Pub Date : 2024-04-23DOI: 10.3390/microbiolres15020041
Leandro Cádiz, Miguel Guzmán, Fernando Navarrete, Paulina Torres, Hector Hidalgo
Fowl aviadenovirus (FAdV) is a member of the Aviadenovirus genus within the Adenoviridae family. FAdVs are divided into five species based on genomic differences: Fowl aviadenovirus A to Fowl aviadenovirus E (FAdV-A to FAdV-E). They are classified into twelve serotypes (FAdV-1 to FAdV-8a and FAdV-8b to FAdV-11) through cross-neutralization tests. FAdVs are mainly associated with hepatitis hydropericardium syndrome (HHS), adenoviral gizzard erosion (AGE), and inclusion body hepatitis (IBH). The serotypes commonly involved in IBH are FAdV-2, FAdV-11, FAdV-8a, and FAdV-8b. IBH causes significant economic losses in the poultry industry, mainly due to high mortality, reduced productivity, and immunosuppression. This is the first case report on IBH in Chile caused—according to post-mortem findings, molecular analysis, sequencing, and phylogenetic analysis—by FAdV-11. Since the serotype had not previously been reported in Chile, continued monitoring of IBH cases is required to determine the serotype of the circulating FAdVs and adapt preventative vaccination programs.
{"title":"First Molecular Detection and Characterization of Fowl Aviadenovirus Serotype 11 from Broiler Chickens in Chile","authors":"Leandro Cádiz, Miguel Guzmán, Fernando Navarrete, Paulina Torres, Hector Hidalgo","doi":"10.3390/microbiolres15020041","DOIUrl":"https://doi.org/10.3390/microbiolres15020041","url":null,"abstract":"Fowl aviadenovirus (FAdV) is a member of the Aviadenovirus genus within the Adenoviridae family. FAdVs are divided into five species based on genomic differences: Fowl aviadenovirus A to Fowl aviadenovirus E (FAdV-A to FAdV-E). They are classified into twelve serotypes (FAdV-1 to FAdV-8a and FAdV-8b to FAdV-11) through cross-neutralization tests. FAdVs are mainly associated with hepatitis hydropericardium syndrome (HHS), adenoviral gizzard erosion (AGE), and inclusion body hepatitis (IBH). The serotypes commonly involved in IBH are FAdV-2, FAdV-11, FAdV-8a, and FAdV-8b. IBH causes significant economic losses in the poultry industry, mainly due to high mortality, reduced productivity, and immunosuppression. This is the first case report on IBH in Chile caused—according to post-mortem findings, molecular analysis, sequencing, and phylogenetic analysis—by FAdV-11. Since the serotype had not previously been reported in Chile, continued monitoring of IBH cases is required to determine the serotype of the circulating FAdVs and adapt preventative vaccination programs.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"140 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140668561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.3390/microbiolres15020040
Abdulhusein Jawdhari, György Deák, D. Mihăilescu, N. Crăciun, A. Staicu, Ioana Stanca, Derniza Cozorici, S. Fendrihan, C. Pop, M. Mernea
Microplastics (plastic particles < 5 mm) are ubiquitous pollutants that have the ability to carry microbiota, including pathogens. Microbial adhesion is usually a sign of pathogenicity; thus, we investigated the adherent microbiota found on 4 mm nylon strips, which were ingested and excreted by wild fish specimens. Retention times were recorded and the polymer analysis of the excreted samples was performed, which showed no signs of degradation, nor did their controls, represented by the nylon strips submerged in the same water tanks. Both the ingested samples and controls presented pathogens in large quantities. Following Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight identification, the dominant genus was represented by Aeromonas, revealing the fact that nylon microplastics can serve as undegradable physical carriers for this pathogen, among others, in the aquatic environment.
