Julia Muñoz-Guarinos, Laura Rodríguez, José Miguel Carretero, Rebeca García-González
This research delves deeper into previous works on femoral cross-sectional properties during ontogeny by focusing for the first time on the human femoral midneck. The ontogenetic pattern of cross-sectional properties at femoral midneck is established and compared with those at three different femoral locations: the proximal femur, the midshaft, and the distal femur. The study sample includes 99 femora (70 non-adults and 29 adults) belonging to archaeological specimens. Cross-sectional properties were extracted from computed tomographic scans and analyzed with the MomentMacro plugin of ImageJ. Ontogenetic trends of these variables were assessed using locally estimated scatterplot smoothing and segmented regressions, along with Wilcoxon post hoc tests for all possible age group pairings. Our results show that the femoral midneck exhibits a unique growth pattern. Area variables showed rapid growth until adolescence, followed by a more gradual increase leading into adulthood. Nonetheless, the relative cortical area does not demonstrate any significant drops or rise during growth. The morphology of the midneck section of the femur remains stable during ontogeny, with early adolescence and the onset of adulthood marking two periods of significant change. In contrast to the femoral diaphysis, the acquisition of a mature bipedal gait does not appear to constitute a period of significant morphological change at the femoral midneck cross section.
{"title":"Exploring developmental changes in femoral midneck cross-sectional properties.","authors":"Julia Muñoz-Guarinos, Laura Rodríguez, José Miguel Carretero, Rebeca García-González","doi":"10.1002/ar.25618","DOIUrl":"https://doi.org/10.1002/ar.25618","url":null,"abstract":"<p><p>This research delves deeper into previous works on femoral cross-sectional properties during ontogeny by focusing for the first time on the human femoral midneck. The ontogenetic pattern of cross-sectional properties at femoral midneck is established and compared with those at three different femoral locations: the proximal femur, the midshaft, and the distal femur. The study sample includes 99 femora (70 non-adults and 29 adults) belonging to archaeological specimens. Cross-sectional properties were extracted from computed tomographic scans and analyzed with the MomentMacro plugin of ImageJ. Ontogenetic trends of these variables were assessed using locally estimated scatterplot smoothing and segmented regressions, along with Wilcoxon post hoc tests for all possible age group pairings. Our results show that the femoral midneck exhibits a unique growth pattern. Area variables showed rapid growth until adolescence, followed by a more gradual increase leading into adulthood. Nonetheless, the relative cortical area does not demonstrate any significant drops or rise during growth. The morphology of the midneck section of the femur remains stable during ontogeny, with early adolescence and the onset of adulthood marking two periods of significant change. In contrast to the femoral diaphysis, the acquisition of a mature bipedal gait does not appear to constitute a period of significant morphological change at the femoral midneck cross section.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crocodylians evolved a unique gular valve that is capable of creating a water-tight seal between the oral and pharyngeal cavities, allowing the animal to safely submerge with an open mouth. The gular valve has traditionally been described as consisting of two separate parts: an active mobile ventral portion (consisting of the tongue and portions of the hyolingual apparatus) and a dorsal portion, which is a static fold on the hard palate (often termed the palatal velum). The results of the present study argue that the two portions of the gular valve are functionally integrated, not separate, and that the dorsal portion (herein the dorsal gular fold) is a dynamic element the shape and tension of which are influenced by active and passive forces. Using gross dissection, histology, and DiceCT, the present study documents a previously underscribed component of the gular valve, the velar chord, which links the hyolingual apparatus to the dorsal gular fold, functionally integrating the two halves of the gular valve. Through endoscopic videography and a variety of manipulations on living crocodylians, this study demonstrates that changes in the tension on the velar chord directly alter the shape and tension of the dorsal gular fold. The shape changes observed in the dorsal gular fold could be accommodated by a shallow depression in the ventral surface of the palatine bones, herein termed the velar fossa. The velar fossa is a prominent feature of Alligator mississippiensis and was observed in other crocodilians; however, a survey of living and fossil crocodylians demonstrated that the velar fossa is not a universal feature in this clade. Understanding the functional linkage between the dorsal and ventral portions of the gular valve has implications beyond the dive reflex of crocodylians, since active manipulation of the dorsal gular fold likely plays a role in a variety of behavioral and physiological processes such as deglutition and vocalization.
