducibility test, CVs ranged from 16.12% for low NAbs titer to 6.40% for high NAbs titer. Regarding the clinical sensitivity, 90 RT-PCR positive samples out of 114 were positive with the pVNT (78.94%), and 97 were positive with the sVNT (84.21%). About the clinical specificity, all 56 pre-pandemic samples were negative in both techniques. When comparing the sVNT to the pVNT, the specificity and sensibility were 66.67% (95%CI: 47.81–85.53%) and 98.88% (95%CI: 96.72–99.99%), respectively. Conclusions: The results obtained with the automated sVNT technique are consistent with those obtained with the pVNT technique developed in-house. The results of the various repeatability and reproducibility tests demonstrate the good robustness of the fully manual pVNT technique.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"125 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140223575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.3390/microbiolres15010027
Kritsana Jatuwong, Worrawoot Aiduang, T. Kiatsiriroat, Wassana Kamopas, S. Lumyong
Biochar and arbuscular mycorrhizal fungi (AMF), a promising environmentally friendly soil enhancer and biostimulant, play a crucial role in sustainable agriculture by influencing soil properties and plant growth. This research investigates the chemical properties of three biochar types [bamboo (BB-char), corn cob (CC-char), and coffee grounds (CG-char)] derived from different biomass sources and their impact on soil quality and Chinese kale growth. The results reveal significant differences in chemical properties among different types of biochar. Particularly, CG-char showed the greatest pH value and phosphorus content, with an average of 10.05 and 0.44%, respectively. On the other hand, CC-char had the highest potassium content, with an average of 2.16%. Incorporating biochar into degraded soil enhances soil structure, promoting porosity and improved texture, as evidenced by scanning electron microscope images revealing distinct porous structures. Soil chemistry analyses in treatment T2–T14 after a 42-day cultivation demonstrate the impact of biochar on pH, electrical conductivity, organic matter, and organic carbon levels in comparison to the control treatment (T1). Furthermore, the research assesses the impact of biochar on Chinese kale growth and photosynthetic pigments. Biochar additions, especially 5% BB-char with AMF, positively influence plant growth, chlorophyll content, and photosynthetic pigment levels. Notably, lower biochar concentrations (5%) exhibit superior effects compared to higher concentrations (10%), emphasizing the importance of optimal biochar application rates. The study also delves into the total phenolic content in Chinese kale leaves, revealing that the synergistic effect of biochar and AMF enhances phenolic compound accumulation. The combination positively influences plant health, soil quality, and nutrient cycling mechanisms. Overall, the research indicates the multifaceted impact of biochar on soil and plant dynamics, emphasizing the need for tailored application strategies to optimize benefits in sustainable agriculture.
{"title":"Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation","authors":"Kritsana Jatuwong, Worrawoot Aiduang, T. Kiatsiriroat, Wassana Kamopas, S. Lumyong","doi":"10.3390/microbiolres15010027","DOIUrl":"https://doi.org/10.3390/microbiolres15010027","url":null,"abstract":"Biochar and arbuscular mycorrhizal fungi (AMF), a promising environmentally friendly soil enhancer and biostimulant, play a crucial role in sustainable agriculture by influencing soil properties and plant growth. This research investigates the chemical properties of three biochar types [bamboo (BB-char), corn cob (CC-char), and coffee grounds (CG-char)] derived from different biomass sources and their impact on soil quality and Chinese kale growth. The results reveal significant differences in chemical properties among different types of biochar. Particularly, CG-char showed the greatest pH value and phosphorus content, with an average of 10.05 and 0.44%, respectively. On the other hand, CC-char had the highest potassium content, with an average of 2.16%. Incorporating biochar into degraded soil enhances soil structure, promoting porosity and improved texture, as evidenced by scanning electron microscope images revealing distinct porous structures. Soil chemistry analyses in treatment T2–T14 after a 42-day cultivation demonstrate the impact of biochar on pH, electrical conductivity, organic matter, and organic carbon levels in comparison to the control treatment (T1). Furthermore, the research assesses the impact of biochar on Chinese kale growth and photosynthetic pigments. Biochar additions, especially 5% BB-char with AMF, positively influence plant growth, chlorophyll content, and photosynthetic pigment levels. Notably, lower biochar concentrations (5%) exhibit superior effects compared to higher concentrations (10%), emphasizing the importance of optimal biochar application rates. The study also delves into the total phenolic content in Chinese kale leaves, revealing that the synergistic effect of biochar and AMF enhances phenolic compound accumulation. The combination positively influences plant health, soil quality, and nutrient cycling mechanisms. Overall, the research indicates the multifaceted impact of biochar on soil and plant dynamics, emphasizing the need for tailored application strategies to optimize benefits in sustainable agriculture.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"109 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140250523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-08DOI: 10.3390/microbiolres15010026