{"title":"Ingested Microplastics Can Act as Microbial Vectors of Ichthyofauna","authors":"Abdulhusein Jawdhari, György Deák, D. Mihăilescu, N. Crăciun, A. Staicu, Ioana Stanca, Derniza Cozorici, S. Fendrihan, C. Pop, M. Mernea","doi":"10.3390/microbiolres15020040","DOIUrl":"https://doi.org/10.3390/microbiolres15020040","url":null,"abstract":"Microplastics (plastic particles < 5 mm) are ubiquitous pollutants that have the ability to carry microbiota, including pathogens. Microbial adhesion is usually a sign of pathogenicity; thus, we investigated the adherent microbiota found on 4 mm nylon strips, which were ingested and excreted by wild fish specimens. Retention times were recorded and the polymer analysis of the excreted samples was performed, which showed no signs of degradation, nor did their controls, represented by the nylon strips submerged in the same water tanks. Both the ingested samples and controls presented pathogens in large quantities. Following Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight identification, the dominant genus was represented by Aeromonas, revealing the fact that nylon microplastics can serve as undegradable physical carriers for this pathogen, among others, in the aquatic environment.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"112 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.3390/microbiolres15020039
B. Cenci-Goga, E. Tedeschini, E. Costanzi, M. Maranesi, M. Karama, Saeed El-Ashram, C. Saraiva, J. García-Díez, Massimo Zerani, E. Al-Olayan, L. Grispoldi
The objective of this study was to demonstrate the possible correlation of visible carcass contamination and abattoir aerosol quality with microbial hygiene criteria. A total of 279 bovine carcasses were analyzed on 23 different working days. The aerobic colony count and total coliforms on the carcasses were calculated together with the presence of Escherichia coli. To determine the visible contamination of carcasses, we used a 100 cm2 sheet of transparent, adhesive plastic material, applied to the side of the carcass, to collect all the particles, which were then counted against both black and white backgrounds. The daily particulate index in the abattoir aerosol was determined using an air sampler device. The results showed that aerobic colony counts, which ranged from 1.41 to 2.40 log cfu cm−2, total coliforms (from 0.00 to 0.73 log cfu cm−2), and E. coli presence (from 0.00% to 60% of the sampled carcasses per day) are not correlated with the carcasses’ visual dirtiness or the aerosol quality. The factor analysis showed a correlation between the three groups of variables investigated: group 1, representing “aerosol quality”, group 2, representing the “microbiology of the carcass”, and group 3, the “visual dirtiness of the carcass”. Thus, even though microbiology analysis is useful in diagnosing the microorganisms which the official veterinarian is unable to detect during the post-mortem inspection, it is ineffective in evaluating slaughtering procedures. Aerosol monitoring and the visual classification of carcass dirtiness, instead, could provide good indications of the slaughtering process and the quality of the abattoir environment, and guarantee control of manufacturing practices, protecting both animals’ and operators’ health.
{"title":"Correlation between Aerosol Particulates, Carcass Dirtiness, and Hygiene Indicators of Bovine Carcasses in the Abattoir Environment: Results of a Study in Italy","authors":"B. Cenci-Goga, E. Tedeschini, E. Costanzi, M. Maranesi, M. Karama, Saeed El-Ashram, C. Saraiva, J. García-Díez, Massimo Zerani, E. Al-Olayan, L. Grispoldi","doi":"10.3390/microbiolres15020039","DOIUrl":"https://doi.org/10.3390/microbiolres15020039","url":null,"abstract":"The objective of this study was to demonstrate the possible correlation of visible carcass contamination and abattoir aerosol quality with microbial hygiene criteria. A total of 279 bovine carcasses were analyzed on 23 different working days. The aerobic colony count and total coliforms on the carcasses were calculated together with the presence of Escherichia coli. To determine the visible contamination of carcasses, we used a 100 cm2 sheet of transparent, adhesive plastic material, applied to the side of the carcass, to collect all the particles, which were then counted against both black and white backgrounds. The daily particulate index in the abattoir aerosol was determined using an air sampler device. The results showed that aerobic colony counts, which ranged from 1.41 to 2.40 log cfu cm−2, total coliforms (from 0.00 to 0.73 log cfu cm−2), and E. coli presence (from 0.00% to 60% of the sampled carcasses per day) are not correlated with the carcasses’ visual dirtiness or the aerosol quality. The