首页 > 最新文献

Catalysis in Industry最新文献

英文 中文
The Influence of Test Conditions for the Second Hydrocracking Stage Catalysts on the Time to Reach Steady-State Activity 第二加氢裂化阶段催化剂试验条件对达到稳态活性时间的影响
IF 0.7 Q4 ENGINEERING, CHEMICAL Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040074
I. S. Golubev, P. P. Dik, M. O. Kazakov, O. V. Klimov, A. S. Noskov

Catalysts of the second stage of hydrocracking are tested under different conditions, reducing the time required to reach the level of steady-state activity. Tests are performed on a laboratory testbench under conditions (temperature, pressure, and liquid hourly space velocity (LHSV)) close to industrial and typical of the second stage of hydrocracking. Introducing an additional preliminary stage at the start of tests at elevated temperatures and LHSVs while using a dimethyl disulfide solution in decane as a sulfiding mixture are shown to substantially reduce the time of experiment. Conditions of the preliminary stage that preserve the catalyst’s selectivity to diesel are selected.

摘要在不同条件下对加氢裂化第二阶段的催化剂进行测试,以缩短达到稳态活性水平所需的时间。试验是在实验室试验台上进行的,试验条件(温度、压力和液体时空速度 (LHSV))接近工业条件,是加氢裂化第二阶段的典型条件。结果表明,在试验开始时,在高温和 LHSV 条件下增加一个预备阶段,同时使用癸烷中的二甲基二硫溶液作为硫化混合物,可以大大缩短试验时间。初步阶段的条件可保持催化剂对柴油的选择性。
{"title":"The Influence of Test Conditions for the Second Hydrocracking Stage Catalysts on the Time to Reach Steady-State Activity","authors":"I. S. Golubev,&nbsp;P. P. Dik,&nbsp;M. O. Kazakov,&nbsp;O. V. Klimov,&nbsp;A. S. Noskov","doi":"10.1134/S2070050423040074","DOIUrl":"10.1134/S2070050423040074","url":null,"abstract":"<p>Catalysts of the second stage of hydrocracking are tested under different conditions, reducing the time required to reach the level of steady-state activity. Tests are performed on a laboratory testbench under conditions (temperature, pressure, and liquid hourly space velocity (LHSV)) close to industrial and typical of the second stage of hydrocracking. Introducing an additional preliminary stage at the start of tests at elevated temperatures and LHSVs while using a dimethyl disulfide solution in decane as a sulfiding mixture are shown to substantially reduce the time of experiment. Conditions of the preliminary stage that preserve the catalyst’s selectivity to diesel are selected.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"434 - 442"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ru-Bentonite Catalyzed Green Knoevenagel Condensation of Substituted Benzaldehydes with Ethyl Cyanoacetate Ru-Bentonite 催化取代苯甲醛与氰乙酸乙酯的绿色克诺文纳格尔缩合反应
IF 0.7 Q4 ENGINEERING, CHEMICAL Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040141
Debasis Borah, Deepmoni Brahma,  Dipanwita Basak, Hemaprobha Saikia

To develop Ru-incorporated bentonite clay as a heterogeneous base catalyst for use in Knoevenagel condensation as an alternative to hazardous base catalysts like pyridine, piperidine, etc., we purify the naturally occurring bentonite clay and Ru3+ cation incorporated into its interlayers of bentonite clayto improve its porosity and to increase the surface area of bentonite clay. Purified bentonite and Ru-bentonite were characterized by FTIR, PXRD, HRTEM, SEM & EDS, BET surface area analysis, and TGA. Base activation was done to these clays and a comparative study of these clays as recyclable heterogeneous catalysts for Knoevenagel Condensation was undertaken in water as a solvent for the chemical transformation of 2,4-dichlorobenzaldehyde and 4-hydroxybenzaldehyde with ethyl cyanoacetateinto their corresponding α,β- unsaturated acids. The products were characterized by FTIR, 1H NMR, and 13C NMR analyses. The essential key points of this reaction are mild reaction conditions, absence of hazardous chemicals as used in classical Knoevenagel condensation, reusability of the catalyst, and high yield percentage of the products.

