Qingyang Hu, Jie Deng, Yukuai Zhuang, Zhenzhong Yang, Rong Huang
Enigmatic anomalous structures of Earth's lowermost mantle may have been incubated at the hydrous magma ocean of the Hadean eon.
地球最下层地幔的神秘异常结构可能是在哈代的含水岩浆海洋中孵化出来的。
{"title":"Earth's core-mantle boundary shaped by crystalizing a hydrous terrestrial magma ocean","authors":"Qingyang Hu, Jie Deng, Yukuai Zhuang, Zhenzhong Yang, Rong Huang","doi":"10.1093/nsr/nwae169","DOIUrl":"https://doi.org/10.1093/nsr/nwae169","url":null,"abstract":"Enigmatic anomalous structures of Earth's lowermost mantle may have been incubated at the hydrous magma ocean of the Hadean eon.","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"120 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140985218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-innocent partners: bias distribution between photoanodes and cathodes in photoelectrochemical overall water-splitting cells","authors":"Wei Li, Dunwei Wang","doi":"10.1093/nsr/nwae155","DOIUrl":"https://doi.org/10.1093/nsr/nwae155","url":null,"abstract":"","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"52 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the tumor microenvironment and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Of which, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.
{"title":"Immune-tumor interaction dictates spatially directed evolution of esophageal squamous cell carcinoma","authors":"Yong Zhou, Shanlan Mo, Heyang Cui, Ruifang Sun, Weimin Zhang, Xiaofei Zhuang, Enwei Xu, Hongyi Li, Yikun Cheng, Yongsheng Meng, Meilin Liu, Ting Yan, Huijuan Liu, Ling Zhang, Bin Yang, Yanfeng Xi, Shubin Wang, Xiaolong Cheng, ShuaiCheng Li, Zhihua Liu, Qimin Zhan, Zheng Hu, Yongping Cui","doi":"10.1093/nsr/nwae150","DOIUrl":"https://doi.org/10.1093/nsr/nwae150","url":null,"abstract":"\u0000 Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the tumor microenvironment and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Of which, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"42 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140668206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wireless powering solution for implantable electronics based on ultra-low frequency magnetic energy focusing","authors":"Haoyuan Wang, Xinge Yu","doi":"10.1093/nsr/nwae140","DOIUrl":"https://doi.org/10.1093/nsr/nwae140","url":null,"abstract":"","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140723275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evolving landscape of embolization therapy for treating cerebral aneurysms and brain tumors represents a pivotal stride towards enhancing the efficacy and safety of minimally invasive treatments [1 ]. Conventional endovascular embolization methods
{"title":"Endovascular embolization by a magnetic microfiberbot","authors":"Shuning Zhang, Wenlong Yang, Junbo Ge","doi":"10.1093/nsr/nwae117","DOIUrl":"https://doi.org/10.1093/nsr/nwae117","url":null,"abstract":"The evolving landscape of embolization therapy for treating cerebral aneurysms and brain tumors represents a pivotal stride towards enhancing the efficacy and safety of minimally invasive treatments [1 ]. Conventional endovascular embolization methods","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Volatiles in the mantle transition zone and their effects on big mantle wedge systems","authors":"Yu Wang, Yi‐Gang Xu","doi":"10.1093/nsr/nwae136","DOIUrl":"https://doi.org/10.1093/nsr/nwae136","url":null,"abstract":"","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"49 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High magnetic fields play a crucial role in advancing basic sciences, fusion energy, and magnetic resonance imaging systems. However, the widespread use of high-field magnets requires affordable high-temperature superconducting wires that can carry large supercurrents. Iron-based superconductors offer an economically attractive solution to push forward important yet costly scientific programs, such as nuclear fusion reactors and next-generation particle accelerators. In this review, we start with the fabrication of iron-based superconducting wires and tapes and continue to discuss several key factors governing the current transport properties. State-of-the-art wires and tapes are introduced with emphasis on grain boundary characteristics, flux pinning, and anisotropy. The flexible conductor architecture enables low cost, large mechanical strength, and high thermal stability. Recent progress in practical applications, including superconducting joints and insert coils, is also reviewed. Finally, we propose several key questions faced by iron-based superconductors in future practical applications.
