Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050672
Swastina Nath Varma, Shany Ye, Sara Ferlin, Charley Comer, Kian Cotton, M. Niklison-Chirou
Medulloblastomas (MBs) represent the most prevalent malignant solid tumors in kids. The conventional treatment regimen for MBs includes surgical removal of the tumor, followed by radiation and chemotherapy. However, this approach is associated with significant morbidity and detrimental side effects. Consequently, there is a critical demand for more precise and less harmful treatments to enhance the quality of life for survivors. CEP-18770, a novel proteasome inhibitor that targets the 20S subunit, has emerged as a promising candidate, due to its anticancer activity in metastatic solid tumors and multiple myeloma, coupled with an acceptable safety profile. In this study, we aimed to assess the anticancer efficacy of CEP-18770 by employing a variety of MB patient-derived cells and cell lines. Our preclinical investigations revealed that CEP-18770 effectively inhibits proteasome activity and induces apoptosis in MBs cells. Furthermore, we discovered that CEP-18770 and cisplatin, a current component of MB therapy, exhibit a synergistic apoptotic effect. This paper shows that CEP-18770 holds potential as an adjunctive treatment for MB tumors, thereby paving the way for more targeted and less toxic therapeutic strategies.
{"title":"The Proteasome Inhibitor CEP-18770 Induces Cell Death in Medulloblastoma","authors":"Swastina Nath Varma, Shany Ye, Sara Ferlin, Charley Comer, Kian Cotton, M. Niklison-Chirou","doi":"10.3390/pharmaceutics16050672","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050672","url":null,"abstract":"Medulloblastomas (MBs) represent the most prevalent malignant solid tumors in kids. The conventional treatment regimen for MBs includes surgical removal of the tumor, followed by radiation and chemotherapy. However, this approach is associated with significant morbidity and detrimental side effects. Consequently, there is a critical demand for more precise and less harmful treatments to enhance the quality of life for survivors. CEP-18770, a novel proteasome inhibitor that targets the 20S subunit, has emerged as a promising candidate, due to its anticancer activity in metastatic solid tumors and multiple myeloma, coupled with an acceptable safety profile. In this study, we aimed to assess the anticancer efficacy of CEP-18770 by employing a variety of MB patient-derived cells and cell lines. Our preclinical investigations revealed that CEP-18770 effectively inhibits proteasome activity and induces apoptosis in MBs cells. Furthermore, we discovered that CEP-18770 and cisplatin, a current component of MB therapy, exhibit a synergistic apoptotic effect. This paper shows that CEP-18770 holds potential as an adjunctive treatment for MB tumors, thereby paving the way for more targeted and less toxic therapeutic strategies.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"27 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
{"title":"Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development","authors":"Qian Chen, Zhen Yang, Haoyu Liu, Jingyuan Man, Ayodele Olaolu Oladejo, Sally Ibrahim, Sheng-xian Wang, Baocheng Hao","doi":"10.3390/pharmaceutics16050674","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050674","url":null,"abstract":"The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"14 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140970266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050675
Alexandra Balmanno, J. Falconer, H. G. Ravuri, Paul C. Mills
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.
{"title":"Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs","authors":"Alexandra Balmanno, J. Falconer, H. G. Ravuri, Paul C. Mills","doi":"10.3390/pharmaceutics16050675","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050675","url":null,"abstract":"The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"9 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050669
Aida Maaz, I. S. Blagbrough, Paul A. De Bank
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of the prepared gold urchins as an aqueous suspension in a nasal pressurized metered dose inhaler (pMDI) formulation and the investigation of their potential for olfactory targeting for direct nose-to-brain drug delivery (NTBDD). The developed pMDI formulation was composed of 0.025% w/w GNUs, 2% w/w Milli-Q water, and 2% w/w EtOH, with the balance of the formulation being HFA134a propellant. Particle integrity and aerosolization performance were examined using an aerosol exposure system, whereas the nasal deposition profile was tested in a sectioned anatomical replica of human nasal airways. The compatibility of the gold dispersion with the nasal epithelial cell line RPMI 2650 was also investigated in this study. Colloidal gold was found to be stable following six-month storage at 4 °C and during the lyophilization process utilizing a pectin matrix for complete re-dispersibility in water. The GNUs were intact and discrete following atomization via a pMDI, and 13% of the delivered particles were detected beyond the nasal valve, the narrowest region in the nasal cavity, out of which 5.6% was recovered from the olfactory region. Moreover, the formulation was found to be compatible with the human nasal epithelium cell line RPMI 2650 and excellent cell viability was observed. The formulated GNU-HFA-based pMDI is a promising approach for intranasal drug delivery, including deposition in the olfactory region, which could be employed for NTBDD applications.