factor analysis showed a correlation between the three groups of variables investigated: group 1, representing “aerosol quality”, group 2, representing the “microbiology of the carcass”, and group 3, the “visual dirtiness of the carcass”. Thus, even though microbiology analysis is useful in diagnosing the microorganisms which the official veterinarian is unable to detect during the post-mortem inspection, it is ineffective in evaluating slaughtering procedures. Aerosol monitoring and the visual classification of carcass dirtiness, instead, could provide good indications of the slaughtering process and the quality of the abattoir environment, and guarantee control of manufacturing practices, protecting both animals’ and operators’ health.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"32 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-21DOI: 10.3390/microbiolres15020038
Rodrigo Michelini de Oliveira Thomasi, Thaiz Rodrigues Teixeira, Gabriela Francine Martins Lopes, S. Mendonça, B. Gomes, S. G. Leitão, Tiago Alves de Oliveira, Sara Thamires Dias da Fonseca, A. Taranto, Jaqueline Maria Siqueira Ferreira, Luciana Alves Rodrigues dos Santos Lima, Ana Hortência Fonsêca Castro
Zika virus (ZIKV) is involved in the etiology of serious nervous system pathologies. Currently, there are no specific and effective vaccines or antiviral drugs to prevent the diseases caused by ZIKV. This study aimed to assess the activity of flavonoids present in crude hydroethanolic extract (CHE) and fractions obtained from B. holophylla leaves against ZIKV. O-glycosylated flavonoids were characterized by high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS/MS). The cytotoxic concentration and the effective concentration for 50% of the cells (CC50 and EC50, respectively) were determined, and the selectivity index (SI) was calculated. Molecular networks were constructed based on the chemical composition of the samples and global antiviral activity data using the Global Natural Products Social Molecular Networking (GNPS) platform. Protein–ligand docking was performed in the NS2B-NS3 protease, NS3 helicase, and NS5 methyltransferase of the ZIKV. CHE showed greater antiviral activity at a multiplicity of infection (MOI) of 1.0, with an EC50 of 11.93 µg/mL, SI = 13.38, and reduced cytopathic effects. Molecular networks indicated that O-glycosylated flavonoids are responsible for the activity against ZIKV, being quercetin-O-deoxyhexoside more selective and effective. Molecular docking confirmed the inhibitory activity of quercetin-O-deoxyhexoside, which showed an affinity for the tested targets, especially for NS2B-NS3 protease. The results showed that B. holophylla has flavonoids with potential for future therapeutic applications against ZIKV.
{"title":"Antiviral Activity of Flavonoids from Bauhinia holophylla Leaves against Zika virus","authors":"Rodrigo Michelini de Oliveira Thomasi, Thaiz Rodrigues Teixeira, Gabriela Francine Martins Lopes, S. Mendonça, B. Gomes, S. G. Leitão, Tiago Alves de Oliveira, Sara Thamires Dias da Fonseca, A. Taranto, Jaqueline Maria Siqueira Ferreira, Luciana Alves Rodrigues dos Santos Lima, Ana Hortência Fonsêca Castro","doi":"10.3390/microbiolres15020038","DOIUrl":"https://doi.org/10.3390/microbiolres15020038","url":null,"abstract":"Zika virus (ZIKV) is involved in the etiology of serious nervous system pathologies. Currently, there are no specific and effective vaccines or antiviral drugs to prevent the diseases caused by ZIKV. This study aimed to assess the activity of flavonoids present in crude hydroethanolic extract (CHE) and fractions obtained from B. holophylla leaves against ZIKV. O-glycosylated flavonoids were characterized by high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS/MS). The cytotoxic concentration and the effective concentration for 50% of the cells (CC50 and EC50, respectively) were determined, and the selectivity index (SI) was calculated. Molecular networks were constructed based on the chemical composition of the samples and global antiviral activity data using the Global Natural Products Social Molecular Networking (GNPS) platform. Protein–ligand docking was performed in the NS2B-NS3 protease, NS3 helicase, and NS5 methyltransferase of the ZIKV. CHE showed greater antiviral activity at a multiplicity of infection (MOI) of 1.0, with an EC50 of 11.93 µg/mL, SI = 13.38, and reduced cytopathic effects. Molecular networks indicated that O-glycosylated flavonoids are responsible for the activity against ZIKV, being quercetin-O-deoxyhexoside more selective and effective. Molecular docking confirmed the inhibitory activity of quercetin-O-deoxyhexoside, which showed an affinity for the tested targets, especially for NS2B-NS3 protease. The results showed that B. holophylla has flavonoids with potential for future therapeutic applications against ZIKV.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"111 44","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140678364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.3390/microbiolres15020036