{"title":"Towards high-field applications: high-performance, low-cost iron-based superconductors","authors":"C. Dong, Qingjin Xu, Yanwei Ma","doi":"10.1093/nsr/nwae122","DOIUrl":"https://doi.org/10.1093/nsr/nwae122","url":null,"abstract":"\u0000 High magnetic fields play a crucial role in advancing basic sciences, fusion energy, and magnetic resonance imaging systems. However, the widespread use of high-field magnets requires affordable high-temperature superconducting wires that can carry large supercurrents. Iron-based superconductors offer an economically attractive solution to push forward important yet costly scientific programs, such as nuclear fusion reactors and next-generation particle accelerators. In this review, we start with the fabrication of iron-based superconducting wires and tapes and continue to discuss several key factors governing the current transport properties. State-of-the-art wires and tapes are introduced with emphasis on grain boundary characteristics, flux pinning, and anisotropy. The flexible conductor architecture enables low cost, large mechanical strength, and high thermal stability. Recent progress in practical applications, including superconducting joints and insert coils, is also reviewed. Finally, we propose several key questions faced by iron-based superconductors in future practical applications.","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"57 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140363565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel A Torre Cachafeiro, N. K. Kumawat, Feng Gao, Wolfgang Tress
Metal halide perovskite light emitting diodes (PeLEDs) are a promising technology for energy-efficient and cost-effective lighting and displays, thanks to their tunable color emission, high brightness, color purity, and low-temperature fabrication. However, the mixed ionic-electronic conductivity of perovskite materials presents unique challenges, as ionic defects can redistribute under operation, affecting the energy landscape and charge recombination mechanisms. Our drift-diffusion simulations establish a connection between the transient electroluminescence (TrEL) signals of PeLEDs under pulsed operation and the influence of mobile ions. We find that the TrEL plateau value’s dependence on duty cycle and the end-of-pulse overshoot can be explained by the time-varying distribution of ionic defects. The inclusion of mobile ions is crucial to understand the TrEL response. Moreover, the simulations highlight injection barriers at the perovskite/charge-transport layer interfaces, such as is the case for the hole transport layer (HTL) in our example, as a significant source of non-radiative charge recombination. These findings contribute to the understanding of transient ionic processes in perovskite-based devices.
{"title":"Pulsed operation of perovskite LEDs: A study on the role of mobile ions","authors":"Miguel A Torre Cachafeiro, N. K. Kumawat, Feng Gao, Wolfgang Tress","doi":"10.1093/nsr/nwae128","DOIUrl":"https://doi.org/10.1093/nsr/nwae128","url":null,"abstract":"\u0000 Metal halide perovskite light emitting diodes (PeLEDs) are a promising technology for energy-efficient and cost-effective lighting and displays, thanks to their tunable color emission, high brightness, color purity, and low-temperature fabrication. However, the mixed ionic-electronic conductivity of perovskite materials presents unique challenges, as ionic defects can redistribute under operation, affecting the energy landscape and charge recombination mechanisms. Our drift-diffusion simulations establish a connection between the transient electroluminescence (TrEL) signals of PeLEDs under pulsed operation and the influence of mobile ions. We find that the TrEL plateau value’s dependence on duty cycle and the end-of-pulse overshoot can be explained by the time-varying distribution of ionic defects. The inclusion of mobile ions is crucial to understand the TrEL response. Moreover, the simulations highlight injection barriers at the perovskite/charge-transport layer interfaces, such as is the case for the hole transport layer (HTL) in our example, as a significant source of non-radiative charge recombination. These findings contribute to the understanding of transient ionic processes in perovskite-based devices.","PeriodicalId":507754,"journal":{"name":"National Science Review","volume":"14 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}