{"title":"The velar chord and dynamic integration of the gular valve in crocodylians.","authors":"Bruce A Young, Michael Cramberg, Olivia G Young","doi":"10.1002/ar.25608","DOIUrl":"https://doi.org/10.1002/ar.25608","url":null,"abstract":"<p><p>Crocodylians evolved a unique gular valve that is capable of creating a water-tight seal between the oral and pharyngeal cavities, allowing the animal to safely submerge with an open mouth. The gular valve has traditionally been described as consisting of two separate parts: an active mobile ventral portion (consisting of the tongue and portions of the hyolingual apparatus) and a dorsal portion, which is a static fold on the hard palate (often termed the palatal velum). The results of the present study argue that the two portions of the gular valve are functionally integrated, not separate, and that the dorsal portion (herein the dorsal gular fold) is a dynamic element the shape and tension of which are influenced by active and passive forces. Using gross dissection, histology, and DiceCT, the present study documents a previously underscribed component of the gular valve, the velar chord, which links the hyolingual apparatus to the dorsal gular fold, functionally integrating the two halves of the gular valve. Through endoscopic videography and a variety of manipulations on living crocodylians, this study demonstrates that changes in the tension on the velar chord directly alter the shape and tension of the dorsal gular fold. The shape changes observed in the dorsal gular fold could be accommodated by a shallow depression in the ventral surface of the palatine bones, herein termed the velar fossa. The velar fossa is a prominent feature of Alligator mississippiensis and was observed in other crocodilians; however, a survey of living and fossil crocodylians demonstrated that the velar fossa is not a universal feature in this clade. Understanding the functional linkage between the dorsal and ventral portions of the gular valve has implications beyond the dive reflex of crocodylians, since active manipulation of the dorsal gular fold likely plays a role in a variety of behavioral and physiological processes such as deglutition and vocalization.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João G Franca, Marco Aurelio M Freire, Antonio Pereira, Paul R Manger, Jon H Kaas, Cristovam W Picanço-Diniz
Understanding patterns of cortico-cortical connections in both frequently and infrequently studied species advances our knowledge of cortical organization and evolution. The agouti (Dasyprocta aguti, a medium-size South American rodent) offers a unique opportunity, because of its large lissencephalic brain and its natural behaviors, such as gnawing and hiding seeds, that require bimanual interaction while sitting on its hindlimbs and aligning its head to receive images of the horizon on the retinal visual streak. There have been no previous studies of the intrinsic and extrinsic ipsilateral projections of the agouti's primary somatosensory cortical area (S1). In the present study, we utilized biotinylated dextran (BDA) anatomical tract-tracer injections combined with microelectrode electrophysiological mapping, correlated with analysis of cytochrome oxidase (CO) histochemical staining, to investigate the ipsilateral corticocortical connectivity of the agouti's S1. By injecting BDA into electrophysiologically identified regions within the S1, we revealed ipsilateral intrinsic connections, as well as connections with cortical areas rostral and caudal to S1, and homotopic labeling in the second somatosensory cortical area (S2). In addition, we identified a focal cluster of labeled axons and axonal terminals adjacent to the rhinal fissure, tentatively named the parietal rhinal area (PR). The analysis of CO reactivity allowed delineation of the boundaries and subdivisions of S1, as well as the locations and limits of primary auditory and visual areas. These findings provide support for the notion of a similar pattern of somatosensory cortical organization and connectivity across mammalian species.
