Kai Ito, Mugino O Kubo, Ryo Kodera, Sei-Ichiro Takeda, Hideki Endo
Masticatory muscles are composed of the temporalis, masseter, and pterygoid muscles in mammals. Each muscle has a different origin on the skull and insertion on the mandible; thus, all masticatory muscles contract in different directions. Collecting in vivo data and directly measuring the masticatory muscles anatomically in various Carnivora species is practically problematic. This is because some carnivorans can be ferocious, rare, or even extinct. Consequently, the most practical method to collect data on the force generated by the masticatory muscle is to estimate the force based on skulls. The physiological cross-sectional area (PCSA) of each masticatory muscle, which correlates to the maximum force that can be produced by a muscle, was quantified. Using computed tomography, we defined the three-dimensional measurement area for 32 carnivoran species based on the origin and insertion of masticatory muscles specified by observable crests, ridges, and scars. Subsequent allometric analysis relating the measurement area on skull surface to the PCSA for each masticatory muscle measured in fresh specimens revealed a strong correlation between the two variables. This finding indicates that within Carnivora, an estimation of absolute masticatory muscle PCSA can be derived from measurements area on skull surface. This method allows for the use of cranial specimens, housed in museums and research institutions, that lack preserved masticatory muscles in quantitative studies involving masticatory muscle PCSA. This approach facilitates comprehensive discussions on the masticatory muscle morphology of Carnivora, including rare and extinct species.
{"title":"Quantitative assessment of masticatory muscles based on skull muscle attachment areas in Carnivora.","authors":"Kai Ito, Mugino O Kubo, Ryo Kodera, Sei-Ichiro Takeda, Hideki Endo","doi":"10.1002/ar.25599","DOIUrl":"https://doi.org/10.1002/ar.25599","url":null,"abstract":"<p><p>Masticatory muscles are composed of the temporalis, masseter, and pterygoid muscles in mammals. Each muscle has a different origin on the skull and insertion on the mandible; thus, all masticatory muscles contract in different directions. Collecting in vivo data and directly measuring the masticatory muscles anatomically in various Carnivora species is practically problematic. This is because some carnivorans can be ferocious, rare, or even extinct. Consequently, the most practical method to collect data on the force generated by the masticatory muscle is to estimate the force based on skulls. The physiological cross-sectional area (PCSA) of each masticatory muscle, which correlates to the maximum force that can be produced by a muscle, was quantified. Using computed tomography, we defined the three-dimensional measurement area for 32 carnivoran species based on the origin and insertion of masticatory muscles specified by observable crests, ridges, and scars. Subsequent allometric analysis relating the measurement area on skull surface to the PCSA for each masticatory muscle measured in fresh specimens revealed a strong correlation between the two variables. This finding indicates that within Carnivora, an estimation of absolute masticatory muscle PCSA can be derived from measurements area on skull surface. This method allows for the use of cranial specimens, housed in museums and research institutions, that lack preserved masticatory muscles in quantitative studies involving masticatory muscle PCSA. This approach facilitates comprehensive discussions on the masticatory muscle morphology of Carnivora, including rare and extinct species.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juri A Miyamae, Julien Benoit, Irina Ruf, Zoleka Sibiya, Bhart-Anjan S Bhullar
The trigeminus nerve (cranial nerve V) is a large and significant conduit of sensory information from the face to the brain, with its three branches extending over the head to innervate a wide variety of integumentary sensory receptors, primarily tactile. The paths of the maxillary (V2) and mandibular (V3) divisions of the trigeminus frequently transit through dedicated canals within the bones of the upper and lower jaws, thus allowing this neuroanatomy to be captured in the fossil record and be available to interpretations of sensory ability in extinct taxa. Here, we use microCT and synchrotron scans from 38 extant and fossil species spanning a wide phylogenetic sample across tetrapods to investigate whether maxillary and mandibular canal morphology can be informative of sensory biology in the synapsid lineage. We found that in comparison to an amphibian and sauropsid outgroup, synapsids demonstrate a distinctive evolutionary pattern of change from canals that are highly ramified near the rostral tip of the jaws to canals with increasingly