Kleinschmidt spreading, negative staining, and rotary shadowing were used to examine the large form of (basement membrane) heparan sulfate proteoglycan in the electron microscope. Heparan sulfate proteoglycan was visualized as consisting of two parts: the core protein and, emerging from one end of the core protein, the glycosaminoglycan side chains. The core protein usually appeared as an S-shaped rod with about six globules along its length. Similar characteristics were observed in preparations of core protein in which the side chains had been removed by heparitinase treatment ("400-kDa core") as well as in a 200-kDa trypsin fragment ("P200") derived from one end of the core protein. The core protein was sensitive to lyophilization and apparently also to the method of examination, being condensed following Kleinschmidt spreading (length means = 52 nm) and extended following negative staining (length means = 83 nm) or rotary shadowing (length means = 87 nm; 400-kDa core length means = 80 nm; P200 length means = 44 nm). Two or three glycosaminoglycan side chains (length means = 146 +/- 53 nm) were attached to one end of the core protein. The side chains often appeared tangled or to merge together as one. Thus, the large heparan sulfate proteoglycan from basement membrane is an asymmetrical molecule with a core protein containing globular domains and terminally attached side chains. This structure is in keeping with that previously predicted by enzymatic digestions and with the proposed orientation in basement membranes, i.e., the core protein bound in the lamina densa and the heparan sulfate side chains in the lamina lucida arranged along the surface of the basement membranes.
{"title":"Visualization of the large heparan sulfate proteoglycan from basement membrane.","authors":"G W Laurie, S Inoue, J T Bing, J R Hassell","doi":"10.1002/aja.1001810308","DOIUrl":"https://doi.org/10.1002/aja.1001810308","url":null,"abstract":"<p><p>Kleinschmidt spreading, negative staining, and rotary shadowing were used to examine the large form of (basement membrane) heparan sulfate proteoglycan in the electron microscope. Heparan sulfate proteoglycan was visualized as consisting of two parts: the core protein and, emerging from one end of the core protein, the glycosaminoglycan side chains. The core protein usually appeared as an S-shaped rod with about six globules along its length. Similar characteristics were observed in preparations of core protein in which the side chains had been removed by heparitinase treatment (\"400-kDa core\") as well as in a 200-kDa trypsin fragment (\"P200\") derived from one end of the core protein. The core protein was sensitive to lyophilization and apparently also to the method of examination, being condensed following Kleinschmidt spreading (length means = 52 nm) and extended following negative staining (length means = 83 nm) or rotary shadowing (length means = 87 nm; 400-kDa core length means = 80 nm; P200 length means = 44 nm). Two or three glycosaminoglycan side chains (length means = 146 +/- 53 nm) were attached to one end of the core protein. The side chains often appeared tangled or to merge together as one. Thus, the large heparan sulfate proteoglycan from basement membrane is an asymmetrical molecule with a core protein containing globular domains and terminally attached side chains. This structure is in keeping with that previously predicted by enzymatic digestions and with the proposed orientation in basement membranes, i.e., the core protein bound in the lamina densa and the heparan sulfate side chains in the lamina lucida arranged along the surface of the basement membranes.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"320-6"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810308","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13598625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pattern of organogenesis of the soleus muscle of the 129 ReJ mouse was evaluated quantitatively using spaced, serial, ultrathin sections and computer-assisted morphometric analysis. Muscles from 14-, 16-, and 18-day in utero mice and muscles of 1- and 5-day-old mice were analyzed to determine age-related alterations in the maximal girth and length of the muscle, number of myotubes, cluster frequency, and the lengths and diameters of myotubes. Primary myotubes are found in the muscle at 14 days in utero. There is little de novo myotube formation between 14 and 16 days in utero, this interval being principally one of primary myotube growth and maturation. The interval between 16 and 18 days in utero is marked by extensive secondary myotube formation, with more myotubes being formed during this period than in any period studied. Morphometric data support the hypothesis that secondary generation myotubes use primary myotubes as a scaffold on which they are formed. Morphometric data also confirm the hypothesis that cluster formation and cluster dispersal occur concurrently during the prenatal period. Secondary myotubes continue to form until birth. At birth, the soleus muscle contains the adult number of myofibers. The first 5 days postnatally are marked by myofiber growth and maturation.