{"title":"Cortico-cortical connectivity of the somatosensory cortex of the agouti: Topographical organization and evolutionary implications.","authors":"João G Franca, Marco Aurelio M Freire, Antonio Pereira, Paul R Manger, Jon H Kaas, Cristovam W Picanço-Diniz","doi":"10.1002/ar.25610","DOIUrl":"https://doi.org/10.1002/ar.25610","url":null,"abstract":"<p><p>Understanding patterns of cortico-cortical connections in both frequently and infrequently studied species advances our knowledge of cortical organization and evolution. The agouti (Dasyprocta aguti, a medium-size South American rodent) offers a unique opportunity, because of its large lissencephalic brain and its natural behaviors, such as gnawing and hiding seeds, that require bimanual interaction while sitting on its hindlimbs and aligning its head to receive images of the horizon on the retinal visual streak. There have been no previous studies of the intrinsic and extrinsic ipsilateral projections of the agouti's primary somatosensory cortical area (S1). In the present study, we utilized biotinylated dextran (BDA) anatomical tract-tracer injections combined with microelectrode electrophysiological mapping, correlated with analysis of cytochrome oxidase (CO) histochemical staining, to investigate the ipsilateral corticocortical connectivity of the agouti's S1. By injecting BDA into electrophysiologically identified regions within the S1, we revealed ipsilateral intrinsic connections, as well as connections with cortical areas rostral and caudal to S1, and homotopic labeling in the second somatosensory cortical area (S2). In addition, we identified a focal cluster of labeled axons and axonal terminals adjacent to the rhinal fissure, tentatively named the parietal rhinal area (PR). The analysis of CO reactivity allowed delineation of the boundaries and subdivisions of S1, as well as the locations and limits of primary auditory and visual areas. These findings provide support for the notion of a similar pattern of somatosensory cortical organization and connectivity across mammalian species.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Ito, Mugino O Kubo, Ryo Kodera, Sei-Ichiro Takeda, Hideki Endo
Masticatory muscles are composed of the temporalis, masseter, and pterygoid muscles in mammals. Each muscle has a different origin on the skull and insertion on the mandible; thus, all masticatory muscles contract in different directions. Collecting in vivo data and directly measuring the masticatory muscles anatomically in various Carnivora species is practically problematic. This is because some carnivorans can be ferocious, rare, or even extinct. Consequently, the most practical method to collect data on the force generated by the masticatory muscle is to estimate the force based on skulls. The physiological cross-sectional area (PCSA) of each masticatory muscle, which correlates to the maximum force that can be produced by a muscle, was quantified. Using computed tomography, we defined the three-dimensional measurement area for 32 carnivoran species based on the origin and insertion of masticatory muscles specified by observable crests, ridges, and scars. Subsequent allometric analysis relating the measurement area on skull surface to the PCSA for each masticatory muscle measured in fresh specimens revealed a strong correlation between the two variables. This finding indicates that within Carnivora, an estimation of absolute masticatory muscle PCSA can be derived from measurements area on skull surface. This method allows for the use of cranial specimens, housed in museums and research institutions, that lack preserved masticatory muscles in quantitative studies involving masticatory muscle PCSA. This approach facilitates comprehensive discussions on the masticatory muscle morphology of Carnivora, including rare and extinct species.
{"title":"Quantitative assessment of masticatory muscles based on skull muscle attachment areas in Carnivora.","authors":"Kai Ito, Mugino O Kubo, Ryo Kodera, Sei-Ichiro Takeda, Hideki Endo","doi":"10.1002/ar.25599","DOIUrl":"https://doi.org/10.1002/ar.25599","url":null,"abstract":"<p><p>Masticatory muscles are composed of the temporalis, masseter, and pterygoid muscles in mammals. Each muscle has a different origin on the skull and insertion on the mandible; thus, all masticatory muscles contract in different directions. Collecting in vivo data and directly measuring the masticatory muscles anatomically in various Carnivora species is practically problematic. This is because some carnivorans can be ferocious, rare, or even extinct. Consequently, the most practical method to collect data on the force generated by the masticatory muscle is to estimate the force based on skulls. The physiological cross-sectional area (PCSA) of each masticatory muscle, which correlates to the maximum force that can be produced by a muscle, was quantified. Using computed tomography, we defined the three-dimensional measurement area for 32 carnivoran species based on the origin and insertion of masticatory muscles specified by observable crests, ridges, and scars. Subsequent allometric analysis relating the measurement area on skull surface to the PCSA for each masticatory muscle measured in fresh specimens revealed a strong correlation between the two variables. This finding indicates that within Carnivora, an estimation of absolute masticatory muscle PCSA can be derived from measurements area on skull surface. This method allows for the use of cranial specimens, housed in museums and research institutions, that lack preserved masticatory muscles in quantitative studies involving masticatory muscle PCSA. This approach facilitates comprehensive discussions on the masticatory muscle morphology of Carnivora, including rare and extinct species.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juri A Miyamae, Julien Benoit, Irina Ruf, Zoleka Sibiya, Bhart-Anjan S Bhullar