摘要 为了开发 Ru 嵌入膨润土作为异相碱催化剂用于克诺文纳格尔缩合反应,以替代吡啶、哌啶等有害碱催化剂,我们纯化了天然存在的膨润土,并在膨润土的夹层中加入 Ru3+ 阳离子,以改善其孔隙率并增加膨润土的比表面积。傅立叶变换红外光谱(FTIR)、PXRD、HRTEM、SEM &amp、EDS、BET 表面积分析和热重分析对纯化的膨润土和 Ru-膨润土进行了表征。对这些粘土进行了碱活化,并对这些粘土作为可回收的异相催化剂进行了比较研究,以水为溶剂将 2,4-二氯苯甲醛和 4-羟基苯甲醛与氰乙酸乙酯化学转化为相应的 α,β-不饱和酸。通过傅立叶变换红外光谱、1H NMR 和 13C NMR 分析对产物进行了表征。该反应的基本要点是反应条件温和、不使用经典克诺文纳格尔缩合反应中使用的危险化学品、催化剂可重复使用以及产物收率高。
{"title":"Ru-Bentonite Catalyzed Green Knoevenagel Condensation of Substituted Benzaldehydes with Ethyl Cyanoacetate","authors":"Debasis Borah,&nbsp;Deepmoni Brahma,&nbsp; Dipanwita Basak,&nbsp;Hemaprobha Saikia","doi":"10.1134/S2070050423040141","DOIUrl":"10.1134/S2070050423040141","url":null,"abstract":"<p>To develop Ru-incorporated bentonite clay as a heterogeneous base catalyst for use in Knoevenagel condensation as an alternative to hazardous base catalysts like pyridine, piperidine, etc., we purify the naturally occurring bentonite clay and Ru<sup>3+</sup> cation incorporated into its interlayers of bentonite clayto improve its porosity and to increase the surface area of bentonite clay. Purified bentonite and Ru-bentonite were characterized by FTIR, PXRD, HRTEM, SEM &amp; EDS, BET surface area analysis, and TGA. Base activation was done to these clays and a comparative study of these clays as recyclable heterogeneous catalysts for Knoevenagel Condensation was undertaken in water as a solvent for the chemical transformation of 2,4-dichlorobenzaldehyde and 4-hydroxybenzaldehyde with ethyl cyanoacetateinto their corresponding α,β- unsaturated acids. The products were characterized by FTIR, <sup>1</sup>H NMR, and <sup>13</sup>C NMR analyses. The essential key points of this reaction are mild reaction conditions, absence of hazardous chemicals as used in classical Knoevenagel condensation, reusability of the catalyst, and high yield percentage of the products.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"420 - 433"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the Efficiency of Catalysts for the Catalytic Pyrolysis of Polyethylene 聚乙烯催化热解催化剂效率评估
IF 0.7 Q4 ENGINEERING, CHEMICAL Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040086
V. B. Kharitontsev, E. A. Tissen, E. S. Matveenko, Ya. A. Mikhailov, N. Yu. Tret’yakov, A. N. Zagoruiko, A. V. Elyshev

The study is focused on the catalytic pyrolysis of high density polyethylene (PE) in the presence of HBEA, HZSM-5, and HFER catalysts and natural clay. The catalytic pyrolysis of plastics is a promising method to process recyclable materials, because it provides the conversion of polymers to other compounds, which are subsequently used as reagents for the chemical industry. The physicochemical parameters of the catalysts have been determined by Fourier transform IR spectroscopy, X-ray diffraction analysis, the nitrogen physical adsorption method, thermogravimetric analysis, and pyrolytic gas chromatography. The dependences of the PE degradation temperatures and the chemical composition of the catalytic pyrolysis products on the type of catalyst used have been revealed. The efficiency of the cracking process and the qualitative composition of the products are affected by two main factors: the structural and acidic parameters of the catalyst. The presence of Brønsted acid sites in zeolites contributes to the occurrence of the cracking and aromatization reactions. The possibility of using a clay sample for the thermal degradation of PE has been studied.