{"title":"Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery","authors":"Aida Maaz, I. S. Blagbrough, Paul A. De Bank","doi":"10.3390/pharmaceutics16050669","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050669","url":null,"abstract":"A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of the prepared gold urchins as an aqueous suspension in a nasal pressurized metered dose inhaler (pMDI) formulation and the investigation of their potential for olfactory targeting for direct nose-to-brain drug delivery (NTBDD). The developed pMDI formulation was composed of 0.025% w/w GNUs, 2% w/w Milli-Q water, and 2% w/w EtOH, with the balance of the formulation being HFA134a propellant. Particle integrity and aerosolization performance were examined using an aerosol exposure system, whereas the nasal deposition profile was tested in a sectioned anatomical replica of human nasal airways. The compatibility of the gold dispersion with the nasal epithelial cell line RPMI 2650 was also investigated in this study. Colloidal gold was found to be stable following six-month storage at 4 °C and during the lyophilization process utilizing a pectin matrix for complete re-dispersibility in water. The GNUs were intact and discrete following atomization via a pMDI, and 13% of the delivered particles were detected beyond the nasal valve, the narrowest region in the nasal cavity, out of which 5.6% was recovered from the olfactory region. Moreover, the formulation was found to be compatible with the human nasal epithelium cell line RPMI 2650 and excellent cell viability was observed. The formulated GNU-HFA-based pMDI is a promising approach for intranasal drug delivery, including deposition in the olfactory region, which could be employed for NTBDD applications.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"54 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.
{"title":"Deep Learning Insights into the Dynamic Effects of Photodynamic Therapy on Cancer Cells","authors":"Md. Rahman, Feihong Yan, Ruiyuan Li, Yu Wang, Lu Huang, Rongcheng Han, Yuqiang Jiang","doi":"10.3390/pharmaceutics16050673","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050673","url":null,"abstract":"Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050671
Maja D. Nešić, Iva A. Popović, Jelena Žakula, Lela Korićanac, Jelena Filipović Tričković, Ana Valenta Šobot, Maria Victoria Jiménez, Manuel Algarra, Tanja Dučić, Milutin Stepić
The literature data emphasize that nanoparticles might improve the beneficial effects of near-infrared light (NIR) on wound healing. This study investigates the mechanisms of the synergistic wound healing potential of NIR light and silver metal–organic frameworks combined with nitrogen- and sulfur-doped carbon dots (AgMOFsN-CDs and AgMOFsS-CDs, respectively), which was conducted by testing the fibroblasts viability, scratch assays, biochemical analysis, and synchrotron-based Fourier transform infrared (SR-FTIR) cell spectroscopy and imaging. Our findings reveal that the combined treatment of AgMOFsN-CDs and NIR light significantly increases cell viability to nearly 150% and promotes cell proliferation, with reduced interleukin-1 levels, suggesting an anti-inflammatory response. SR-FTIR spectroscopy shows this combined treatment results in unique protein alterations, including increased α-helix structures and reduced cross-β. Additionally, protein synthesis was enhanced upon the combined treatment. The likely mechanism behind the observed changes is the charge-specific interaction of N-CDs from the AgMOFsN-CDs with proteins, enhanced by NIR light due to the nanocomposite’s optical characteristics. Remarkably, the complete wound closure in the in vitro scratch assay was achieved exclusively with the combined NIR and AgMOFsN-CDs treatment, demonstrating the promising application of combined AgMOFsN-CDs with NIR light photodynamic therapy in regenerative nanomedicine and tissue engineering.
{"title":"Synergistic Enhancement of Targeted Wound Healing by Near-Infrared Photodynamic Therapy and Silver Metal–Organic Frameworks Combined with S- or N-Doped Carbon Dots","authors":"Maja D. Nešić, Iva A. Popović, Jelena Žakula, Lela Korićanac, Jelena Filipović Tričković, Ana Valenta Šobot, Maria Victoria Jiménez, Manuel Algarra, Tanja Dučić, Milutin Stepić","doi":"10.3390/pharmaceutics16050671","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050671","url":null,"abstract":"The literature data emphasize that nanoparticles might improve the beneficial effects of near-infrared light (NIR) on wound healing. This study investigates the mechanisms of the synergistic wound healing potential of NIR light and silver metal–organic frameworks combined with nitrogen- and sulfur-doped carbon dots (AgMOFsN-CDs and AgMOFsS-CDs, respectively), which was conducted by testing the fibroblasts viability, scratch assays, biochemical analysis, and synchrotron-based Fourier transform infrared (SR-FTIR) cell spectroscopy and imaging. Our findings reveal that the combined treatment of AgMOFsN-CDs and NIR light significantly increases cell viability to nearly 150% and promotes cell proliferation, with reduced interleukin-1 levels, suggesting an anti-inflammatory response. SR-FTIR spectroscopy shows this combined treatment results in unique protein alterations, including increased α-helix structures and reduced cross-β. Additionally, protein synthesis was enhanced upon the combined treatment. The likely mechanism behind the observed changes is the charge-specific interaction of N-CDs from the AgMOFsN-CDs with proteins, enhanced by NIR light due to the nanocomposite’s optical characteristics. Remarkably, the complete wound closure in the in vitro scratch assay was achieved exclusively with the combined NIR and AgMOFsN-CDs treatment, demonstrating the promising application of combined AgMOFsN-CDs with NIR light photodynamic therapy in regenerative nanomedicine and tissue engineering.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"12 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050666
Qi Wang, Yuanzhan Yang, Zixuan Chen, Bo Li, Yumeng Niu, Xiaoqiong Li
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body’s adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases’ pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell–cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.
