We propose a general method for constructing a minimal cover of high-dimensional chaotic attractors by embedded unstable recurrent patterns. By minimal cover we mean a subset of available patterns such that the approximation of chaotic dynamics by a minimal cover with a predefined proximity threshold is as good as the approximation by the full available set. The proximity measure, based on the concept of a directed Hausdorff distance, can be chosen with considerable freedom and adapted to the properties of a given chaotic system. In the context of a spatiotemporally chaotic attractor of the Kuramoto–Sivashinsky system on a periodic domain, we demonstrate that the minimal cover can be faithfully constructed even when the proximity measure is defined within a subspace of dimension much smaller than the dimension of space containing the attractor. We discuss how the minimal cover can be used to provide a reduced description of the attractor structure and the dynamics on it.
We propose a fractional-step method for the numerical solution of unsteady thermal convection in non-Newtonian fluids with temperature-dependent physical parameters. The proposed method is based on a viscosity-splitting approach, and it consists of four uncoupled steps where the convection and diffusion terms of both velocity and temperature solutions are uncoupled while a viscosity term is kept in the correction step at all times. This fractional-step method maintains the same boundary conditions imposed in the original problem for the corrected velocity solution, and it eliminates all inconsistencies related to boundary conditions for the treatment of the pressure solution. In addition, the method is unconditionally stable, and it allows the temperature to be transported by a non-divergence-free velocity field. In this case, we introduce a methodology to handle the subtle temperature convection term in the error analysis and establish full first-order error estimates for the velocity and the temperature solutions and -order estimates for the pressure solution in their appropriate norms. Three numerical examples are presented to demonstrate the theoretical results and examine the performance of the proposed method for solving unsteady thermal convection in non-Newtonian fluids. The computational results obtained for the considered examples confirm the convergence, accuracy, and applicability of the proposed time fractional-step method for unsteady thermal convection in non-Newtonian fluids.
In this study, we solve the fourth-order parabolic problem by combining the implicit -schemes in time for with the stabilizer free weak Galerkin (SFWG) method. The semi-discrete and full-discrete numerical schemes are proposed. And specifically, the full-discrete scheme is a first-order backward Euler scheme when , and a second-order Crank–Nicolson scheme for . Then, we determine the optimal convergence orders of the error in the and norms after analyzing the well-posedness of the schemes. The theoretical findings are validated by numerical experiments.