The trigeminus nerve (cranial nerve V) is a large and significant conduit of sensory information from the face to the brain, with its three branches extending over the head to innervate a wide variety of integumentary sensory receptors, primarily tactile. The paths of the maxillary (V2) and mandibular (V3) divisions of the trigeminus frequently transit through dedicated canals within the bones of the upper and lower jaws, thus allowing this neuroanatomy to be captured in the fossil record and be available to interpretations of sensory ability in extinct taxa. Here, we use microCT and synchrotron scans from 38 extant and fossil species spanning a wide phylogenetic sample across tetrapods to investigate whether maxillary and mandibular canal morphology can be informative of sensory biology in the synapsid lineage. We found that in comparison to an amphibian and sauropsid outgroup, synapsids demonstrate a distinctive evolutionary pattern of change from canals that are highly ramified near the rostral tip of the jaws to canals with increasingly simplified morphology. This pattern is especially evident in the maxillary canal, which came to feature a shortened infraorbital canal terminating in a single large infraorbital foramen that serves as the outlet for branches of V2 that then enter the soft tissues of the face. A comparison with modern analogues supports the hypothesis that this morphological change correlates to an evolutionary history of synapsid-specific innovations in facial touch. We interpret the highly ramified transitional form found in early nonmammalian synapsids as indicative of enhanced tactile sensitivity of the rostrum via direct or proximal contact, similar to tactile specialists such as probing shorebirds and alligators that possess similar proliferative ramifications of the maxillary and mandibular canals. The transition toward a simplified derived form that emerged among Mid-Triassic prozostrodont cynodonts and is retained among modern mammals is a unique configuration correlated with an equally unique and novel tactile sensory apparatus: mobile mystacial whiskers. Our survey of maxillary and mandibular canals across a phylogenetic and ecological variety of tetrapods highlights the morphological diversity of these structures, but also the need to establish robust form-function relationships for future interpretations of osteological correlates for sensory biology.
{"title":"Synapsids and sensitivity: Broad survey of tetrapod trigeminal canal morphology supports an evolutionary trend of increasing facial tactile specialization in the mammal lineage.","authors":"Juri A Miyamae, Julien Benoit, Irina Ruf, Zoleka Sibiya, Bhart-Anjan S Bhullar","doi":"10.1002/ar.25604","DOIUrl":"https://doi.org/10.1002/ar.25604","url":null,"abstract":"<p><p>The trigeminus nerve (cranial nerve V) is a large and significant conduit of sensory information from the face to the brain, with its three branches extending over the head to innervate a wide variety of integumentary sensory receptors, primarily tactile. The paths of the maxillary (V<sub>2</sub>) and mandibular (V<sub>3</sub>) divisions of the trigeminus frequently transit through dedicated canals within the bones of the upper and lower jaws, thus allowing this neuroanatomy to be captured in the fossil record and be available to interpretations of sensory ability in extinct taxa. Here, we use microCT and synchrotron scans from 38 extant and fossil species spanning a wide phylogenetic sample across tetrapods to investigate whether maxillary and mandibular canal morphology can be informative of sensory biology in the synapsid lineage. We found that in comparison to an amphibian and sauropsid outgroup, synapsids demonstrate a distinctive evolutionary pattern of change from canals that are highly ramified near the rostral tip of the jaws to canals with increasingly simplified morphology. This pattern is especially evident in the maxillary canal, which came to feature a shortened infraorbital canal terminating in a single large infraorbital foramen that serves as the outlet for branches of V<sub>2</sub> that then enter the soft tissues of the face. A comparison with modern analogues supports the hypothesis that this morphological change correlates to an evolutionary history of synapsid-specific innovations in facial touch. We interpret the highly ramified transitional form found in early nonmammalian synapsids as indicative of enhanced tactile sensitivity of the rostrum via direct or proximal contact, similar to tactile specialists such as probing shorebirds and alligators that possess similar proliferative ramifications of the maxillary and mandibular canals. The transition toward a simplified derived form that emerged among Mid-Triassic prozostrodont cynodonts and is retained among modern mammals is a unique configuration correlated with an equally unique and novel tactile sensory apparatus: mobile mystacial whiskers. Our survey of maxillary and mandibular canals across a phylogenetic and ecological variety of tetrapods highlights the morphological diversity of these structures, but also the need to establish robust form-function relationships for future interpretations of osteological correlates for sensory biology.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark Wright, Quentin Martinez, Sérgio Ferreira-Cardoso, Renaud Lebrun, Benjamin Dubourguier, Frédéric Delsuc, Pierre-Henri Fabre, Lionel Hautier