simplified morphology. This pattern is especially evident in the maxillary canal, which came to feature a shortened infraorbital canal terminating in a single large infraorbital foramen that serves as the outlet for branches of V2 that then enter the soft tissues of the face. A comparison with modern analogues supports the hypothesis that this morphological change correlates to an evolutionary history of synapsid-specific innovations in facial touch. We interpret the highly ramified transitional form found in early nonmammalian synapsids as indicative of enhanced tactile sensitivity of the rostrum via direct or proximal contact, similar to tactile specialists such as probing shorebirds and alligators that possess similar proliferative ramifications of the maxillary and mandibular canals. The transition toward a simplified derived form that emerged among Mid-Triassic prozostrodont cynodonts and is retained among modern mammals is a unique configuration correlated with an equally unique and novel tactile sensory apparatus: mobile mystacial whiskers. Our survey of maxillary and mandibular canals across a phylogenetic and ecological variety of tetrapods highlights the morphological diversity of these structures, but also the need to establish robust form-function relationships for future interpretations of osteological correlates for sensory biology.
{"title":"Synapsids and sensitivity: Broad survey of tetrapod trigeminal canal morphology supports an evolutionary trend of increasing facial tactile specialization in the mammal lineage.","authors":"Juri A Miyamae, Julien Benoit, Irina Ruf, Zoleka Sibiya, Bhart-Anjan S Bhullar","doi":"10.1002/ar.25604","DOIUrl":"https://doi.org/10.1002/ar.25604","url":null,"abstract":"<p><p>The trigeminus nerve (cranial nerve V) is a large and significant conduit of sensory information from the face to the brain, with its three branches extending over the head to innervate a wide variety of integumentary sensory receptors, primarily tactile. The paths of the maxillary (V<sub>2</sub>) and mandibular (V<sub>3</sub>) divisions of the trigeminus frequently transit through dedicated canals within the bones of the upper and lower jaws, thus allowing this neuroanatomy to be captured in the fossil record and be available to interpretations of sensory ability in extinct taxa. Here, we use microCT and synchrotron scans from 38 extant and fossil species spanning a wide phylogenetic sample across tetrapods to investigate whether maxillary and mandibular canal morphology can be informative of sensory biology in the synapsid lineage. We found that in comparison to an amphibian and sauropsid outgroup, synapsids demonstrate a distinctive evolutionary pattern of change from canals that are highly ramified near the rostral tip of the jaws to canals with increasingly simplified morphology. This pattern is especially evident in the maxillary canal, which came to feature a shortened infraorbital canal terminating in a single large infraorbital foramen that serves as the outlet for branches of V<sub>2</sub> that then enter the soft tissues of the face. A comparison with modern analogues supports the hypothesis that this morphological change correlates to an evolutionary history of synapsid-specific innovations in facial touch. We interpret the highly ramified transitional form found in early nonmammalian synapsids as indicative of enhanced tactile sensitivity of the rostrum via direct or proximal contact, similar to tactile specialists such as probing shorebirds and alligators that possess similar proliferative ramifications of the maxillary and mandibular canals. The transition toward a simplified derived form that emerged among Mid-Triassic prozostrodont cynodonts and is retained among modern mammals is a unique configuration correlated with an equally unique and novel tactile sensory apparatus: mobile mystacial whiskers. Our survey of maxillary and mandibular canals across a phylogenetic and ecological variety of tetrapods highlights the morphological diversity of these structures, but also the need to establish robust form-function relationships for future interpretations of osteological correlates for sensory biology.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark Wright, Quentin Martinez, Sérgio Ferreira-Cardoso, Renaud Lebrun, Benjamin Dubourguier, Frédéric Delsuc, Pierre-Henri Fabre, Lionel Hautier