Bianca A. Amézquita-López, M. Soto-Beltrán, Bertram G. Lee, Edgar F. Bon-Haro, Ofelia Y. Lugo-Melchor, Beatriz Quiñones
Shiga toxin-producing Escherichia coli (STEC) are zoonotic enteric pathogens linked to human gastroenteritis worldwide. To aid the development of pathogen control efforts, the present study characterized the genotypic diversity and pathogenic potential of STEC recovered from sources near agricultural fields in Northwest Mexico. Samples were collected from irrigation river water and domestic animal feces in farms proximal to agricultural fields and were subjected to enrichment followed by immunomagnetic separation and plating on selective media for the recovery of the STEC isolates. Comparative genomic analyses indicated that the recovered STEC with the clinically relevant serotypes O157:H7, O8:H19, and O113:H21 had virulence genes repertoires associated with host cell adherence, iron uptake and effector protein secretion. Subsequent phenotypic characterization revealed multidrug resistance against aminoglycoside, carbapenem, cephalosporin, fluoroquinolone, penicillin, phenicol, and tetracycline, highlighting the need for improved surveillance on the use of antimicrobials. The present study indicated for the first time that river water in the agricultural Culiacan Valley in Mexico is a relevant key route of transmission for STEC O157 and non-O157 with a virulence potential. In addition, feces from domestic farm animals near surface waterways can act as potential point sources of contamination and transport of diverse STEC with clinically relevant genotypes.
{"title":"Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico","authors":"Bianca A. Amézquita-López, M. Soto-Beltrán, Bertram G. Lee, Edgar F. Bon-Haro, Ofelia Y. Lugo-Melchor, Beatriz Quiñones","doi":"10.3390/microbiolres15010026","DOIUrl":"https://doi.org/10.3390/microbiolres15010026","url":null,"abstract":"Shiga toxin-producing Escherichia coli (STEC) are zoonotic enteric pathogens linked to human gastroenteritis worldwide. To aid the development of pathogen control efforts, the present study characterized the genotypic diversity and pathogenic potential of STEC recovered from sources near agricultural fields in Northwest Mexico. Samples were collected from irrigation river water and domestic animal feces in farms proximal to agricultural fields and were subjected to enrichment followed by immunomagnetic separation and plating on selective media for the recovery of the STEC isolates. Comparative genomic analyses indicated that the recovered STEC with the clinically relevant serotypes O157:H7, O8:H19, and O113:H21 had virulence genes repertoires associated with host cell adherence, iron uptake and effector protein secretion. Subsequent phenotypic characterization revealed multidrug resistance against aminoglycoside, carbapenem, cephalosporin, fluoroquinolone, penicillin, phenicol, and tetracycline, highlighting the need for improved surveillance on the use of antimicrobials. The present study indicated for the first time that river water in the agricultural Culiacan Valley in Mexico is a relevant key route of transmission for STEC O157 and non-O157 with a virulence potential. In addition, feces from domestic farm animals near surface waterways can act as potential point sources of contamination and transport of diverse STEC with clinically relevant genotypes.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"83 1‐4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140256983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.3390/microbiolres15010023
Jaqueline Oliveira Dos Reis, Carine Baggio Cavalcante, Nathaly Barros Nunes, Adelino Cunha Neto, Maxsueli Aparecida Moura Machado, Y. Porto, Vinicius Silva Castro, E. E. Figueiredo
Salmonella spp. is not part of the fish microbiota, being introduced through contaminated water or improper handling. In slaughterhouses, five parts per million (ppm) of free chlorine is recommended in the washing step to eliminate this pathogen. However, Salmonella spp. is still detected in fish processing plants due to persistent contamination as a result of chlorine–organic matter interactions that reduce chlorine effectiveness. Therefore, this study aimed to test whether organic matter contained in culture media and fish washes interferes with the efficacy of chlorine at 2 and 5 ppm, and what is the time of action required to inactivate ATCC and wild strains of S. typhimurium. For this, the elimination or survival of these strains was investigated when exposed to chlorinated solution for different durations (0, 5, 30, 60, 90 and 120 min) in culture medium, 0.85% saline solution and fish wash (in natura and sterilized). The results showed that the use of 5 ppm of free chlorine is efficient, even when the chlorine remains in contact with the organic matter (washed from the fish), as it reduced the bacterial population by ~5 log log10 CFU/mL of Salmonella spp., showing that this reduction was due to interactions, as long as the chlorine action time was 30 min.