The length of the snout in mammals has important evolutionary consequences for the functional systems housed within the rostrum. However, whether increased snout lengths lead to expanded olfactory performance has rarely been examined. Here, we investigate inner rostral function among 10 species of myrmecophagous (ant- and/or termite-eating) placental mammals and 10 closely related species. We use nondestructive computed tomography scanning methods to characterize inner rostral function based on the underlying morphology of the turbinal bones in the nasal cavity. Three approaches were chosen to address this question, including the quantification of functional turbinal surface area, the quantification of functional turbinal three-dimensional complexity, and geometric morphometrics. By including non-model species from several different mammalian orders, we were able to extend the discussion surrounding turbinal homologies to comparisons across mammals. Our results show no increased olfactory function in all myrmecophagous species relative to their sister taxa, which suggests that there is no trade-off for increased olfactory capabilities in myrmecophagous species with elongated snouts. We found no evidence of convergence in turbinal morphology among all five myrmecophagous lineages. However, we found evidence of morphological convergence in the turbinals between the giant armadillo and the aardvark, suggesting a more complex interplay between the evolution of turbinal morphology and ecological correlates. While myrmecophagy alone may not be a strong enough ecological signal to overcome phylogenetic and developmental constraints, we suggest that this might be the case at the intersection of this dietary specialization with a primarily underground lifestyle where odorants may be difficult to detect.
{"title":"Sniffing out morphological convergence in the turbinal complex of myrmecophagous placentals.","authors":"Mark Wright, Quentin Martinez, Sérgio Ferreira-Cardoso, Renaud Lebrun, Benjamin Dubourguier, Frédéric Delsuc, Pierre-Henri Fabre, Lionel Hautier","doi":"10.1002/ar.25603","DOIUrl":"https://doi.org/10.1002/ar.25603","url":null,"abstract":"<p><p>The length of the snout in mammals has important evolutionary consequences for the functional systems housed within the rostrum. However, whether increased snout lengths lead to expanded olfactory performance has rarely been examined. Here, we investigate inner rostral function among 10 species of myrmecophagous (ant- and/or termite-eating) placental mammals and 10 closely related species. We use nondestructive computed tomography scanning methods to characterize inner rostral function based on the underlying morphology of the turbinal bones in the nasal cavity. Three approaches were chosen to address this question, including the quantification of functional turbinal surface area, the quantification of functional turbinal three-dimensional complexity, and geometric morphometrics. By including non-model species from several different mammalian orders, we were able to extend the discussion surrounding turbinal homologies to comparisons across mammals. Our results show no increased olfactory function in all myrmecophagous species relative to their sister taxa, which suggests that there is no trade-off for increased olfactory capabilities in myrmecophagous species with elongated snouts. We found no evidence of convergence in turbinal morphology among all five myrmecophagous lineages. However, we found evidence of morphological convergence in the turbinals between the giant armadillo and the aardvark, suggesting a more complex interplay between the evolution of turbinal morphology and ecological correlates. While myrmecophagy alone may not be a strong enough ecological signal to overcome phylogenetic and developmental constraints, we suggest that this might be the case at the intersection of this dietary specialization with a primarily underground lifestyle where odorants may be difficult to detect.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Whales (cetaceans, including dolphins and porpoises) are superbly adapted to life in water, but retain vestiges of their terrestrial ancestry, particularly the need to breathe air. Their respiratory tract exhibits many differences from their closest relatives, the terrestrial artiodactyls (even toed ungulates). In this review, we describe the anatomy of cetacean respiratory adaptions. These include protective features (e.g., preventing water incursions during breathing or swallowing, mitigating effects of pressure changes during diving/ascent) and unique functions (e.g., underwater sound production, regulating gas exchange during the dive cycle).