The length of the snout in mammals has important evolutionary consequences for the functional systems housed within the rostrum. However, whether increased snout lengths lead to expanded olfactory performance has rarely been examined. Here, we investigate inner rostral function among 10 species of myrmecophagous (ant- and/or termite-eating) placental mammals and 10 closely related species. We use nondestructive computed tomography scanning methods to characterize inner rostral function based on the underlying morphology of the turbinal bones in the nasal cavity. Three approaches were chosen to address this question, including the quantification of functional turbinal surface area, the quantification of functional turbinal three-dimensional complexity, and geometric morphometrics. By including non-model species from several different mammalian orders, we were able to extend the discussion surrounding turbinal homologies to comparisons across mammals. Our results show no increased olfactory function in all myrmecophagous species relative to their sister taxa, which suggests that there is no trade-off for increased olfactory capabilities in myrmecophagous species with elongated snouts. We found no evidence of convergence in turbinal morphology among all five myrmecophagous lineages. However, we found evidence of morphological convergence in the turbinals between the giant armadillo and the aardvark, suggesting a more complex interplay between the evolution of turbinal morphology and ecological correlates. While myrmecophagy alone may not be a strong enough ecological signal to overcome phylogenetic and developmental constraints, we suggest that this might be the case at the intersection of this dietary specialization with a primarily underground lifestyle where odorants may be difficult to detect.
{"title":"Sniffing out morphological convergence in the turbinal complex of myrmecophagous placentals.","authors":"Mark Wright, Quentin Martinez, Sérgio Ferreira-Cardoso, Renaud Lebrun, Benjamin Dubourguier, Frédéric Delsuc, Pierre-Henri Fabre, Lionel Hautier","doi":"10.1002/ar.25603","DOIUrl":"https://doi.org/10.1002/ar.25603","url":null,"abstract":"<p><p>The length of the snout in mammals has important evolutionary consequences for the functional systems housed within the rostrum. However, whether increased snout lengths lead to expanded olfactory performance has rarely been examined. Here, we investigate inner rostral function among 10 species of myrmecophagous (ant- and/or termite-eating) placental mammals and 10 closely related species. We use nondestructive computed tomography scanning methods to characterize inner rostral function based on the underlying morphology of the turbinal bones in the nasal cavity. Three approaches were chosen to address this question, including the quantification of functional turbinal surface area, the quantification of functional turbinal three-dimensional complexity, and geometric morphometrics. By including non-model species from several different mammalian orders, we were able to extend the discussion surrounding turbinal homologies to comparisons across mammals. Our results show no increased olfactory function in all myrmecophagous species relative to their sister taxa, which suggests that there is no trade-off for increased olfactory capabilities in myrmecophagous species with elongated snouts. We found no evidence of convergence in turbinal morphology among all five myrmecophagous lineages. However, we found evidence of morphological convergence in the turbinals between the giant armadillo and the aardvark, suggesting a more complex interplay between the evolution of turbinal morphology and ecological correlates. While myrmecophagy alone may not be a strong enough ecological signal to overcome phylogenetic and developmental constraints, we suggest that this might be the case at the intersection of this dietary specialization with a primarily underground lifestyle where odorants may be difficult to detect.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela E Winkler, Isabelle Bernetière, Christine Böhmer
Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions. Bite forces for each molar (M) position were determined using muscle cross-sectional areas and lever arm mechanics. Rats were categorized into three size classes based on increasing skull length. Maximum bite force increased with size, while across all size classes, M3 bite force was almost 1.4 times higher than M1 bite force. In size class 1, M1 and M2 showed higher values than M3 for DMTA complexity, height, and volume parameters, while in size class 3, M1 had the lowest values. Comparing the same tooth position between size classes revealed opposing trends: M1 and M2 showed, for most parameters, decreasing roughness and complexity from size class 1-3, while M3 displayed the opposite trend, with size class 1 showing lowest, and either size class 2 or 3 the highest roughness and complexity values. This suggests that as rats age and M3 fully occludes, it becomes more utilized during mastication. DMTA, being a short-term diet proxy, is influenced by eruption and occlusion status changes. Our findings emphasize the importance of bite force and ontogenetic stage when interpreting microwear patterns and advise to select teeth in full occlusion for diet reconstruction.