Y. Siddiqui, Daarshini Ganapathy
Ganoderma boninense is a white-rot fungus that causes basal stem rot (BSR) disease in the oil palm. Potential natural inhibitors, such as gallic acid, thymol, propolis, and carvacrol, were assessed for their antagonistic effects against G. boninense. These naturally occurring phenolic compounds have also been utilised to inhibit hydrolytic and ligninolytic enzymes produced by the pathogen. Mycelial inhibition was dose-dependent in the presence of different concentrations of phenolic compounds, including, for example, in cellulase enzyme inhibition (GA mg/mL = 94%, THY 0.25 mg/mL = 90%, PRO 3.5 mg/mL = 92.5%, and CARV 0.15 mg/mL = 90.3%). A significant difference was observed revealing that gallic acid had the greatest inhibitory effect on the secretion of hydrolytic and ligninolytic enzymes, especially at 40 mM GA (cellulase = 0.337 U/mL, amylase = 0.3314 U/mL, xylanase = 0.211 U/mL, laccase = 0.4885 U/mL, lignin peroxidase = 0.218 U/mL, and manganese peroxidase = 0.386 U/mL). The growth and secretion of enzymes (inhibitory action) are inversely proportional to the concentration of phenolic compounds. Phenolic compounds have a greater potential as inhibitory agents and suppress the production of hydrolytic and ligninolytic enzymes. The selected phenolic compounds were evaluated for their ability to alter the morphology and integrity of G. boninense mycelia. The reduction in cell viability of G. boninense has been explained by research on morphological disruption, such as branching patterns, hyphal length, and rigidity of fungal cells, which eventually interrupt the secretion of enzymes. These studies highlight the efficacy of phenolic compounds in treating Ganoderma. In addition, these findings proved that naturally occurring phenolic compounds could be a substitute for chemical controls and other synthetic fungicides to eradicate the occurrence of BSR in oil palms, thus avoiding a situation that is difficult to overcome.
{"title":"Altered Cytostructure and Lignolytic Enzymes of Ganoderma boninense in Response to Phenolic Compounds","authors":"Y. Siddiqui, Daarshini Ganapathy","doi":"10.3390/microbiolres15020036","DOIUrl":"https://doi.org/10.3390/microbiolres15020036","url":null,"abstract":"Ganoderma boninense is a white-rot fungus that causes basal stem rot (BSR) disease in the oil palm. Potential natural inhibitors, such as gallic acid, thymol, propolis, and carvacrol, were assessed for their antagonistic effects against G. boninense. These naturally occurring phenolic compounds have also been utilised to inhibit hydrolytic and ligninolytic enzymes produced by the pathogen. Mycelial inhibition was dose-dependent in the presence of different concentrations of phenolic compounds, including, for example, in cellulase enzyme inhibition (GA mg/mL = 94%, THY 0.25 mg/mL = 90%, PRO 3.5 mg/mL = 92.5%, and CARV 0.15 mg/mL = 90.3%). A significant difference was observed revealing that gallic acid had the greatest inhibitory effect on the secretion of hydrolytic and ligninolytic enzymes, especially at 40 mM GA (cellulase = 0.337 U/mL, amylase = 0.3314 U/mL, xylanase = 0.211 U/mL, laccase = 0.4885 U/mL, lignin peroxidase = 0.218 U/mL, and manganese peroxidase = 0.386 U/mL). The growth and secretion of enzymes (inhibitory action) are inversely proportional to the concentration of phenolic compounds. Phenolic compounds have a greater potential as inhibitory agents and suppress the production of hydrolytic and ligninolytic enzymes. The selected phenolic compounds were evaluated for their ability to alter the morphology and integrity of G. boninense mycelia. The reduction in cell viability of G. boninense has been explained by research on morphological disruption, such as branching patterns, hyphal length, and rigidity of fungal cells, which eventually interrupt the secretion of enzymes. These studies highlight the efficacy of phenolic compounds in treating Ganoderma. In addition, these findings proved that naturally occurring phenolic compounds could be a substitute for chemical controls and other synthetic fungicides to eradicate the occurrence of BSR in oil palms, thus avoiding a situation that is difficult to overcome.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"350 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140698306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.3390/microbiolres15020035