{"title":"Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population","authors":"Jaqueline Oliveira Dos Reis, Carine Baggio Cavalcante, Nathaly Barros Nunes, Adelino Cunha Neto, Maxsueli Aparecida Moura Machado, Y. Porto, Vinicius Silva Castro, E. E. Figueiredo","doi":"10.3390/microbiolres15010023","DOIUrl":"https://doi.org/10.3390/microbiolres15010023","url":null,"abstract":"Salmonella spp. is not part of the fish microbiota, being introduced through contaminated water or improper handling. In slaughterhouses, five parts per million (ppm) of free chlorine is recommended in the washing step to eliminate this pathogen. However, Salmonella spp. is still detected in fish processing plants due to persistent contamination as a result of chlorine–organic matter interactions that reduce chlorine effectiveness. Therefore, this study aimed to test whether organic matter contained in culture media and fish washes interferes with the efficacy of chlorine at 2 and 5 ppm, and what is the time of action required to inactivate ATCC and wild strains of S. typhimurium. For this, the elimination or survival of these strains was investigated when exposed to chlorinated solution for different durations (0, 5, 30, 60, 90 and 120 min) in culture medium, 0.85% saline solution and fish wash (in natura and sterilized). The results showed that the use of 5 ppm of free chlorine is efficient, even when the chlorine remains in contact with the organic matter (washed from the fish), as it reduced the bacterial population by ~5 log log10 CFU/mL of Salmonella spp., showing that this reduction was due to interactions, as long as the chlorine action time was 30 min.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"71 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140408692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selenium nanoparticles (SeNPs) have greater bioavailability and safety than inorganic selenium, and was widely used in medical, agricultural, nutritional supplements, and antibacterial fields. The present study screened a strain L11 producing SeNPs from a selenium rich dairy cow breeding base in Hubei Province, China. The strain was identified as Bacillus subtilis through physiological, biochemical, and molecular biology analysis. By adjusting the cultivation conditions, the experiment determined the ideal parameters for L11 to efficiently produce SeNPs. These parameters include a pH value of 6, a cultivation temperature of 37 °C, a concentration of 4 mmol/L Na2SeO3, and a cultivation of 48 h. X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), and Transmission Electron Microscopy (TEM) were used to verify that the Se particles produced by L11 are SeNPs with diameters ranging from 50 to 200 nm. The combination of the protein analysis of different cell components and TEM analysis showed that L11 mainly produces SeNPs through the transformation of the cell’s periplasmic space, cell membrane, and cell wall. Adding the L11 SeNPs complex to sheep feed can significantly enhance the antioxidant activity and immunity of sheep, and increase the Se content in the neck muscles, liver, and spleen tissues.