{"title":"Morphometric analysis of the developing mouse soleus muscle.","authors":"M Ontell, D Hughes, D Bourke","doi":"10.1002/aja.1001810306","DOIUrl":"https://doi.org/10.1002/aja.1001810306","url":null,"abstract":"<p><p>The pattern of organogenesis of the soleus muscle of the 129 ReJ mouse was evaluated quantitatively using spaced, serial, ultrathin sections and computer-assisted morphometric analysis. Muscles from 14-, 16-, and 18-day in utero mice and muscles of 1- and 5-day-old mice were analyzed to determine age-related alterations in the maximal girth and length of the muscle, number of myotubes, cluster frequency, and the lengths and diameters of myotubes. Primary myotubes are found in the muscle at 14 days in utero. There is little de novo myotube formation between 14 and 16 days in utero, this interval being principally one of primary myotube growth and maturation. The interval between 16 and 18 days in utero is marked by extensive secondary myotube formation, with more myotubes being formed during this period than in any period studied. Morphometric data support the hypothesis that secondary generation myotubes use primary myotubes as a scaffold on which they are formed. Morphometric data also confirm the hypothesis that cluster formation and cluster dispersal occur concurrently during the prenatal period. Secondary myotubes continue to form until birth. At birth, the soleus muscle contains the adult number of myofibers. The first 5 days postnatally are marked by myofiber growth and maturation.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"279-88"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810306","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14491077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In dogs, laboratory animals, and man, the clearance of bacteria and particulates from blood occurs predominantly in hepatic Kupffer cells and splenic macrophages. In contrast, removal of blood-borne particulates in calves, sheep, goats, cats, and pigs occurs predominantly in pulmonary intravascular macrophages (PIMs). Review of recent studies indicates that PIMs are a resident cell population, junctionally adherent to the capillary endothelium of lungs and morphologically similar to hepatic Kupffer cells. PIMs are a pulmonary constituent of the mononuclear phagocyte system with respect to secretory, endocytic, and functional properties. Differentiated PIMs are rare in newborn pigs, and the majority of cells closely apposed to capillary endothelium consists of monocytes, which are occasionally in mitosis. In 7-day-old and older pigs, most cells apposed to capillary endothelium have characteristics of differentiated PIMs. This suggests a monocytic origin of PIMs in pigs. Perinatal colonization of lung capillaries by monocytes and their subsequent differentiation into PIMs represent a component of postnatal lung development. Estimates of relative PIM numbers in ovine and porcine lung parenchyma suggest cell densities similar to that of rat hepatic Kupffer cells. Apart from phagocytic properties, PIMs participate in the removal and disintegration of aged and impaired blood cells. After phagocytic stimulation, isolated PIMs secrete oxygen radicals, which are essential for microbicidal function. Similarly, by secreting bioactive lipids, stimulated PIMs may contribute to regulation of pulmonary hemodynamics. After receiving minute amounts of bacterial endotoxin, pulmonary injury is pronounced in sheep, calves, pigs, and cats, but not in laboratory animals and dogs. This presumably is related to the secretion of bioactive lipids by PIMs.
{"title":"Pulmonary intravascular macrophages in domestic animal species: review of structural and functional properties.","authors":"G C Winkler","doi":"10.1002/aja.1001810302","DOIUrl":"https://doi.org/10.1002/aja.1001810302","url":null,"abstract":"<p><p>In dogs, laboratory animals, and man, the clearance of bacteria and particulates from blood occurs predominantly in hepatic Kupffer cells and splenic macrophages. In contrast, removal of blood-borne particulates in calves, sheep, goats, cats, and pigs occurs predominantly in pulmonary intravascular macrophages (PIMs). Review of recent studies indicates that PIMs are a resident cell population, junctionally adherent to the capillary endothelium of lungs and morphologically similar to hepatic Kupffer cells. PIMs are a pulmonary constituent of the mononuclear phagocyte system with respect to secretory, endocytic, and functional properties. Differentiated PIMs are rare in newborn pigs, and the majority of cells closely apposed to capillary endothelium consists of monocytes, which are occasionally in mitosis. In 7-day-old and older pigs, most cells apposed to capillary endothelium have characteristics of differentiated PIMs. This suggests a monocytic origin of PIMs in pigs. Perinatal colonization of lung capillaries by monocytes and their subsequent differentiation into PIMs represent a component of postnatal lung development. Estimates of relative PIM numbers in ovine and porcine lung parenchyma suggest cell densities similar to that of rat hepatic Kupffer cells. Apart from phagocytic properties, PIMs participate in the removal and disintegration of aged and impaired blood cells. After phagocytic stimulation, isolated PIMs secrete oxygen radicals, which are essential for microbicidal function. Similarly, by secreting bioactive lipids, stimulated PIMs may contribute to regulation of pulmonary hemodynamics. After receiving minute amounts of bacterial endotoxin, pulmonary injury is pronounced in sheep, calves, pigs, and cats, but not in laboratory animals and dogs. This presumably is related to the secretion of bioactive lipids by PIMs.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"217-34"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14412315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The light and electron microscopy of the cervical epithelium of ovulatory, estrous, and long-term ovariectomized rabbits have been studied to determine what structural changes occur under different hormonal conditions. The percentage of nonciliated secretory cells is 49.6 in ovulatory, 43.6 in estrous, and 23.7 in long-term ovariectomized rabbits, and of ciliated cells is 50.2 in ovulatory, 56.2 in estrous, and 76.3 in long-term ovariectomized animals. The values for the ovulatory and estrous rabbits are significantly different at the P less than 0.05 level from those of the ovariectomized animals. In all 3 groups the general ultrastructure of the normal ciliated cells is similar. Interestingly, the Golgi complex is very prominent in all. Glycogen bodies occur frequently only in ciliated cells of ovariectomized and occasionally of estrous animals. Abnormalities in ciliation are quite common in the ovariectomized rabbits. The structure of the nonciliated secretory cells varies appreciably within and between the 3 groups. In these cells from well-developed epithelia of certain ovulatory and estrous animals, the apical cytoplasm contains secretory granules of at least three types. In addition, very irregularly shaped, dense, perinuclear granules occur, which may be another type of secretory granule or lysosomes. As compared to ciliated cells, the secretory cells have less prominent Golgi complexes, more abundant bundles of intermediate filaments, a more extensive glycocalyx on their apical surface, and more heterochromatic nuclei. In comparison to the cells of well-developed epithelia, the nonciliated cells of some other ovulatory and estrous rabbits are less well differentiated with fewer or no secretory granules and less well developed organelles. In the nonciliated cells of the long-term ovariectomized rabbits, there are no secretory or dense perinuclear granules. There is a decrease in the number of organelles that are involved in secretion, in the size of the cells, and in the amount of nuclear euchromatin.