R. Lefter, Prairna Balyan, I. Balmuș, Abdellah Ech-chahad, Ahmad Ali, A. Ciobica, A. Petroaie, Gabriela Halitchi, Bogdan Novac, Catalina Ionescu, Fatimazahra Kamal
Infection with the novel coronavirus SARS-CoV-2, the cause of coronavirus disease (COVID-19), has emerged as a global pandemic, with a high toll on casualties, economic impact, and human lifestyle. Despite the recent approval of various vaccines against the virus, challenges remain, including the limited availability of these vaccines, the prevalent rejection of vaccination by a large proportion of the population, and the recurrent appearance of new variants of the virus due to mutations. This context raises the alarm for scientists and clinicians to seek alternative and complementary therapies. In this context, natural products and their derivatives serve as reservoirs for potential therapeutic compounds that can be exploited in the research and production of antiviral drugs against COVID-19. Among these substances, lectin and polysaccharides isolated from fauna and flora emerge as complementary strategies for treating coronavirus infection. The review objective is to cover and analyze the specific role of polysaccharides and lectins and their synergy in the fight against this deadly SARS-CoV-2 virus. For this purpose, a primary literature search was conducted on Google Scholar, PubMed, and Web of Sciences using relevant keywords like “SARS-CoV-2 Variants”; “Antiviral Strategies”; “Antiviral Polysaccharides”; “Antiviral Lectins”; and “Synergistic effect”. The results demonstrate that lectins and polysaccharides exhibit antiviral activities against SARS-CoV-2 via mechanisms related to binding and steric blocking, the binding of glycan-based decoys, chemical reactions, virus particle disruption strategies, and steric blocking for competitive inhibition to block SARS-CoV-2 and its variants’ entry. In addition, this review analyzes the rationale behind combining polysaccharides and lectins, emphasizing complementary mechanisms of action. By simultaneously targeting multiple stages of the viral life cycle, this dual strategy aims to comprehensively inhibit viral propagation and enhance the durability of antiviral strategies over time.
{"title":"Polysaccharides and Lectins: A Natural Complementary Approach against the SARS-CoV-2 Pandemic","authors":"R. Lefter, Prairna Balyan, I. Balmuș, Abdellah Ech-chahad, Ahmad Ali, A. Ciobica, A. Petroaie, Gabriela Halitchi, Bogdan Novac, Catalina Ionescu, Fatimazahra Kamal","doi":"10.3390/microbiolres15020035","DOIUrl":"https://doi.org/10.3390/microbiolres15020035","url":null,"abstract":"Infection with the novel coronavirus SARS-CoV-2, the cause of coronavirus disease (COVID-19), has emerged as a global pandemic, with a high toll on casualties, economic impact, and human lifestyle. Despite the recent approval of various vaccines against the virus, challenges remain, including the limited availability of these vaccines, the prevalent rejection of vaccination by a large proportion of the population, and the recurrent appearance of new variants of the virus due to mutations. This context raises the alarm for scientists and clinicians to seek alternative and complementary therapies. In this context, natural products and their derivatives serve as reservoirs for potential therapeutic compounds that can be exploited in the research and production of antiviral drugs against COVID-19. Among these substances, lectin and polysaccharides isolated from fauna and flora emerge as complementary strategies for treating coronavirus infection. The review objective is to cover and analyze the specific role of polysaccharides and lectins and their synergy in the fight against this deadly SARS-CoV-2 virus. For this purpose, a primary literature search was conducted on Google Scholar, PubMed, and Web of Sciences using relevant keywords like “SARS-CoV-2 Variants”; “Antiviral Strategies”; “Antiviral Polysaccharides”; “Antiviral Lectins”; and “Synergistic effect”. The results demonstrate that lectins and polysaccharides exhibit antiviral activities against SARS-CoV-2 via mechanisms related to binding and steric blocking, the binding of glycan-based decoys, chemical reactions, virus particle disruption strategies, and steric blocking for competitive inhibition to block SARS-CoV-2 and its variants’ entry. In addition, this review analyzes the rationale behind combining polysaccharides and lectins, emphasizing complementary mechanisms of action. By simultaneously targeting multiple stages of the viral life cycle, this dual strategy aims to comprehensively inhibit viral propagation and enhance the durability of antiviral strategies over time.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"37 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140724265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.3390/microbiolres15020034