摘要 该研究的重点是在 HBEA、HZSM-5 和 HFER 催化剂以及天然粘土存在下催化热解高密度聚乙烯(PE)。催化热解塑料是一种很有前景的处理可回收材料的方法,因为它能将聚合物转化为其他化合物,然后用作化学工业的试剂。傅立叶变换红外光谱法、X 射线衍射分析法、氮气物理吸附法、热重分析法和热解气相色谱法测定了催化剂的物理化学参数。研究揭示了聚乙烯降解温度和催化热解产物化学成分与所用催化剂类型的关系。裂解过程的效率和产物的质量成分受两个主要因素的影响:催化剂的结构参数和酸性参数。沸石中存在的布氏酸位点有助于裂解和芳香化反应的发生。研究了使用粘土样品进行聚乙烯热降解的可能性。
{"title":"Assessment of the Efficiency of Catalysts for the Catalytic Pyrolysis of Polyethylene","authors":"V. B. Kharitontsev,&nbsp;E. A. Tissen,&nbsp;E. S. Matveenko,&nbsp;Ya. A. Mikhailov,&nbsp;N. Yu. Tret’yakov,&nbsp;A. N. Zagoruiko,&nbsp;A. V. Elyshev","doi":"10.1134/S2070050423040086","DOIUrl":"10.1134/S2070050423040086","url":null,"abstract":"<p>The study is focused on the catalytic pyrolysis of high density polyethylene (PE) in the presence of HBEA, HZSM-5, and HFER catalysts and natural clay. The catalytic pyrolysis of plastics is a promising method to process recyclable materials, because it provides the conversion of polymers to other compounds, which are subsequently used as reagents for the chemical industry. The physicochemical parameters of the catalysts have been determined by Fourier transform IR spectroscopy, X-ray diffraction analysis, the nitrogen physical adsorption method, thermogravimetric analysis, and pyrolytic gas chromatography. The dependences of the PE degradation temperatures and the chemical composition of the catalytic pyrolysis products on the type of catalyst used have been revealed. The efficiency of the cracking process and the qualitative composition of the products are affected by two main factors: the structural and acidic parameters of the catalyst. The presence of Brønsted acid sites in zeolites contributes to the occurrence of the cracking and aromatization reactions. The possibility of using a clay sample for the thermal degradation of PE has been studied.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"397 - 403"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol Decomposition to Synthesis Gas over Supported Platinum-Containing Catalysts 甲醇在含铂载体催化剂上分解为合成气
IF 0.7 Q4 ENGINEERING, CHEMICAL Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040037
S. D. Badmaev, V. D. Belyaev, D. I. Potemkin, P. V. Snytnikov, V. A. Sobyanin, V. V. Kharton

The properties of supported Pt-containing granular (Pt/Ce0.75Zr0.25O2 – δ) and structured catalysts (Pt/Ce0.75Zr0.25O2 – δ/η-Al2O3/FeCrAl) in methanol decomposition to synthesis gas for feeding solid oxide fuel cells have been studied. It has been shown that the use of a structured catalyst for the methanol decomposition reaction is promising. It has been found that the addition of a small amount of oxygen to the feed mixture hinders the formation of carbon and thereby increases the on-stream stability of the catalyst. At atmospheric pressure, a temperature of ≈400°C, a reaction mixture feed space velocity of 5.6 L/(gcat h), and a CH3OH : air volume ratio of 1, the proposed 0.15 wt % Pt/8 wt % Ce0.75Zr0.25O2 – δ/6 wt % η-Al2O3/FeCrAl structured catalyst can provide a complete methanol conversion to synthesis gas with a total content of H2 and CO of ≈64 vol % and a productivity with respect to synthesis gas of ≈6.7 L(H2 + CO)/(gcat h).

摘要 研究了支撑型含铂颗粒催化剂(Pt/Ce0.75Zr0.25O2 - δ)和结构催化剂(Pt/Ce0.75Zr0.25O2 - δ/η-Al2O3/FeCrAl)在甲醇分解为合成气供固体氧化物燃料电池中的特性。研究表明,在甲醇分解反应中使用结构催化剂很有前景。研究发现,在进料混合物中加入少量氧气会阻碍碳的形成,从而提高催化剂的在线稳定性。在常压、温度≈400°C、反应混合物进料空间速度为 5.6 L/(gcat h)、CH3OH : 空气体积比为 1 的条件下,拟议的 0.15 wt % Pt/8 wt % Ce0.75Zr0.25O2 - δ/6 wt % η-Al2O3/FeCrAl 结构催化剂可将甲醇完全转化为合成气,H2 和 CO 的总含量≈64 vol %,合成气生产率≈6.7 L(H2 + CO)/(gcat h)。
{"title":"Methanol Decomposition to Synthesis Gas over Supported Platinum-Containing Catalysts","authors":"S. D. Badmaev,&nbsp;V. D. Belyaev,&nbsp;D. I. Potemkin,&nbsp;P. V. Snytnikov,&nbsp;V. A. Sobyanin,&nbsp;V. V. Kharton","doi":"10.1134/S2070050423040037","DOIUrl":"10.1134/S2070050423040037","url":null,"abstract":"<p>The properties of supported Pt-containing granular (Pt/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2 – δ</sub>) and structured catalysts (Pt/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2 – δ</sub>/η-Al<sub>2</sub>O<sub>3</sub>/FeCrAl) in methanol decomposition to synthesis gas for feeding solid oxide fuel cells have been studied. It has been shown that the use of a structured catalyst for the methanol decomposition reaction is promising. It has been found that the addition of a small amount of oxygen to the feed mixture hinders the formation of carbon and thereby increases the on-stream stability of the catalyst. At atmospheric pressure, a temperature of ≈400°C, a reaction mixture feed space velocity of 5.6 L/(g<sub>cat</sub> h), and a CH<sub>3</sub>OH : air volume ratio of 1, the proposed 0.15 wt % Pt/8 wt % Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2 – δ</sub>/6 wt % η-Al<sub>2</sub>O<sub>3</sub>/FeCrAl structured catalyst can provide a complete methanol conversion to synthesis gas with a total content of H<sub>2</sub> and CO of ≈64 vol % and a productivity with respect to synthesis gas of ≈6.7 L(H<sub>2</sub> + CO)/(g<sub>cat</sub> h).</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"367 - 373"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkoxycarbonylation of Unsaturated Substrates of Plant Origin in the Presence of Palladium Catalysts as a Route to Synthesize Ester Products 钯催化剂作用下植物源不饱和基质的烷氧基羰基化作为合成酯类产品的途径
IF 0.7 Q4 ENGINEERING, CHEMICAL Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040104
N. T. Sevostyanova, S. A. Batashev