{"title":"Review of respiratory anatomy adaptations in whales.","authors":"Joy S Reidenberg, Jeffrey T Laitman","doi":"10.1002/ar.25597","DOIUrl":"https://doi.org/10.1002/ar.25597","url":null,"abstract":"<p><p>Whales (cetaceans, including dolphins and porpoises) are superbly adapted to life in water, but retain vestiges of their terrestrial ancestry, particularly the need to breathe air. Their respiratory tract exhibits many differences from their closest relatives, the terrestrial artiodactyls (even toed ungulates). In this review, we describe the anatomy of cetacean respiratory adaptions. These include protective features (e.g., preventing water incursions during breathing or swallowing, mitigating effects of pressure changes during diving/ascent) and unique functions (e.g., underwater sound production, regulating gas exchange during the dive cycle).</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela E Winkler, Isabelle Bernetière, Christine Böhmer
Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions. Bite forces for each molar (M) position were determined using muscle cross-sectional areas and lever arm mechanics. Rats were categorized into three size classes based on increasing skull length. Maximum bite force increased with size, while across all size classes, M3 bite force was almost 1.4 times higher than M1 bite force. In size class 1, M1 and M2 showed higher values than M3 for DMTA complexity, height, and volume parameters, while in size class 3, M1 had the lowest values. Comparing the same tooth position between size classes revealed opposing trends: M1 and M2 showed, for most parameters, decreasing roughness and complexity from size class 1-3, while M3 displayed the opposite trend, with size class 1 showing lowest, and either size class 2 or 3 the highest roughness and complexity values. This suggests that as rats age and M3 fully occludes, it becomes more utilized during mastication. DMTA, being a short-term diet proxy, is influenced by eruption and occlusion status changes. Our findings emphasize the importance of bite force and ontogenetic stage when interpreting microwear patterns and advise to select teeth in full occlusion for diet reconstruction.
{"title":"Tooth eruption status and bite force determine dental microwear texture gradients in albino rats (Rattus norvegicus forma domestica).","authors":"Daniela E Winkler, Isabelle Bernetière, Christine Böhmer","doi":"10.1002/ar.25595","DOIUrl":"https://doi.org/10.1002/ar.25595","url":null,"abstract":"<p><p>Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions. Bite forces for each molar (M) position were determined using muscle cross-sectional areas and lever arm mechanics. Rats were categorized into three size classes based on increasing skull length. Maximum bite force increased with size, while across all size classes, M3 bite force was almost 1.4 times higher than M1 bite force. In size class 1, M1 and M2 showed higher values than M3 for DMTA complexity, height, and volume parameters, while in size class 3, M1 had the lowest values. Comparing the same tooth position between size classes revealed opposing trends: M1 and M2 showed, for most parameters, decreasing roughness and complexity from size class 1-3, while M3 displayed the opposite trend, with size class 1 showing lowest, and either size class 2 or 3 the highest roughness and complexity values. This suggests that as rats age and M3 fully occludes, it becomes more utilized during mastication. DMTA, being a short-term diet proxy, is influenced by eruption and occlusion status changes. Our findings emphasize the importance of bite force and ontogenetic stage when interpreting microwear patterns and advise to select teeth in full occlusion for diet reconstruction.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alana Conceição-da-Silva, Nathália Siqueira Veríssimo Louzada, William Corrêa Tavares
Extensive research into bat flight mechanisms has highlighted the complex functional and evolutionary dynamics of their wing structures, yet the anatomical details of certain wing muscles remain elusive. In particular, the intramembranous plagiopatagiales proprii muscles, located within the plagiopatagium-an area of the wing lacking direct joint connections-exhibit remarkable variation across bat families. These muscles, which extend anteroposteriorly in macroscopic bundles, play a crucial role in wing stiffening, modulating membrane tension, and reducing wing curvature during flight. Since larger bats tend to have higher wing loading (WL; the ratio of body mass [BMa] to wing area) and may therefore experience increased patagial curvature and resultant drag, we hypothesized that body size significantly influences the evolutionary development of the plagiopatagiales proprii muscles. This study investigates the relationship between BMa and the morphology of the plagiopatagiales proprii in New World leaf-nosed bats (Phyllostomidae), employing bivariate allometry, multivariate analysis, and comparative phylogenetic methods across 24 species from eight phyllostomid subfamilies. Our findings reveal a significant phylogenetic signal in muscle architecture, along with positive evolutionary allometry in muscle area. This suggests an adaptive increase in muscle size in larger species, likely to counterbalance the increased WL, reduce wing curvature, and minimize drag. This research enhances our understanding of the functional and adaptive morphological evolution of intramembranous wing muscles in phyllostomid bats, underscoring their evolutionary significance.