{"title":"Tooth eruption status and bite force determine dental microwear texture gradients in albino rats (Rattus norvegicus forma domestica).","authors":"Daniela E Winkler, Isabelle Bernetière, Christine Böhmer","doi":"10.1002/ar.25595","DOIUrl":"https://doi.org/10.1002/ar.25595","url":null,"abstract":"<p><p>Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions. Bite forces for each molar (M) position were determined using muscle cross-sectional areas and lever arm mechanics. Rats were categorized into three size classes based on increasing skull length. Maximum bite force increased with size, while across all size classes, M3 bite force was almost 1.4 times higher than M1 bite force. In size class 1, M1 and M2 showed higher values than M3 for DMTA complexity, height, and volume parameters, while in size class 3, M1 had the lowest values. Comparing the same tooth position between size classes revealed opposing trends: M1 and M2 showed, for most parameters, decreasing roughness and complexity from size class 1-3, while M3 displayed the opposite trend, with size class 1 showing lowest, and either size class 2 or 3 the highest roughness and complexity values. This suggests that as rats age and M3 fully occludes, it becomes more utilized during mastication. DMTA, being a short-term diet proxy, is influenced by eruption and occlusion status changes. Our findings emphasize the importance of bite force and ontogenetic stage when interpreting microwear patterns and advise to select teeth in full occlusion for diet reconstruction.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis
Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.
{"title":"Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review.","authors":"Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis","doi":"10.1002/ar.25566","DOIUrl":"https://doi.org/10.1002/ar.25566","url":null,"abstract":"<p><p>Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The three mammalian auditory ossicles enhance sound transmission from the tympanic membrane to the inner ear. The anterior anchoring of the malleus is one of the key characters for functional classification of the auditory ossicles. Previous studies revealed a medial outgrowth of the mallear anterior process, the processus internus praearticularis, which serves as an anchor for the auditory ossicle chain but has been often missed due to its delicate nature. Here we describe the development and morphology of the malleus and its processus internus praearticularis in the cricetine rodent Mesocricetus auratus, compared to selected muroid species (Cricetus cricetus, Peromyscus maniculatus, and Mus musculus). Early postnatal stages of Mesocricetus show the formation of the malleus by fusion of the prearticular and mallear main body. The processus internus praearticularis forms an increasing broad lamina fused anteriorly to the ectotympanic in adult stages of all studied species. Peromyscus and Mus show a distinct orbicular apophysis that increases inertia of the malleus and therefore these species represent the microtype of auditory ossicles. In contrast, the center of mass of the malleus in the studied Cricetinae is close to the anatomical axis of rotation and their auditory ossicles represent the transitional type. The microtype belongs to the grundplan of Muroidea and is plesiomorphic for Cricetidae, whereas the transitional type evolved several times within Muroidea and represents an apomorphic feature of Cricetinae.