A. Matveenko, Anastasiia S. Mikhailichenko, P. Drozdova, G. Zhouravleva
Mcm1 is an essential Q/N-rich transcription factor. Q/N-rich proteins interact with each other, and many affect the [PSI+] prion formed by the translation termination factor Sup35 (eRF3). We found that transient MCM1 overexpression increased nonsense suppression in [PSI+] strains and SUP35 transcription. As we had discovered similar effects of another Q/N-rich transcription factor, Sfp1, here we focus on the roles of Mcm1 and Sfp1 in SUP35 expression, as well as on the effects of Sfp1 on the expression of the gene encoding another release factor, Sup45 (eRF1). Mutations in the SUP35 promoter showed that none of the potential Mcm1 binding sites affected the Sup35 protein level or nonsense suppression, even during MCM1 overexpression. Mcm1 itself neither formed aggregates in vivo nor affected Sup35 aggregation. In contrast, a mutation in the Sfp1-binding site decreased Sup35 production and [PSI+] toxicity of excess Sfp1. Mutation of the Sfp1 binding site in the SUP45 promoter lowered SUP45 expression and increased nonsense suppression even more drastically. Our data indicate that the mechanisms of Mcm1 and Sfp1 action differ. While Mcm1 seems unlikely to directly regulate SUP35 expression, Sfp1 appears to act through its binding sites and to directly activate SUP35 expression, which in turn may influence the [PSI+] prion phenotype and toxicity.
{"title":"Transcription Factors Mcm1 and Sfp1 May Affect [PSI+] Prion Phenotype by Altering the Expression of the SUP35 Gene","authors":"A. Matveenko, Anastasiia S. Mikhailichenko, P. Drozdova, G. Zhouravleva","doi":"10.3390/microbiolres15020034","DOIUrl":"https://doi.org/10.3390/microbiolres15020034","url":null,"abstract":"Mcm1 is an essential Q/N-rich transcription factor. Q/N-rich proteins interact with each other, and many affect the [PSI+] prion formed by the translation termination factor Sup35 (eRF3). We found that transient MCM1 overexpression increased nonsense suppression in [PSI+] strains and SUP35 transcription. As we had discovered similar effects of another Q/N-rich transcription factor, Sfp1, here we focus on the roles of Mcm1 and Sfp1 in SUP35 expression, as well as on the effects of Sfp1 on the expression of the gene encoding another release factor, Sup45 (eRF1). Mutations in the SUP35 promoter showed that none of the potential Mcm1 binding sites affected the Sup35 protein level or nonsense suppression, even during MCM1 overexpression. Mcm1 itself neither formed aggregates in vivo nor affected Sup35 aggregation. In contrast, a mutation in the Sfp1-binding site decreased Sup35 production and [PSI+] toxicity of excess Sfp1. Mutation of the Sfp1 binding site in the SUP45 promoter lowered SUP45 expression and increased nonsense suppression even more drastically. Our data indicate that the mechanisms of Mcm1 and Sfp1 action differ. While Mcm1 seems unlikely to directly regulate SUP35 expression, Sfp1 appears to act through its binding sites and to directly activate SUP35 expression, which in turn may influence the [PSI+] prion phenotype and toxicity.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"82 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140729008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.3390/microbiolres15020033
Arshilin Philip Mani, B. Balasubramanian, Linsha A. Mali, K. S. Joseph, A. Meyyazhagan, Manikantan Pappuswamy, Biljo V. Joseph
The human gut has a rich and dynamic microbial population that plays an important role in many physiological activities. This review explores the complex interaction between the gut microbiota and human health, with an emphasis on its effect on neurodegenerative illnesses. The makeup of the gut microbiome and its impact on brain function through the gut–brain axis is highlighted. Dysbiosis, characterized by changes in the gut microbiota’s composition, has been linked to the development of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. A Bidirectional communication between the stomach and the brain takes place via a variety of channels, including neurotransmitters and metabolites generated by gut bacteria. We investigate the processes through which dysbiosis causes neuroinflammation, oxidative stress, and neuronal damage, which drive disease development. Potential therapeutic approaches that focus on the gut microbiota, such as antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, are reviewed, with promising preclinical and clinical findings. Overall, this study emphasizes the relevance of gut microbiota to neurodegenerative illnesses, as well as the need to understand and target the gut-brain axis for future treatment options.