与无机硒相比,纳米硒粒子(SeNPs)具有更高的生物利用率和安全性,被广泛应用于医疗、农业、营养补充剂和抗菌领域。本研究从中国湖北省富硒奶牛养殖基地筛选出一株可产生 SeNPs 的菌株 L11。通过生理、生化和分子生物学分析,确定该菌株为枯草芽孢杆菌。通过调整培养条件,实验确定了 L11 高效生产 SeNPs 的理想参数。实验采用 X 射线光电子能谱(XPS)、扫描电子显微镜-能量色散光谱(SEM-EDS)和透射电子显微镜(TEM)来验证 L11 产生的 Se 粒子是直径为 50 至 200 纳米的 SeNPs。结合不同细胞成分的蛋白质分析和 TEM 分析表明,L11 主要通过改造细胞的周质空间、细胞膜和细胞壁产生 SeNPs。在绵羊饲料中添加 L11 SeNPs 复合物可显著提高绵羊的抗氧化活性和免疫力,增加颈部肌肉、肝脏和脾脏组织中的 Se 含量。
{"title":"Optimization of the Conditions for the Transformation of a Bacillus subtilis Strain L11 to Prepare Nano Selenium and Its Preliminary Application in Sheep Feed","authors":"Wenxin Guo, Xinyu Shi, Lu Wang, Xin Cong, Shuiyuan Cheng, Linling Li, Hua Cheng","doi":"10.3390/microbiolres15010022","DOIUrl":"https://doi.org/10.3390/microbiolres15010022","url":null,"abstract":"Selenium nanoparticles (SeNPs) have greater bioavailability and safety than inorganic selenium, and was widely used in medical, agricultural, nutritional supplements, and antibacterial fields. The present study screened a strain L11 producing SeNPs from a selenium rich dairy cow breeding base in Hubei Province, China. The strain was identified as Bacillus subtilis through physiological, biochemical, and molecular biology analysis. By adjusting the cultivation conditions, the experiment determined the ideal parameters for L11 to efficiently produce SeNPs. These parameters include a pH value of 6, a cultivation temperature of 37 °C, a concentration of 4 mmol/L Na2SeO3, and a cultivation of 48 h. X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), and Transmission Electron Microscopy (TEM) were used to verify that the Se particles produced by L11 are SeNPs with diameters ranging from 50 to 200 nm. The combination of the protein analysis of different cell components and TEM analysis showed that L11 mainly produces SeNPs through the transformation of the cell’s periplasmic space, cell membrane, and cell wall. Adding the L11 SeNPs complex to sheep feed can significantly enhance the antioxidant activity and immunity of sheep, and increase the Se content in the neck muscles, liver, and spleen tissues.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"5 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140430590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.3390/microbiolres15010021
Rodrigo Reis Moura, Douglas Alfradique Monteiro, E. Fonseca, F. Balieiro, F. Cesário, Caio T.C.C. Rachid
In soils, pH stands as the main factor modulating bacterial communities’ composition. However, most studies address its effects in bulk soils in natural systems, with few focusing on its effects in the rhizosphere of plants. Predicting pH effects in the rhizosphere is an important step towards successful microbiome manipulation, aiming to increase crop production. Here, we modulated an acidic soil’s pH to four different ranges (4.7, 5.2, 7.5 and 8.2), while correcting for fertility differences among ranges, thus isolating pH effects from other physicochemical characteristics. Then, two crops with distinct metabolisms (maize and bean) were cultivated in a greenhouse experiment and the effects of pH and cover crops on the rhizosphere bacteriome after 90 days explored through 16S rRNA gene sequencing, aiming to characterize pH effects on the rhizosphere of two different plants across this gradient. Alpha diversity indexes (OTU richness and Shannon index) were statistically different with pH but not crop species, with an interaction among factors. For beta diversity, both pH and crop species were significant modulators of community composition, without an interaction, but pH effects were 2.5 times bigger than those of plant species. Additionally, strong and significant positive correlations were observed between pH and Bacteroidetes and Deltaproteobacteria, while Actinobacteria, Planctomycetes and Acidobacteria were negatively correlated with pH. Regarding OTUs, 27 and 46 were correlated with pH in maize and bean’s rhizosphere, respectively, while 11 were shared between them. Altogether, these results provide valuable information on the isolated effect of pH in the rhizosphere of important crop plants, aiding future microbiome manipulation studies.
