首页 > 最新文献

American Journal of Medicine最新文献

英文 中文
Taking Back Control of Our Learning Environments: In-Person vs Virtual Learning 夺回学习环境的控制权:面对面学习与虚拟学习
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-24 DOI: 10.1016/j.amjmed.2024.07.006
Sherine Salib MD, MRCP, FACP
{"title":"Taking Back Control of Our Learning Environments: In-Person vs Virtual Learning","authors":"Sherine Salib MD, MRCP, FACP","doi":"10.1016/j.amjmed.2024.07.006","DOIUrl":"10.1016/j.amjmed.2024.07.006","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":"137 11","pages":"Page e225"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Could Tricuspid Valve Endocarditis Be the Source of Septic Pulmonary Embolism? 三尖瓣心内膜炎可能是化脓性肺栓塞的源头吗?
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-24 DOI: 10.1016/j.amjmed.2024.05.008
Hasan Tahsin Gozdas MD
{"title":"Could Tricuspid Valve Endocarditis Be the Source of Septic Pulmonary Embolism?","authors":"Hasan Tahsin Gozdas MD","doi":"10.1016/j.amjmed.2024.05.008","DOIUrl":"10.1016/j.amjmed.2024.05.008","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":"137 11","pages":"Page e217"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Reply 答复是
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-24 DOI: 10.1016/j.amjmed.2024.07.019
Beatriz Castillo Rodriguez MD , Eric A. Secemsky MD , Rajesh V. Swaminathan MD , Dmitriy N. Feldman MD , Markus Schlaich MD , Yuri Battaglia MD, PhD , Edward J. Filippone MD , Chayakrit Krittanawong MD
{"title":"The Reply","authors":"Beatriz Castillo Rodriguez MD , Eric A. Secemsky MD , Rajesh V. Swaminathan MD , Dmitriy N. Feldman MD , Markus Schlaich MD , Yuri Battaglia MD, PhD , Edward J. Filippone MD , Chayakrit Krittanawong MD","doi":"10.1016/j.amjmed.2024.07.019","DOIUrl":"10.1016/j.amjmed.2024.07.019","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":"137 11","pages":"Pages e221-e222"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Reply 答复是
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-24 DOI: 10.1016/j.amjmed.2024.07.013
Katherine Lang MD , Christopher Chew MD , Brian T. Garibaldi MD, MEHP
{"title":"The Reply","authors":"Katherine Lang MD , Christopher Chew MD , Brian T. Garibaldi MD, MEHP","doi":"10.1016/j.amjmed.2024.07.013","DOIUrl":"10.1016/j.amjmed.2024.07.013","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":"137 11","pages":"Pages e215-e216"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amylase in Lung Cancer: Not All That Glitters… 肺癌中的淀粉酶:并非所有都闪闪发光....
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-24 DOI: 10.1016/j.amjmed.2024.07.011
Lars C. Huber MD, Mattia Arrigo MD
{"title":"Amylase in Lung Cancer: Not All That Glitters…","authors":"Lars C. Huber MD, Mattia Arrigo MD","doi":"10.1016/j.amjmed.2024.07.011","DOIUrl":"10.1016/j.amjmed.2024.07.011","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":"137 11","pages":"Page e223"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renal Catheter Ablation in Hypertension 高血压肾导管消融术。
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-24 DOI: 10.1016/j.amjmed.2024.06.021
MJ Quinn MD LLM (Visiting Fellow)
{"title":"Renal Catheter Ablation in Hypertension","authors":"MJ Quinn MD LLM (Visiting Fellow)","doi":"10.1016/j.amjmed.2024.06.021","DOIUrl":"10.1016/j.amjmed.2024.06.021","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":"137 11","pages":"Pages e219-e220"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salary Equity Among Subspecialty Fellows: A Call to Action. 亚专科研究员的薪酬公平:行动呼吁。
IF 4.6 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-22 DOI: 10.1016/j.amjmed.2024.10.017
Solomon Liao, Alpesh N Amin, Steven Barczi, Christine Barron, Laura E Degnon, Jennifer G Duncan, Brian Kwan, Vera Luther, Mary E Moffatt, Angela Myers, Paul O'Rourke, Iliana D Vera, Aimee K Zaas, John Solomonides
{"title":"Salary Equity Among Subspecialty Fellows: A Call to Action.","authors":"Solomon Liao, Alpesh N Amin, Steven Barczi, Christine Barron, Laura E Degnon, Jennifer G Duncan, Brian Kwan, Vera Luther, Mary E Moffatt, Angela Myers, Paul O'Rourke, Iliana D Vera, Aimee K Zaas, John Solomonides","doi":"10.1016/j.amjmed.2024.10.017","DOIUrl":"10.1016/j.amjmed.2024.10.017","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Neurotoxins and a Neurodegenerative Outbreak: Diagnosis Requires Specific Sampling Knowledge. 环境神经毒素与神经退行性疾病爆发:诊断需要特定的采样知识。
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-19 DOI: 10.1016/j.amjmed.2024.08.033
Arnold R Eiser
{"title":"Environmental Neurotoxins and a Neurodegenerative Outbreak: Diagnosis Requires Specific Sampling Knowledge.","authors":"Arnold R Eiser","doi":"10.1016/j.amjmed.2024.08.033","DOIUrl":"10.1016/j.amjmed.2024.08.033","url":null,"abstract":"","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of First-Line Antihypertensive Treatment Classes. 一线抗高血压治疗类别的比较分析。
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-17 DOI: 10.1016/j.amjmed.2024.10.016
Ran Abuhasira, Nitzan Burrack, Adi Turjeman, Yonatan Shneor Patt, Leonard Leibovici, Alon Grossman