{"title":"The Role of the Gut Microbiota in Neurodegenerative Diseases","authors":"Arshilin Philip Mani, B. Balasubramanian, Linsha A. Mali, K. S. Joseph, A. Meyyazhagan, Manikantan Pappuswamy, Biljo V. Joseph","doi":"10.3390/microbiolres15020033","DOIUrl":"https://doi.org/10.3390/microbiolres15020033","url":null,"abstract":"The human gut has a rich and dynamic microbial population that plays an important role in many physiological activities. This review explores the complex interaction between the gut microbiota and human health, with an emphasis on its effect on neurodegenerative illnesses. The makeup of the gut microbiome and its impact on brain function through the gut–brain axis is highlighted. Dysbiosis, characterized by changes in the gut microbiota’s composition, has been linked to the development of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. A Bidirectional communication between the stomach and the brain takes place via a variety of channels, including neurotransmitters and metabolites generated by gut bacteria. We investigate the processes through which dysbiosis causes neuroinflammation, oxidative stress, and neuronal damage, which drive disease development. Potential therapeutic approaches that focus on the gut microbiota, such as antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, are reviewed, with promising preclinical and clinical findings. Overall, this study emphasizes the relevance of gut microbiota to neurodegenerative illnesses, as well as the need to understand and target the gut-brain axis for future treatment options.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"28 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140737357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.3390/microbiolres15020032
Jayani K. Handagala, N. Kumarasinghe, C. Goonasekara, A. Kuruppu
Dengue fever, a mosquito-borne viral infectious disease caused by the dengue virus, is a significant global health concern, especially in tropical and subtropical regions. Despite preventive efforts, Sri Lanka faces recurring dengue outbreaks, with the Western province being the most affected. Current treatments primarily focus on supportive care, as specific antiviral therapies remain elusive. This review presents an overview of dengue, its clinical presentations, the dengue burden in Sri Lanka, and the potential of Sri Lankan medicinal plants used in traditional medicine for treating dengue. Several plants, such as Munronia pinnata, Azardirachta indica, Cissampelos pareira L., Carica papaya, Zingiber officinale, Curcuma longa, and Bambusa vulgaris, show antiviral properties against dengue. The utilization of these medicinal plants in dengue treatment could offer a promising avenue for further research and drug development.
{"title":"Medicinal Plants Used in Sri Lankan Traditional Medicine for Dengue Fever","authors":"Jayani K. Handagala, N. Kumarasinghe, C. Goonasekara, A. Kuruppu","doi":"10.3390/microbiolres15020032","DOIUrl":"https://doi.org/10.3390/microbiolres15020032","url":null,"abstract":"Dengue fever, a mosquito-borne viral infectious disease caused by the dengue virus, is a significant global health concern, especially in tropical and subtropical regions. Despite preventive efforts, Sri Lanka faces recurring dengue outbreaks, with the Western province being the most affected. Current treatments primarily focus on supportive care, as specific antiviral therapies remain elusive. This review presents an overview of dengue, its clinical presentations, the dengue burden in Sri Lanka, and the potential of Sri Lankan medicinal plants used in traditional medicine for treating dengue. Several plants, such as Munronia pinnata, Azardirachta indica, Cissampelos pareira L., Carica papaya, Zingiber officinale, Curcuma longa, and Bambusa vulgaris, show antiviral properties against dengue. The utilization of these medicinal plants in dengue treatment could offer a promising avenue for further research and drug development.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"35 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-24DOI: 10.3390/microbiolres15020030
Odo J. Bassey, J. Gumbo, M. Mujuru, Adeeyo Adeyemi, F. Dondofema