{"title":"The Impact of pH Modulation on the Rhizosphere Bacteriome of Maize and Bean","authors":"Rodrigo Reis Moura, Douglas Alfradique Monteiro, E. Fonseca, F. Balieiro, F. Cesário, Caio T.C.C. Rachid","doi":"10.3390/microbiolres15010021","DOIUrl":"https://doi.org/10.3390/microbiolres15010021","url":null,"abstract":"In soils, pH stands as the main factor modulating bacterial communities’ composition. However, most studies address its effects in bulk soils in natural systems, with few focusing on its effects in the rhizosphere of plants. Predicting pH effects in the rhizosphere is an important step towards successful microbiome manipulation, aiming to increase crop production. Here, we modulated an acidic soil’s pH to four different ranges (4.7, 5.2, 7.5 and 8.2), while correcting for fertility differences among ranges, thus isolating pH effects from other physicochemical characteristics. Then, two crops with distinct metabolisms (maize and bean) were cultivated in a greenhouse experiment and the effects of pH and cover crops on the rhizosphere bacteriome after 90 days explored through 16S rRNA gene sequencing, aiming to characterize pH effects on the rhizosphere of two different plants across this gradient. Alpha diversity indexes (OTU richness and Shannon index) were statistically different with pH but not crop species, with an interaction among factors. For beta diversity, both pH and crop species were significant modulators of community composition, without an interaction, but pH effects were 2.5 times bigger than those of plant species. Additionally, strong and significant positive correlations were observed between pH and Bacteroidetes and Deltaproteobacteria, while Actinobacteria, Planctomycetes and Acidobacteria were negatively correlated with pH. Regarding OTUs, 27 and 46 were correlated with pH in maize and bean’s rhizosphere, respectively, while 11 were shared between them. Altogether, these results provide valuable information on the isolated effect of pH in the rhizosphere of important crop plants, aiding future microbiome manipulation studies.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"43 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140447721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-17DOI: 10.3390/microbiolres15010020
R. Anwer
Antimicrobial resistance poses a severe threat, particularly in developing countries where the ready availability of drugs and increased consumption lead to improper antibiotic usage, thereby causing a surge in resistance levels compared to developed areas. Despite the past success of antibiotics, their effectiveness diminishes with regular use, posing a significant threat to medical efficacy. Pseudomonas aeruginosa, an opportunistic pathogen, triggers various infection-related issues, occurring on occasions including chronic wounds, burn injuries, respiratory problems in cystic fibrosis, and corneal infections. Targeting the quorum sensing (QS) of P. aeruginosa emerges as a strategic approach to combat infections caused by this bacterium. The objective of this study was to check the effect of antimycobacterial drugs against the potential QS targets in P. aeruginosa and identify lead candidates. The antimycobacterial drugs were first examined for the toxicological and pharmacokinetic profile. By virtual screening through molecular docking, delamanid and pretomanid stood out as major candidates. The binding energies of delamanid and pretomanid with LasR were determined to be −8.3 and −10.9 kcal/mol, respectively. The detailed analysis of the complexes of lead compounds were examined through molecular dynamics simulations. The molecular simulations data validated a sustained interaction of lead drugs with target proteins (PqsR, LasI, and LasA) in a physiological environment. The negligible changes in the secondary structure of proteins in presence of hit antimycobacterial drugs further strengthened the stability of the complexes. These findings highlight the potential repurposing of delamanid and pretomanid, specifically in targeting P. aeruginosa quorum-sensing mechanisms.
{"title":"Antimycobacterial Drugs as a Novel Strategy to Inhibit Pseudomonas aeruginosa Virulence Factors and Combat Antibiotic Resistance: A Molecular Simulation Study","authors":"R. Anwer","doi":"10.3390/microbiolres15010020","DOIUrl":"https://doi.org/10.3390/microbiolres15010020","url":null,"abstract":"Antimicrobial resistance poses a severe threat, particularly in developing countries where the ready availability of drugs and increased consumption lead to improper antibiotic usage, thereby causing a surge in resistance levels compared to developed areas. Despite the past success of antibiotics, their effectiveness diminishes with regular use, posing a significant threat to medical efficacy. Pseudomonas aeruginosa, an opportunistic pathogen, triggers various infection-related issues, occurring on occasions including chronic wounds, burn injuries, respiratory problems in cystic fibrosis, and corneal infections. Targeting the quorum sensing (QS) of P. aeruginosa emerges as a strategic approach to combat