The synthesis of esters by the alkoxycarbonylation of unsaturated substrates of plant origin opens up the possibility of switching to alternative raw materials and provides a solution to a number of problems facing the chemical industry: resource saving, waste minimization, and increasing the environmental safety and efficiency of the processes being implemented. However, to date, only the production of methyl methacrylate, which includes ethylene methoxycarbonylation as one of the stages, has been implemented in industry. The aim of this review is to systematize and analyze the data published since 2010 in the field of ester synthesis by the alkoxycarbonylation of plant substrates under mild conditions. It has been found that, over the indicated period, the alkoxycarbonylation of pentenoic and undecenoic acids, oleic, linoleic, and erucic acids or their esters, and terpene compounds—citronellic acid and β-myrcene—has been implemented. It has been shown that high yields of linear products and selectivities for them under mild conditions have been provided mostly by using homogeneous palladium–diphosphine catalysts. The results of these studies open up broad prospects for the implementation of processes that are new for industry, namely, the alkoxycarbonylation of substrates of plant origin for synthesizing chemical products of high priority, primarily polymers.

摘要 通过对植物源不饱和底物进行烷氧基羰基化合成酯类,开辟了转用替代原料的可能性,并为化学工业面临的一系列问题提供了解决方案:节约资源、最大限度地减少废物以及提高所实施工艺的环境安全性和效率。然而,迄今为止,只有甲基丙烯酸甲酯的生产(其中一个阶段是乙烯甲氧基羰基化)已在工业中实施。本综述旨在系统整理和分析自 2010 年以来在温和条件下通过植物底物的烷氧基羰基化合成酯领域发表的数据。研究发现,在所述期间,戊烯酸和十一烯酸、油酸、亚油酸和芥酸或其酯以及萜烯化合物--香茅酸和β-月桂烯--的烷氧基羰基化均已实现。研究表明,在温和的条件下,使用均相钯-二膦催化剂可以获得高产率的线性产物,并对这些产物具有高选择性。这些研究结果为实施工业新工艺开辟了广阔的前景,即对植物来源的底物进行烷氧基羰基化,以合成高优先级的化学产品,主要是聚合物。
{"title":"Alkoxycarbonylation of Unsaturated Substrates of Plant Origin in the Presence of Palladium Catalysts as a Route to Synthesize Ester Products","authors":"N. T. Sevostyanova,&nbsp;S. A. Batashev","doi":"10.1134/S2070050423040104","DOIUrl":"10.1134/S2070050423040104","url":null,"abstract":"<p>The synthesis of esters by the alkoxycarbonylation of unsaturated substrates of plant origin opens up the possibility of switching to alternative raw materials and provides a solution to a number of problems facing the chemical industry: resource saving, waste minimization, and increasing the environmental safety and efficiency of the processes being implemented. However, to date, only the production of methyl methacrylate, which includes ethylene methoxycarbonylation as one of the stages, has been implemented in industry. The aim of this review is to systematize and analyze the data published since 2010 in the field of ester synthesis by the alkoxycarbonylation of plant substrates under mild conditions. It has been found that, over the indicated period, the alkoxycarbonylation of pentenoic and undecenoic acids, oleic, linoleic, and erucic acids or their esters, and terpene compounds—citronellic acid and β-myrcene—has been implemented. It has been shown that high yields of linear products and selectivities for them under mild conditions have been provided mostly by using homogeneous palladium–diphosphine catalysts. The results of these studies open up broad prospects for the implementation of processes that are new for industry, namely, the alkoxycarbonylation of substrates of plant origin for synthesizing chemical products of high priority, primarily polymers.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"333 - 349"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experience in Creating and Using the GTL Technology in Russia 在俄罗斯创建和使用GTL技术的经验
IF 0.7 Q4 Chemical Engineering Pub Date : 2023-09-04 DOI: 10.1134/S2070050423030078
A. P. Savost’yanov, R. E. Yakovenko

Experience in the industrial use of the technology of synthetic hydrocarbons at the Novocherkassk Plant of Synthetic Products (NPSP) (Novocherkassk, Rostov region) has been summarized. More than 200 types of commercial products for general consumption were produced at NPSP. The article presents information on the production of syngas from natural gas, on the synthesis of hydrocarbons, and process catalysts.