Background: The best first-line monotherapy for hypertension remains uncertain, as current guidelines suggest that thiazides, angiotensin-converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs) are appropriate in the absence of specific comorbidities. We aimed to compare the outcomes of first-line antihypertensive classes in a real-life setting with a long follow-up period.

Methods: This nationwide retrospective new-user cohort study included patients insured by the largest health maintenance organization in Israel. We included patients with a new diagnosis of hypertension between 2008 and 2021 who initiated treatment with a single first-line drug for hypertension. Outcomes were assessed with and without propensity score matching for confounding factors. The primary composite outcome was the first occurrence of myocardial infarction (MI), acute coronary syndrome (ACS), stroke, or heart failure (HF).

Results: A total of 97,639 patients initiated antihypertensive treatment with a single drug as first-line therapy. The most commonly prescribed class was ACEis/ARBs (66,717, 68.3%), followed by CCBs (15,922, 16.3%), beta-blockers (BBs, 12,869, 13.2%), and thiazides (2,131, 2.2%). For the primary outcome, the hazard ratios (HRs) for BBs, CCBs, and ACEis/ARBs were 1.44 (95% CI 1.25-1.66), 1.10 (95% CI 0.96-1.27), and 1.13 (95% CI 0.99-1.29), respectively, when compared to thiazides.

Conclusion: When initiating pharmacotherapy for hypertension with a single drug, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers were associated with similar risk of MI, ACS, stroke, or HF when compared to thiazides, while beta-blockers were associated with increased risk.