{"title":"Ontogeny of the malleus in Mesocricetus auratus (Mammalia, Rodentia): Systematic and functional implications for the muroid middle ear.","authors":"Franziska Fritzsche, Wolfgang Maier, Irina Ruf","doi":"10.1002/ar.25565","DOIUrl":"https://doi.org/10.1002/ar.25565","url":null,"abstract":"<p><p>The three mammalian auditory ossicles enhance sound transmission from the tympanic membrane to the inner ear. The anterior anchoring of the malleus is one of the key characters for functional classification of the auditory ossicles. Previous studies revealed a medial outgrowth of the mallear anterior process, the processus internus praearticularis, which serves as an anchor for the auditory ossicle chain but has been often missed due to its delicate nature. Here we describe the development and morphology of the malleus and its processus internus praearticularis in the cricetine rodent Mesocricetus auratus, compared to selected muroid species (Cricetus cricetus, Peromyscus maniculatus, and Mus musculus). Early postnatal stages of Mesocricetus show the formation of the malleus by fusion of the prearticular and mallear main body. The processus internus praearticularis forms an increasing broad lamina fused anteriorly to the ectotympanic in adult stages of all studied species. Peromyscus and Mus show a distinct orbicular apophysis that increases inertia of the malleus and therefore these species represent the microtype of auditory ossicles. In contrast, the center of mass of the malleus in the studied Cricetinae is close to the anatomical axis of rotation and their auditory ossicles represent the transitional type. The microtype belongs to the grundplan of Muroidea and is plesiomorphic for Cricetidae, whereas the transitional type evolved several times within Muroidea and represents an apomorphic feature of Cricetinae.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.
{"title":"From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation.","authors":"James M Smoliga","doi":"10.1002/ar.25567","DOIUrl":"https://doi.org/10.1002/ar.25567","url":null,"abstract":"<p><p>The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Invasive gray squirrels (Sciurus carolinensis) have replaced the native red squirrel (Sciurus vulgaris) across much of Great Britain over the last century. Several factors have been proposed to underlie this replacement, but here we investigated the potential for dietary competition in which gray squirrels have better feeding performance than reds and are thus able to extract nutrition from food more efficiently. In this scenario, we hypothesized that red squirrels would show higher stress, strain, and deformation across the skull than gray squirrels. To test our hypotheses, we created finite element models of the skull of a red and a gray squirrel and loaded them to simulate biting at the incisor, at two different gapes, and at the molar. The results showed similar distributions of strains and von Mises stresses in the two species, but higher stress and strain magnitudes in the red squirrel, especially during molar biting. Few differences were seen in stress and strain distributions or magnitudes between the two incisor gapes. A geometric morphometric analysis showed greater deformations in the red squirrel skull at all bites and gapes. These results are consistent with our hypothesis and indicate increased biomechanical performance of the skull in gray squirrels, allowing them to access and process food items more efficiently than red squirrels.
上个世纪,入侵灰松鼠(Sciurus carolinensis)在大不列颠大部分地区取代了本地红松鼠(Sciurus vulgaris)。有几种因素被认为是导致这种取代的原因,但在这里我们研究了饮食竞争的可能性,在这种竞争中,灰松鼠的摄食能力比红松鼠更强,因此能够更有效地从食物中获取营养。在这种情况下,我们假设红松鼠会比灰松鼠表现出更高的应力、应变和头骨变形。为了验证我们的假设,我们创建了一只红松鼠和一只灰松鼠头骨的有限元模型,并加载它们来模拟门齿、两个不同间隙和臼齿的咬合。结果显示,两种松鼠的应变和 von Mises 应力分布相似,但红松鼠的应力和应变幅度较大,尤其是在咬臼齿时。两种门齿间隙的应力和应变分布或大小几乎没有差异。几何形态计量分析表明,红松鼠头骨在所有咬合和间隙处的变形都较大。这些结果与我们的假设一致,表明灰松鼠头骨的生物力学性能有所提高,使它们能够比红松鼠更有效地获取和处理食物。
{"title":"Finite element analysis of feeding in red and gray squirrels (Sciurus vulgaris and Sciurus carolinensis).","authors":"Philip G Cox, Peter J Watson","doi":"10.1002/ar.25564","DOIUrl":"https://doi.org/10.1002/ar.25564","url":null,"abstract":"<p><p>Invasive gray squirrels (Sciurus carolinensis) have replaced the native red squirrel (Sciurus vulgaris) across much of Great Britain over the last century. Several factors have been proposed to underlie this replacement, but here we investigated the potential for dietary competition in which gray squirrels have better feeding performance than reds and are thus able to extract nutrition from food more efficiently. In this scenario, we hypothesized that red squirrels would show higher stress, strain, and deformation across the skull than gray squirrels. To test our hypotheses, we created finite element models of the skull of a red and a gray squirrel and loaded them to simulate biting at the incisor, at two different gapes, and at the molar. The results showed similar distributions of strains and von Mises stresses in the two species, but higher stress and strain magnitudes in the red squirrel, especially during molar biting. Few differences were seen in stress and strain distributions or magnitudes between the two incisor gapes. A geometric morphometric analysis showed greater deformations in the red squirrel skull at all bites and gapes. These results are consistent with our hypothesis and indicate increased biomechanical performance of the skull in gray squirrels, allowing them to access and process food items more efficiently than red squirrels.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom
Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.