总结了Novocherkassk合成产品工厂(Novocherkassk, Rostov地区)在工业上使用合成碳氢化合物技术的经验。在NPSP生产了200多种一般消费的商业产品。文章介绍了天然气合成气的生产、碳氢化合物的合成和工艺催化剂。
{"title":"Experience in Creating and Using the GTL Technology in Russia","authors":"A. P. Savost’yanov,&nbsp;R. E. Yakovenko","doi":"10.1134/S2070050423030078","DOIUrl":"10.1134/S2070050423030078","url":null,"abstract":"<p>Experience in the industrial use of the technology of synthetic hydrocarbons at the Novocherkassk Plant of Synthetic Products (NPSP) (Novocherkassk, Rostov region) has been summarized. More than 200 types of commercial products for general consumption were produced at NPSP. The article presents information on the production of syngas from natural gas, on the synthesis of hydrocarbons, and process catalysts.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 3","pages":"288 - 296"},"PeriodicalIF":0.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4192265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Method and Technique for Analysis of Acetone Hydrogenation Products by Gas Chromatography 丙酮加氢产物气相色谱分析方法与技术的发展
IF 0.7 Q4 Chemical Engineering Pub Date : 2023-09-04 DOI: 10.1134/S207005042303011X
E. Yu. Yakovleva, Mural Nurbol, G. A. Bukhtiyarova

The results of using capillary chromatographic columns with different stationary phases were compared to determine the purity of isopropanol obtained by hydrogenation of acetone. The study was performed with columns based on 2-nitroterephthalic acid-modified polyethylene glycol 20М (PEG20М/FFAP), poly(1-trimethylsilyl-1-propyne) (PTMSP032), and trifluoropropyl (25%) methyl silicone elastomer (SKTFT 50Х). The measurement times, asymmetry factors (As) of mixture components, and resolutions (Rs) of the acetone/isopropanol and isopropanol/internal standard pairs of compounds were compared; as a result, the PEG20М/FFAP capillary column was chosen. A technique for measuring the mass fractions of acetone and isopropanol using the internal standard method in the gas phase has been developed. n-Butanol was used as an internal standard. The detection limit was 1.45 for acetone, 1.43 for isopropanol, and 1.28 × 10–12 g/s for n-butanol. The relative standard deviation (repeability factor) did not exceed 4.3% at a confidence level Р = 0.95.

用不同固定相的毛细管色谱柱对丙酮加氢所得异丙醇的纯度进行了比较。色谱柱为2-硝基对苯二甲酸改性聚乙二醇20М (PEG20М/FFAP)、聚(1-三甲基硅基-1-丙炔)(PTMSP032)和三氟丙基(25%)甲基有机硅弹性体(SKTFT 50Х)。比较了丙酮/异丙醇和异丙醇/内标对化合物的测定次数、混合组分的不对称因子(As)和分辨度(Rs);因此,选择PEG20М/FFAP毛细管柱。建立了用内标法测定丙酮和异丙醇气相质量分数的方法。正丁醇作为内标。丙酮的检出限为1.45,异丙醇为1.43,正丁醇为1.28 × 10-12 g/s。相对标准偏差(重复性因子)不超过4.3%,置信水平Р = 0.95。
{"title":"Development of a Method and Technique for Analysis of Acetone Hydrogenation Products by Gas Chromatography","authors":"E. Yu. Yakovleva,&nbsp;Mural Nurbol,&nbsp;G. A. Bukhtiyarova","doi":"10.1134/S207005042303011X","DOIUrl":"10.1134/S207005042303011X","url":null,"abstract":"<p>The results of using capillary chromatographic columns with different stationary phases were compared to determine the purity of isopropanol obtained by hydrogenation of acetone. The study was performed with columns based on 2-nitroterephthalic acid-modified polyethylene glycol 20М (PEG20М/FFAP), poly(1-trimethylsilyl-1-propyne) (PTMSP032), and trifluoropropyl (25%) methyl silicone elastomer (SKTFT 50Х). The measurement times, asymmetry factors (<i>A</i><sub>s</sub>) of mixture components, and resolutions (<i>R</i><sub>s</sub>) of the acetone/isopropanol and isopropanol/internal standard pairs of compounds were compared; as a result, the PEG20М/FFAP capillary column was chosen. A technique for measuring the mass fractions of acetone and isopropanol using the internal standard method in the gas phase has been developed. <i>n</i>-Butanol was used as an internal standard. The detection limit was 1.45 for acetone, 1.43 for isopropanol, and 1.28 × 10<sup>–12</sup> g/s for <i>n</i>-butanol. The relative standard deviation (repeability factor) did not exceed 4.3% at a confidence level <i>Р</i> = 0.95.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 3","pages":"238 - 245"},"PeriodicalIF":0.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4193648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherical TiO2/Cr2O3 Composites Synthesized with the Use of Ion-Exchange Resins as a Template 以离子交换树脂为模板制备球形TiO2/Cr2O3复合材料
IF 0.7 Q4 Chemical Engineering Pub Date : 2023-09-04 DOI: 10.1134/S2070050423030029
A. A. Buzaev, A. O. Rogacheva, T. V. Larina, E. V. Dokuchits, O. S. Khalipova, V. V. Zharkova