{"title":"Arrangements of intramembranous muscles of wings are influenced by body mass across the radiation of phyllostomid bats.","authors":"Alana Conceição-da-Silva, Nathália Siqueira Veríssimo Louzada, William Corrêa Tavares","doi":"10.1002/ar.25594","DOIUrl":"https://doi.org/10.1002/ar.25594","url":null,"abstract":"<p><p>Extensive research into bat flight mechanisms has highlighted the complex functional and evolutionary dynamics of their wing structures, yet the anatomical details of certain wing muscles remain elusive. In particular, the intramembranous plagiopatagiales proprii muscles, located within the plagiopatagium-an area of the wing lacking direct joint connections-exhibit remarkable variation across bat families. These muscles, which extend anteroposteriorly in macroscopic bundles, play a crucial role in wing stiffening, modulating membrane tension, and reducing wing curvature during flight. Since larger bats tend to have higher wing loading (WL; the ratio of body mass [BMa] to wing area) and may therefore experience increased patagial curvature and resultant drag, we hypothesized that body size significantly influences the evolutionary development of the plagiopatagiales proprii muscles. This study investigates the relationship between BMa and the morphology of the plagiopatagiales proprii in New World leaf-nosed bats (Phyllostomidae), employing bivariate allometry, multivariate analysis, and comparative phylogenetic methods across 24 species from eight phyllostomid subfamilies. Our findings reveal a significant phylogenetic signal in muscle architecture, along with positive evolutionary allometry in muscle area. This suggests an adaptive increase in muscle size in larger species, likely to counterbalance the increased WL, reduce wing curvature, and minimize drag. This research enhances our understanding of the functional and adaptive morphological evolution of intramembranous wing muscles in phyllostomid bats, underscoring their evolutionary significance.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Employing immunohistochemical procedures with antibodies raised against tyrosine hydroxylase (TH) and choline acetyltransferase we identified and mapped the locus coeruleus complex (LoC) and the pontine laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPN) cholinergic nuclei in the brains of a Congo gray parrot, a timneh gray parrot, and a pied crow. The LoC and LDT/PPN are centrally involved in the regulation and generation of different sleep states, and as all birds studied to date show both REM and non-REM sleep states, like mammals, we investigated whether these noradrenergic and cholinergic nuclei in the avian pons shared anatomical features with those in the mammalian pons. The LoC was parcellated into 3 distinct nuclei, including the locus coeruleus (A6), subcoeruleus (A7), and the fifth arcuate nucleus (A5), while distinct LDT and PPN nuclei were revealed. Several similarities that allow the assumption of homology of these nuclei between birds and mammals were revealed, including their location relative to each other and other structures within the pontine region, as well as a specific degree of topographical overlap of the noradrenergic and cholinergic neurons. Despite this, some differences were noted that may be of interest in understanding the differences in sleep between birds and mammals. Further anatomical and physiological studies are needed to determine whether these pontine nuclei in birds play the same role as in mammals, as while the homology is apparent, the functional analogy needs to be revealed.
{"title":"Nuclear parcellation of pontine catecholaminergic and cholinergic neurons in gray parrots and pied crow brains.","authors":"Pedzisai Mazengenya, Paul R Manger","doi":"10.1002/ar.25593","DOIUrl":"https://doi.org/10.1002/ar.25593","url":null,"abstract":"<p><p>Employing immunohistochemical procedures with antibodies raised against tyrosine hydroxylase (TH) and choline acetyltransferase we identified and mapped the locus coeruleus complex (LoC) and the pontine laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPN) cholinergic nuclei in the brains of a Congo gray parrot, a timneh gray parrot, and a pied crow. The LoC and LDT/PPN are centrally involved in the regulation and generation of different sleep states, and as all birds studied to date show both REM and non-REM sleep states, like mammals, we investigated whether these noradrenergic and cholinergic nuclei in the avian pons shared anatomical features with those in the mammalian pons. The LoC was parcellated into 3 distinct nuclei, including the locus coeruleus (A6), subcoeruleus (A7), and the fifth arcuate nucleus (A5), while distinct LDT and PPN nuclei were revealed. Several similarities that allow the assumption of homology of these nuclei between birds and mammals were revealed, including their location relative to each other and other structures within the pontine region, as well as a specific degree of topographical overlap of the noradrenergic and cholinergic neurons. Despite this, some differences were noted that may be of interest in understanding the differences in sleep between birds and mammals. Further anatomical and physiological studies are needed to determine whether these pontine nuclei in birds play the same role as in mammals, as while the homology is apparent, the functional analogy needs to be revealed.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}