背景:目前的指南建议,在没有特定合并症的情况下,噻嗪类药物、血管紧张素转换酶抑制剂(ACEi)、血管紧张素受体阻滞剂(ARB)和钙通道阻滞剂(CCB)是治疗高血压的最佳一线单药疗法。我们的目的是在长期随访的真实环境中比较一线降压类药物的疗效:这项全国性的新用户回顾性队列研究纳入了以色列最大的健康维护组织的投保患者。我们纳入了 2008 年至 2021 年期间新诊断出高血压并开始使用单一一线药物治疗高血压的患者。在对混杂因素进行倾向评分匹配和未进行倾向评分匹配的情况下,对结果进行了评估。主要综合结果是首次发生心肌梗死(MI)、急性冠状动脉综合征(ACS)、中风或心力衰竭(HF):共有 97,639 名患者开始使用单一药物作为一线降压治疗。最常用的处方药是 ACEi/ARB(66717,68.3%),其次是 CCB(15922,16.3%)、β-受体阻滞剂(BB,12869,13.2%)和噻嗪类药物(2131,2.2%)。就主要结果而言,与噻嗪类药物相比,BBs、CCBs 和 ACEi/ARBs 的危险比(HRs)分别为 1.44(95% CI 1.25 - 1.66)、1.10(95% CI 0.96 - 1.27)和 1.13(95% CI 0.99 - 1.29):结论:在使用单一药物开始高血压药物治疗时,血管紧张素转换酶抑制剂、血管紧张素受体阻滞剂和钙通道阻滞剂与噻嗪类药物相比,发生心肌梗死、急性心肌梗死、中风或高血压的风险相似,而β-受体阻滞剂则会增加风险。
{"title":"Comparative Analysis of First-Line Antihypertensive Treatment Classes.","authors":"Ran Abuhasira, Nitzan Burrack, Adi Turjeman, Yonatan Shneor Patt, Leonard Leibovici, Alon Grossman","doi":"10.1016/j.amjmed.2024.10.016","DOIUrl":"10.1016/j.amjmed.2024.10.016","url":null,"abstract":"<p><strong>Background: </strong>The best first-line monotherapy for hypertension remains uncertain, as current guidelines suggest that thiazides, angiotensin-converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs) are appropriate in the absence of specific comorbidities. We aimed to compare the outcomes of first-line antihypertensive classes in a real-life setting with a long follow-up period.</p><p><strong>Methods: </strong>This nationwide retrospective new-user cohort study included patients insured by the largest health maintenance organization in Israel. We included patients with a new diagnosis of hypertension between 2008 and 2021 who initiated treatment with a single first-line drug for hypertension. Outcomes were assessed with and without propensity score matching for confounding factors. The primary composite outcome was the first occurrence of myocardial infarction (MI), acute coronary syndrome (ACS), stroke, or heart failure (HF).</p><p><strong>Results: </strong>A total of 97,639 patients initiated antihypertensive treatment with a single drug as first-line therapy. The most commonly prescribed class was ACEis/ARBs (66,717, 68.3%), followed by CCBs (15,922, 16.3%), beta-blockers (BBs, 12,869, 13.2%), and thiazides (2,131, 2.2%). For the primary outcome, the hazard ratios (HRs) for BBs, CCBs, and ACEis/ARBs were 1.44 (95% CI 1.25-1.66), 1.10 (95% CI 0.96-1.27), and 1.13 (95% CI 0.99-1.29), respectively, when compared to thiazides.</p><p><strong>Conclusion: </strong>When initiating pharmacotherapy for hypertension with a single drug, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers were associated with similar risk of MI, ACS, stroke, or HF when compared to thiazides, while beta-blockers were associated with increased risk.</p>","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinically Guided Adaptive Machine Learning Update Strategies for Predicting Severe COVID-19 Outcomes. 用于预测严重 COVID-19 结果的临床指导性自适应机器学习更新策略。
IF 2.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Pub Date : 2024-10-17 DOI: 10.1016/j.amjmed.2024.10.011
Mehmet Ulvi Saygi Ayvaci, Varghese S Jacobi, Young Ryu, Saikrishna Pannaga Srikar Gundreddy, Bekir Tanriover

Background: Machine learning algorithms are essential for predicting severe outcomes during public health crises like COVID-19. However, the dynamic nature of diseases requires continual evaluation and updating of these algorithms. This study aims to compare three update strategies for predicting severe COVID-19 outcomes postdiagnosis: "naive" (a single initial model), "frequent" (periodic retraining), and "context-driven" (retraining informed by clinical insights). The goal is to determine the most effective timing and approach for adapting algorithms to evolving disease dynamics and emerging data.

Methods: A dataset of 1.11 million COVID-19 patients from diverse U.S. regions was used to develop and validate an XGBoost algorithm for predicting severe outcomes upon diagnosis. Data included patient demographics, vital signs, comorbidities, and immunity-related factors (prior infection and vaccination status) from January 2007 to November 2021. The study analyzed the performance of the three update strategies from March 2020 to November 2021.