Two samples of TiO2/Cr2O3 composites are synthesized in the form of spherical grains via the stagewise thermal treatment of ion-exchange resins preliminarily saturated with chromium Cr3+ cations and dichromate ({text{C}}{{{text{r}}}_{{text{2}}}}{text{O}}_{7}^{{2 - }}) anions, and then coated with a film-forming titania-based solution. Calcination temperature regimes are set on the basis of a thermal analysis and determined by the type of ion-exchange resin selected as a template. The synthesized composites are generally composed of the α-Cr2O3 phase, and the content of the TiO2 phase is less than 4%. The composites replicate the spherical shape of grains for the initial ion-exchange resins with sizes of 370 to 660 µm. The grains of the sample based on kaolinite adsorbing Cr3+ ions have a porous structure with bulbs and cavities. The anion-exchange resin-based sample grains have kinks and cracks over their surfaces due to a nonuniform distribution of adsorbed ({text{C}}{{{text{r}}}_{{text{2}}}}{text{O}}_{7}^{{2 - }}) anions in the initial anion-exchange resin. The composites exhibit catalytic activity in the deep p-xylene oxidation reaction. The cation-exchange resin-based sample is more active, due apparently to the smaller accessible titania surfaces in the anion-exchange resin-based sample as a result of the formation of a solid Ti3+ solution in α-Cr2O3.

通过对初步饱和铬Cr3+阳离子和重铬酸盐({text{C}}{{{text{r}}}_{{text{2}}}}{text{O}}_{7}^{{2 - }})阴离子的离子交换树脂进行分阶段热处理,制备了两种球状TiO2/Cr2O3复合材料样品,然后涂覆成膜的钛基溶液。煅烧温度是在热分析的基础上设定的,并由选择作为模板的离子交换树脂的类型决定。合成的复合材料一般由α-Cr2O3相组成,TiO2相含量小于4%. The composites replicate the spherical shape of grains for the initial ion-exchange resins with sizes of 370 to 660 µm. The grains of the sample based on kaolinite adsorbing Cr3+ ions have a porous structure with bulbs and cavities. The anion-exchange resin-based sample grains have kinks and cracks over their surfaces due to a nonuniform distribution of adsorbed ({text{C}}{{{text{r}}}_{{text{2}}}}{text{O}}_{7}^{{2 - }}) anions in the initial anion-exchange resin. The composites exhibit catalytic activity in the deep p-xylene oxidation reaction. The cation-exchange resin-based sample is more active, due apparently to the smaller accessible titania surfaces in the anion-exchange resin-based sample as a result of the formation of a solid Ti3+ solution in α-Cr2O3.
{"title":"Spherical TiO2/Cr2O3 Composites Synthesized with the Use of Ion-Exchange Resins as a Template","authors":"A. A. Buzaev,&nbsp;A. O. Rogacheva,&nbsp;T. V. Larina,&nbsp;E. V. Dokuchits,&nbsp;O. S. Khalipova,&nbsp;V. V. Zharkova","doi":"10.1134/S2070050423030029","DOIUrl":"10.1134/S2070050423030029","url":null,"abstract":"<p>Two samples of TiO<sub>2</sub>/Cr<sub>2</sub>O<sub>3</sub> composites are synthesized in the form of spherical grains via the stagewise thermal treatment of ion-exchange resins preliminarily saturated with chromium Cr<sup>3+</sup> cations and dichromate <span>({text{C}}{{{text{r}}}_{{text{2}}}}{text{O}}_{7}^{{2 - }})</span> anions, and then coated with a film-forming titania-based solution. Calcination temperature regimes are set on the basis of a thermal analysis and determined by the type of ion-exchange resin selected as a template. The synthesized composites are generally composed of the α-Cr<sub>2</sub>O<sub>3</sub> phase, and the content of the TiO<sub>2</sub> phase is less than 4%. The composites replicate the spherical shape of grains for the initial ion-exchange resins with sizes of 370 to 660 µm. The grains of the sample based on kaolinite adsorbing Cr<sup>3+</sup> ions have a porous structure with bulbs and cavities. The anion-exchange resin-based sample grains have kinks and cracks over their surfaces due to a nonuniform distribution of adsorbed <span>({text{C}}{{{text{r}}}_{{text{2}}}}{text{O}}_{7}^{{2 - }})</span> anions in the initial anion-exchange resin. The composites exhibit catalytic activity in the deep <i>p</i>-xylene oxidation reaction. The cation-exchange resin-based sample is more active, due apparently to the smaller accessible titania surfaces in the anion-exchange resin-based sample as a result of the formation of a solid Ti<sup>3+</sup> solution in α-Cr<sub>2</sub>O<sub>3</sub>.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 3","pages":"313 - 322"},"PeriodicalIF":0.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4193544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Interstitial Solid Solutions in the Formation of the Active Component of Supported Palladium Catalysts for the Selective Hydrogenation of Acetylene to Ethylene 间隙固溶体在乙炔选择性加氢制乙烯负载型钯催化剂活性组分形成中的作用
IF 0.7 Q4 Chemical Engineering Pub Date : 2023-09-04 DOI: 10.1134/S207005042303008X
D. A. Shlyapin, D. V. Glyzdova, T. N. Afonasenko, V. L. Temerev, A. V. Lavrenov