{"title":"Functional morphology of the pharyngeal teeth of the ocean sunfish, Mola mola.","authors":"Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom","doi":"10.1002/ar.25531","DOIUrl":"https://doi.org/10.1002/ar.25531","url":null,"abstract":"<p><p>Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quentin Martinez, Mark Wright, Benjamin Dubourguier, Kai Ito, Thomas van de Kamp, Elias Hamann, Marcus Zuber, Gabriel Ferreira, Rémi Blanc, Pierre-Henri Fabre, Lionel Hautier, Eli Amson
Turbinals are key bony elements of the mammalian nasal cavity, involved in heat and moisture conservation as well as olfaction. While turbinals are well known in some groups, their diversity is poorly understood at the scale of placental mammals, which span 21 orders. Here, we investigated the turbinal bones and associated lamellae for one representative of each extant order of placental mammals. We segmented and isolated each independent turbinal and lamella and found an important diversity of variation in the number of turbinals, as well as their size, and shape. We found that the turbinal count varies widely, from zero in the La Plata dolphin, (Pontoporia blainvillei) to about 110 in the African bush elephant (Loxodonta africana). Multiple turbinal losses and additional gains took place along the phylogeny of placental mammals. Some changes are clearly attributed to ecological adaptation, while others are probably related to phylogenetic inertia. In addition, this work highlights the problem of turbinal nomenclature in some placental orders with numerous and highly complex turbinals, for which homologies are extremely difficult to resolve. Therefore, this work underscores the importance of developmental studies to better clarify turbinal homology and nomenclature and provides a standardized comparative framework for further research.
{"title":"Disparity of turbinal bones in placental mammals.","authors":"Quentin Martinez, Mark Wright, Benjamin Dubourguier, Kai Ito, Thomas van de Kamp, Elias Hamann, Marcus Zuber, Gabriel Ferreira, Rémi Blanc, Pierre-Henri Fabre, Lionel Hautier, Eli Amson","doi":"10.1002/ar.25552","DOIUrl":"https://doi.org/10.1002/ar.25552","url":null,"abstract":"<p><p>Turbinals are key bony elements of the mammalian nasal cavity, involved in heat and moisture conservation as well as olfaction. While turbinals are well known in some groups, their diversity is poorly understood at the scale of placental mammals, which span 21 orders. Here, we investigated the turbinal bones and associated lamellae for one representative of each extant order of placental mammals. We segmented and isolated each independent turbinal and lamella and found an important diversity of variation in the number of turbinals, as well as their size, and shape. We found that the turbinal count varies widely, from zero in the La Plata dolphin, (Pontoporia blainvillei) to about 110 in the African bush elephant (Loxodonta africana). Multiple turbinal losses and additional gains took place along the phylogeny of placental mammals. Some changes are clearly attributed to ecological adaptation, while others are probably related to phylogenetic inertia. In addition, this work highlights the problem of turbinal nomenclature in some placental orders with numerous and highly complex turbinals, for which homologies are extremely difficult to resolve. Therefore, this work underscores the importance of developmental studies to better clarify turbinal homology and nomenclature and provides a standardized comparative framework for further research.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}