Over the decades, the aquaculture sector has witnessed substantial growth, contributing significantly to the nation’s economy. However, the menace of CyanoHABs threatens the sustainability of fish farming. Considering the possible hazards linked to cyanotoxins in food and water, a comparative study design between commercial fish in Nigeria and South Africa was employed to investigate cyanotoxins in the water from fishponds. Six commercial fishponds in Calabar Municipality—Nigeria and Duthuni—South Africa with varying climatic zones were selected. Water samples from the ponds were collected at intervals during different seasons (summer, winter, dry, and wet seasons) to capture climate-induced variation. Liquid chromatography–mass spectrometry (LCMS) in combination with the metabolites database was used for the identification of toxic cyanometabolites in water samples. The molecular networking approach, coupled with the Global Natural Products Social Molecular Networking (GNPS) database and CANOPUS annotation, enabled the putative identification of cyanometabolites. The resulting molecular network unveiled discernible clusters representing related molecule families, aiding in the identification of both known cyanotoxins and unfamiliar analogues. Furthermore, the molecular network revealed that water samples from different fishponds shared specific metabolites, including ethanesulfonic acid, pheophorbide A, cholic acid, phenylalanine, amyl amine, phosphocholine (PC), and sulfonic acid, despite variations in location, local climatic factors, and sampling sites. The fishponds in Nigeria showed the presence of multiple cyanotoxin classes in the dry, wet, and summer seasons in the water. Aflatoxin was identified in all sampling sites in Nigeria (N1, N2, and N3). The Duthuni, South Africa, sampling sites (P1, P2, and P3) exhibited the presence of microginins and microcystins. All the fishponds displayed a widespread occurrence of anabaenopeptins, aplysiatoxins, aflatoxin, microcolins, and marabmids during the selected summer. In conclusion, the untargeted metabolome analysis, guided by GNPS, proved highly effective in identifying both toxic and non-toxic metabolites in fishponds.
{"title":"Comparative Analysis of Cyanotoxins in Fishponds in Nigeria and South Africa","authors":"Odo J. Bassey, J. Gumbo, M. Mujuru, Adeeyo Adeyemi, F. Dondofema","doi":"10.3390/microbiolres15020030","DOIUrl":"https://doi.org/10.3390/microbiolres15020030","url":null,"abstract":"Over the decades, the aquaculture sector has witnessed substantial growth, contributing significantly to the nation’s economy. However, the menace of CyanoHABs threatens the sustainability of fish farming. Considering the possible hazards linked to cyanotoxins in food and water, a comparative study design between commercial fish in Nigeria and South Africa was employed to investigate cyanotoxins in the water from fishponds. Six commercial fishponds in Calabar Municipality—Nigeria and Duthuni—South Africa with varying climatic zones were selected. Water samples from the ponds were collected at intervals during different seasons (summer, winter, dry, and wet seasons) to capture climate-induced variation. Liquid chromatography–mass spectrometry (LCMS) in combination with the metabolites database was used for the identification of toxic cyanometabolites in water samples. The molecular networking approach, coupled with the Global Natural Products Social Molecular Networking (GNPS) database and CANOPUS annotation, enabled the putative identification of cyanometabolites. The resulting molecular network unveiled discernible clusters representing related molecule families, aiding in the identification of both known cyanotoxins and unfamiliar analogues. Furthermore, the molecular network revealed that water samples from different fishponds shared specific metabolites, including ethanesulfonic acid, pheophorbide A, cholic acid, phenylalanine, amyl amine, phosphocholine (PC), and sulfonic acid, despite variations in location, local climatic factors, and sampling sites. The fishponds in Nigeria showed the presence of multiple cyanotoxin classes in the dry, wet, and summer seasons in the water. Aflatoxin was identified in all sampling sites in Nigeria (N1, N2, and N3). The Duthuni, South Africa, sampling sites (P1, P2, and P3) exhibited the presence of microginins and microcystins. All the fishponds displayed a widespread occurrence of anabaenopeptins, aplysiatoxins, aflatoxin, microcolins, and marabmids during the selected summer. In conclusion, the untargeted metabolome analysis, guided by GNPS, proved highly effective in identifying both toxic and non-toxic metabolites in fishponds.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140385204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}