Results: Predictive features changed over the pandemic, with comorbidities and vitals being significant initially, and geography, demographics, and immunity-related variables gaining importance later. The "naive" strategy had an average area under the curve (AUC) of 0.77, the "frequent" strategy maintained stability with an average AUC of 0.81, and the "context-driven" strategy averaged an AUC of 0.80, outperforming the "naive" strategy and aligning closely with the "frequent" strategy.

Conclusions: A context-driven approach, guided by clinical insights, can enhance predictive performance and offer cost-effective solutions for dynamic public health challenges. These findings have significant implications for efficiently managing healthcare resources during evolving disease outbreaks.

背景:机器学习算法对于预测 COVID-19 等公共卫生危机的严重后果至关重要。然而,疾病的动态特性要求对这些算法进行持续评估和更新。本研究旨在比较预测 COVID-19 诊断后严重后果的三种更新策略:"天真"(单一初始模型)、"频繁"(定期再训练)和 "情境驱动"(根据临床见解进行再训练)。目的是确定最有效的时机和方法,使算法适应不断变化的疾病动态和新出现的数据:方法:利用来自美国不同地区的 111 万 COVID-19 患者数据集,开发并验证了一种 XGBoost 算法,用于预测诊断后的严重后果。数据包括 2007 年 1 月至 2021 年 11 月期间患者的人口统计学特征、生命体征、合并症和免疫相关因素(既往感染和疫苗接种情况)。研究分析了 2020 年 3 月至 2021 年 11 月期间三种更新策略的性能:结果:预测特征在大流行期间发生了变化,合并症和生命体征最初很重要,而地理、人口统计学和免疫相关变量后来变得越来越重要。天真 "策略的平均AUC为0.77,"频繁 "策略保持稳定,平均AUC为0.81,而 "情境驱动 "策略的平均AUC为0.80,优于 "天真 "策略,与 "频繁 "策略接近:结论:以临床洞察力为指导的情境驱动方法可以提高预测性能,为应对动态的公共卫生挑战提供具有成本效益的解决方案。这些发现对于在疾病爆发演变期间有效管理医疗资源具有重要意义。
{"title":"Clinically Guided Adaptive Machine Learning Update Strategies for Predicting Severe COVID-19 Outcomes.","authors":"Mehmet Ulvi Saygi Ayvaci, Varghese S Jacobi, Young Ryu, Saikrishna Pannaga Srikar Gundreddy, Bekir Tanriover","doi":"10.1016/j.amjmed.2024.10.011","DOIUrl":"10.1016/j.amjmed.2024.10.011","url":null,"abstract":"<p><strong>Background: </strong>Machine learning algorithms are essential for predicting severe outcomes during public health crises like COVID-19. However, the dynamic nature of diseases requires continual evaluation and updating of these algorithms. This study aims to compare three update strategies for predicting severe COVID-19 outcomes postdiagnosis: \"naive\" (a single initial model), \"frequent\" (periodic retraining), and \"context-driven\" (retraining informed by clinical insights). The goal is to determine the most effective timing and approach for adapting algorithms to evolving disease dynamics and emerging data.</p><p><strong>Methods: </strong>A dataset of 1.11 million COVID-19 patients from diverse U.S. regions was used to develop and validate an XGBoost algorithm for predicting severe outcomes upon diagnosis. Data included patient demographics, vital signs, comorbidities, and immunity-related factors (prior infection and vaccination status) from January 2007 to November 2021. The study analyzed the performance of the three update strategies from March 2020 to November 2021.</p><p><strong>Results: </strong>Predictive features changed over the pandemic, with comorbidities and vitals being significant initially, and geography, demographics, and immunity-related variables gaining importance later. The \"naive\" strategy had an average area under the curve (AUC) of 0.77, the \"frequent\" strategy maintained stability with an average AUC of 0.81, and the \"context-driven\" strategy averaged an AUC of 0.80, outperforming the \"naive\" strategy and aligning closely with the \"frequent\" strategy.</p><p><strong>Conclusions: </strong>A context-driven approach, guided by clinical insights, can enhance predictive performance and offer cost-effective solutions for dynamic public health challenges. These findings have significant implications for efficiently managing healthcare resources during evolving disease outbreaks.</p>","PeriodicalId":50807,"journal":{"name":"American Journal of Medicine","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Journal of Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1