infections caused by this bacterium. The objective of this study was to check the effect of antimycobacterial drugs against the potential QS targets in P. aeruginosa and identify lead candidates. The antimycobacterial drugs were first examined for the toxicological and pharmacokinetic profile. By virtual screening through molecular docking, delamanid and pretomanid stood out as major candidates. The binding energies of delamanid and pretomanid with LasR were determined to be −8.3 and −10.9 kcal/mol, respectively. The detailed analysis of the complexes of lead compounds were examined through molecular dynamics simulations. The molecular simulations data validated a sustained interaction of lead drugs with target proteins (PqsR, LasI, and LasA) in a physiological environment. The negligible changes in the secondary structure of proteins in presence of hit antimycobacterial drugs further strengthened the stability of the complexes. These findings highlight the potential repurposing of delamanid and pretomanid, specifically in targeting P. aeruginosa quorum-sensing mechanisms.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"402 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140453671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-16DOI: 10.3390/microbiolres15010014
Nashwa A. H. Fetyan, T. Essa, Tamer M. Salem, Ahmed Aboueloyoun Taha, S. F. Elgobashy, N. Tharwat, Tamer Elsakhawy
Developing innovative, eco-friendly fungicide alternatives is crucial to mitigate the substantial threat fungal pathogens pose to crop yields. In this study, we assessed the in vitro effectiveness of SiO2, CuO, and γFe2O3 nanoparticles against Rhizoctonia solani. Furthermore, greenhouse experiments were conducted in artificially infested soil to evaluate the in vivo impact of nanoparticles under study. Two application methods were employed: soil drenching with 10 mL per pot at concentrations of 50, 100, and 200 mg L−1, and seedling dipping in nanoparticle suspensions at each concentration combined with soil drench. The combined treatment of 200 mg L−1 γFe2O3 or CuO nanoparticles showed the highest in vitro antifungal activity. Conversely, SiO2 nanoparticles demonstrated the lowest in vitro activity. Notably, the application of 200 mg/L SiO2 via the dipping and soil drenching methods decreased counts of silicate-solubilizing bacteria and Azospirillum spp. Whereas, application of 100 mg L−1 γFe2O3 nanoparticles via soil drenching increased soil bacterial counts, and CuO nanoparticles at 50 mg L−1 through dipping and soil drenching had the highest dehydrogenase value. γFe2O3 nanoparticles improved plant photosynthetic pigments, reduced malondialdehyde levels, and minimized membrane leakage in lettuce plants. A root anatomical study showed that 200 mg L−1 CuO nanoparticles induced toxicity, whereas 200 mg L−1 γFe2O3 or SiO2 nanoparticles positively affected root diameter, tissue structure, and various anatomical measurements in lettuce roots. γFe2O3 nanoparticles hold promise as a sustainable alternative for managing crop diseases.
{"title":"Promising Eco-Friendly Nanoparticles for Managing Bottom Rot Disease in Lettuce (Lactuca sativa var. longifolia)","authors":"Nashwa A. H. Fetyan, T. Essa, Tamer M. Salem, Ahmed Aboueloyoun Taha, S. F. Elgobashy, N. Tharwat, Tamer Elsakhawy","doi":"10.3390/microbiolres15010014","DOIUrl":"https://doi.org/10.3390/microbiolres15010014","url":null,"abstract":"Developing innovative, eco-friendly fungicide alternatives is crucial to mitigate the substantial threat fungal pathogens pose to crop yields. In this study, we assessed the in vitro effectiveness of SiO2, CuO, and γFe2O3 nanoparticles against Rhizoctonia solani. Furthermore, greenhouse experiments were conducted in artificially infested soil to evaluate the in vivo impact of nanoparticles under study. Two application methods were employed: soil drenching with 10 mL per pot at concentrations of 50, 100, and 200 mg L−1, and seedling dipping in nanoparticle suspensions at each concentration combined with soil drench. The combined treatment of 200 mg L−1 γFe2O3 or CuO nanoparticles showed the highest in vitro antifungal activity. Conversely, SiO2 nanoparticles demonstrated the lowest in vitro activity. Notably, the application of 200 mg/L SiO2 via the dipping and soil drenching methods decreased counts of silicate-solubilizing bacteria and Azospirillum spp. Whereas, application of 100 mg L−1 γFe2O3 nanoparticles via soil drenching increased soil bacterial counts, and CuO nanoparticles at 50 mg L−1 through dipping and soil drenching had the highest dehydrogenase value. γFe2O3 nanoparticles improved plant photosynthetic pigments, reduced malondialdehyde levels, and minimized membrane leakage in lettuce plants. A root anatomical study showed that 200 mg L−1 CuO nanoparticles induced toxicity, whereas 200 mg L−1 γFe2O3 or SiO2 nanoparticles positively affected root diameter, tissue structure, and various anatomical measurements in lettuce roots. γFe2O3 nanoparticles hold promise as a sustainable alternative for managing crop diseases.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}