The concepts of the effect of the adsorption of the reaction medium components on the selective hydrogenation of acetylene to ethylene under the action of supported palladium catalysts have been discussed. The role of interstitial solid solutions of carbon and hydrogen in palladium, which are formed upon contact of the catalyst with the reaction medium, in the occurrence of mass transfer processes between the surface and the subsurface layer of the active component has been shown. The ratio of activation barriers to ethylene desorption/adsorption processes, which determines the acetylene hydrogenation selectivity, can vary depending on the structure of palladium nanoparticles and the electronic state of Pd. In addition, changes in the electronic state affect the energy of the activated desorption of ethylene from palladium particles, and their structural features determine the energy of the activated adsorption and subsequent hydrogenation of ethylene to ethane.

讨论了负载型钯催化剂作用下反应介质组分的吸附对乙炔选择性加氢制乙烯的影响。钯中碳和氢的间隙固溶体是催化剂与反应介质接触后形成的,在活性组分的表面和亚表面层之间发生传质过程中发挥了作用。决定乙炔加氢选择性的活性障碍与乙烯脱附/吸附过程的比值取决于钯纳米粒子的结构和钯的电子态。此外,电子态的变化会影响钯粒子对乙烯的活性解吸能,而钯粒子的结构特征决定了活性吸附和随后乙烯加氢制乙烷的能量。
{"title":"Role of Interstitial Solid Solutions in the Formation of the Active Component of Supported Palladium Catalysts for the Selective Hydrogenation of Acetylene to Ethylene","authors":"D. A. Shlyapin,&nbsp;D. V. Glyzdova,&nbsp;T. N. Afonasenko,&nbsp;V. L. Temerev,&nbsp;A. V. Lavrenov","doi":"10.1134/S207005042303008X","DOIUrl":"10.1134/S207005042303008X","url":null,"abstract":"<p>The concepts of the effect of the adsorption of the reaction medium components on the selective hydrogenation of acetylene to ethylene under the action of supported palladium catalysts have been discussed. The role of interstitial solid solutions of carbon and hydrogen in palladium, which are formed upon contact of the catalyst with the reaction medium, in the occurrence of mass transfer processes between the surface and the subsurface layer of the active component has been shown. The ratio of activation barriers to ethylene desorption/adsorption processes, which determines the acetylene hydrogenation selectivity, can vary depending on the structure of palladium nanoparticles and the electronic state of Pd. In addition, changes in the electronic state affect the energy of the activated desorption of ethylene from palladium particles, and their structural features determine the energy of the activated adsorption and subsequent hydrogenation of ethylene to ethane.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 3","pages":"297 - 312"},"PeriodicalIF":0.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4526525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-Phase Synthesis of Nickel–Molybdenum Catalysts for Propylene Metathesis under Mechanical Activation 机械活化下丙烯分解镍钼催化剂的固相合成
IF 0.7 Q4 Chemical Engineering Pub Date : 2023-09-04 DOI: 10.1134/S2070050423030042
O. A. Knyazheva, O. N. Baklanova, E. A. Buluchevskii, A. B. Arbuzov, M. V. Trenikhin, T. R. Karpova, M. A. Moiseenko, N. N. Leont’eva, A. V. Lavrenov