{"title":"Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation","authors":"Qi Wang, Yuanzhan Yang, Zixuan Chen, Bo Li, Yumeng Niu, Xiaoqiong Li","doi":"10.3390/pharmaceutics16050666","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050666","url":null,"abstract":"Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body’s adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases’ pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell–cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"30 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050670
Magdalena M Stevanović, Nenad Filipović
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
{"title":"A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years","authors":"Magdalena M Stevanović, Nenad Filipović","doi":"10.3390/pharmaceutics16050670","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050670","url":null,"abstract":"In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"12 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050668
Karolina Kędra, E. Olędzka, M. Sobczak
Worldwide cancer statistics have indicated about 20 million new cancer cases and over 10 million deaths in 2022 (according to data from the International Agency for Research on Cancer). One of the leading cancer treatment strategies is chemotherapy, using innovative drug delivery systems (DDSs). Self-immolative domino dendrimers (SIDendr) for triggered anti-cancer drugs appear to be a promising type of DDSs. The present review provides an up-to-date survey on the contemporary advancements in the field of SIDendr-based anti-cancer drug delivery systems (SIDendr-ac-DDSs) through an exhaustive analysis of the discovery and application of these materials in improving the pharmacological effectiveness of both novel and old drugs. In addition, this article discusses the designing, chemical structure, and targeting techniques, as well as the properties, of several SIDendr-based DDSs. Approaches for this type of targeted DDSs for anti-cancer drug release under a range of stimuli are also explored.
{"title":"Self-Immolative Domino Dendrimers as Anticancer-Drug Delivery Systems: A Review","authors":"Karolina Kędra, E. Olędzka, M. Sobczak","doi":"10.3390/pharmaceutics16050668","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050668","url":null,"abstract":"Worldwide cancer statistics have indicated about 20 million new cancer cases and over 10 million deaths in 2022 (according to data from the International Agency for Research on Cancer). One of the leading cancer treatment strategies is chemotherapy, using innovative drug delivery systems (DDSs). Self-immolative domino dendrimers (SIDendr) for triggered anti-cancer drugs appear to be a promising type of DDSs. The present review provides an up-to-date survey on the contemporary advancements in the field of SIDendr-based anti-cancer drug delivery systems (SIDendr-ac-DDSs) through an exhaustive analysis of the discovery and application of these materials in improving the pharmacological effectiveness of both novel and old drugs. In addition, this article discusses the designing, chemical structure, and targeting techniques, as well as the properties, of several SIDendr-based DDSs. Approaches for this type of targeted DDSs for anti-cancer drug release under a range of stimuli are also explored.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"54 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140970540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/pharmaceutics16050667
N. Ponomareva, S. Brezgin, I. Karandashov, A. Kostyusheva, Polina A. Demina, O. Slatinskaya, E. Bayurova, DN Silachev, Vadim S. Pokrovsky, V. Gegechkori, Evgeny V. Khaydukov, G. Maksimov, Anastasia S Frolova, I. Gordeychuk, Andrey A. Zamyatnin Jr., V.P. Chulanov, Alessandro Parodi, D. Kostyushev
Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.
{"title":"Swelling, Rupture and Endosomal Escape of Biological Nanoparticles Per Se and Those Fused with Liposomes in Acidic Environment","authors":"N. Ponomareva, S. Brezgin, I. Karandashov, A. Kostyusheva, Polina A. Demina, O. Slatinskaya, E. Bayurova, DN Silachev, Vadim S. Pokrovsky, V. Gegechkori, Evgeny V. Khaydukov, G. Maksimov, Anastasia S Frolova, I. Gordeychuk, Andrey A. Zamyatnin Jr., V.P. Chulanov, Alessandro Parodi, D. Kostyushev","doi":"10.3390/pharmaceutics16050667","DOIUrl":"https://doi.org/10.3390/pharmaceutics16050667","url":null,"abstract":"Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"55 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}