Solid-phase synthesis of aluminum–molybdenum (Al–Mo) and aluminum–nickel–molybdenum (Al–Ni–Mo) model composites as part of propylene metathesis catalysts has been conducted under mechanical activation. The structure of Al–Mo and Al–Ni–Mo model composites has been studied by X-ray diffraction analysis, high-resolution transmission electron microscopy, infrared spectroscopy, and diffuse reflectance electron spectroscopy (DRES). The DRES method has shown the presence of isolated monomeric and oligomeric molybdate compounds in the Al–Ni–Mo model composites. Granular metathesis catalysts have been synthesized by molding the Al–Mo and Al–Ni–Mo model composites with aluminum hydroxide and subsequent calcining. It has been shown that the highest activity in the propylene metathesis reaction is exhibited by an aluminum–molybdenum catalyst containing 2.6 wt % Ni, 13.0 wt % Mo, and 32.7 wt % Al. At a process temperature of 200°C, a pressure of 0.1 MPa, and a propylene feed space velocity of 1 h–1, in the presence of this catalyst, the propylene conversion achieves 33.7%; this fact makes this catalyst promising for practical applications. At the same time, the weight fraction of ethylene and butenes in the reaction product composition is 17.5 and 71.3%, respectively.

在机械活化下,固相合成了铝钼(Al-Mo)和铝镍钼(Al-Ni-Mo)模型复合材料作为丙烯分解催化剂。采用x射线衍射分析、高分辨率透射电子显微镜、红外光谱和漫反射电子能谱(DRES)研究了Al-Mo和Al-Ni-Mo模型复合材料的结构。DRES方法表明在Al-Ni-Mo模型复合材料中存在分离的单体和低聚钼酸盐化合物。采用氢氧化铝模塑Al-Mo和Al-Ni-Mo模型复合材料,煅烧制备了颗粒型复分解催化剂。结果表明,含2.6 wt % Ni、13.0 wt % Mo和32.7 wt % Al的铝钼催化剂在丙烯还原反应中表现出最高的活性。在200℃、0.1 MPa、1 h-1进料空间速度下,丙烯转化率可达33.7%;这一事实使得该催化剂具有实际应用前景。同时,乙烯和丁烯在反应产物组成中的质量分数分别为17.5%和71.3%。
{"title":"Solid-Phase Synthesis of Nickel–Molybdenum Catalysts for Propylene Metathesis under Mechanical Activation","authors":"O. A. Knyazheva,&nbsp;O. N. Baklanova,&nbsp;E. A. Buluchevskii,&nbsp;A. B. Arbuzov,&nbsp;M. V. Trenikhin,&nbsp;T. R. Karpova,&nbsp;M. A. Moiseenko,&nbsp;N. N. Leont’eva,&nbsp;A. V. Lavrenov","doi":"10.1134/S2070050423030042","DOIUrl":"10.1134/S2070050423030042","url":null,"abstract":"<p>Solid-phase synthesis of aluminum–molybdenum (Al–Mo) and aluminum–nickel–molybdenum (Al–Ni–Mo) model composites as part of propylene metathesis catalysts has been conducted under mechanical activation. The structure of Al–Mo and Al–Ni–Mo model composites has been studied by X-ray diffraction analysis, high-resolution transmission electron microscopy, infrared spectroscopy, and diffuse reflectance electron spectroscopy (DRES). The DRES method has shown the presence of isolated monomeric and oligomeric molybdate compounds in the Al–Ni–Mo model composites. Granular metathesis catalysts have been synthesized by molding the Al–Mo and Al–Ni–Mo model composites with aluminum hydroxide and subsequent calcining. It has been shown that the highest activity in the propylene metathesis reaction is exhibited by an aluminum–molybdenum catalyst containing 2.6 wt % Ni, 13.0 wt % Mo, and 32.7 wt % Al. At a process temperature of 200°C, a pressure of 0.1 MPa, and a propylene feed space velocity of 1 h<sup>–1</sup>, in the presence of this catalyst, the propylene conversion achieves 33.7%; this fact makes this catalyst promising for practical applications. At the same time, the weight fraction of ethylene and butenes in the reaction product composition is 17.5 and 71.3%, respectively.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 3","pages":"278 - 287"},"PeriodicalIF":0.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4190221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Catalysis in Industry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1