{"title":"Light and electron microscopic observation on the cervical epithelium of the rabbit. I.","authors":"D L Odor, R J Blandau","doi":"10.1002/aja.1001810307","DOIUrl":"https://doi.org/10.1002/aja.1001810307","url":null,"abstract":"<p><p>The light and electron microscopy of the cervical epithelium of ovulatory, estrous, and long-term ovariectomized rabbits have been studied to determine what structural changes occur under different hormonal conditions. The percentage of nonciliated secretory cells is 49.6 in ovulatory, 43.6 in estrous, and 23.7 in long-term ovariectomized rabbits, and of ciliated cells is 50.2 in ovulatory, 56.2 in estrous, and 76.3 in long-term ovariectomized animals. The values for the ovulatory and estrous rabbits are significantly different at the P less than 0.05 level from those of the ovariectomized animals. In all 3 groups the general ultrastructure of the normal ciliated cells is similar. Interestingly, the Golgi complex is very prominent in all. Glycogen bodies occur frequently only in ciliated cells of ovariectomized and occasionally of estrous animals. Abnormalities in ciliation are quite common in the ovariectomized rabbits. The structure of the nonciliated secretory cells varies appreciably within and between the 3 groups. In these cells from well-developed epithelia of certain ovulatory and estrous animals, the apical cytoplasm contains secretory granules of at least three types. In addition, very irregularly shaped, dense, perinuclear granules occur, which may be another type of secretory granule or lysosomes. As compared to ciliated cells, the secretory cells have less prominent Golgi complexes, more abundant bundles of intermediate filaments, a more extensive glycocalyx on their apical surface, and more heterochromatic nuclei. In comparison to the cells of well-developed epithelia, the nonciliated cells of some other ovulatory and estrous rabbits are less well differentiated with fewer or no secretory granules and less well developed organelles. In the nonciliated cells of the long-term ovariectomized rabbits, there are no secretory or dense perinuclear granules. There is a decrease in the number of organelles that are involved in secretion, in the size of the cells, and in the amount of nuclear euchromatin.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"289-319"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810307","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14491078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The organogenesis of the soleus muscle of the 129 ReJ mouse (a mixed muscle, which in the adult contains approximately equal numbers of slow-twitch oxidative and fast-twitch oxidative-glycolytic myofibers) was studied in spaced, serial transverse, and longitudinal sections of muscles of 14-, 16-, and 18-day in utero and 1- and 5-day postnatal mice. A discrete soleus muscle was distinguished by 14 days in utero. It consisted of groups of closely apposed primary myotubes displaying junctional complexes and a pleomorphic population of mononucleated cells. Between 14 and 16 days in utero there was little de novo myotube formation. At 16 days in utero, basal lamina surrounded groups of primary myotubes; and primitive motor endplates were found on these myotubes. At 18 days in utero, the basal-lamina-enclosed groups of primary myotubes were no longer present. At this stage, basal lamina surrounded clusters (consisting of one primary myotube and one or more secondary myotubes) or independent myotubes (single myotubes surrounded by their own basal lamina). Cluster formation and cluster dispersal occurred concurrently, beginning at 18 days in utero and extending until birth. At birth, there was still a substantial population of immature, secondary myotubes that interdigitated with larger, more mature primary myofibers. At this stage, intermuscular axons had begun to myelinate, and postsynaptic specialization of the motor endplates had begun. Cluster dispersal and myonuclear migration was completed during the first 5 days postnatally with the muscle taking on adult characteristics. Beginning at 16 days in utero and extending into the neonatal period, there was evidence of myotube death in the soleus muscle.
{"title":"Cytoarchitecture of the fetal murine soleus muscle.","authors":"M Ontell, D Bourke, D Hughes","doi":"10.1002/aja.1001810305","DOIUrl":"https://doi.org/10.1002/aja.1001810305","url":null,"abstract":"<p><p>The organogenesis of the soleus muscle of the 129 ReJ mouse (a mixed muscle, which in the adult contains approximately equal numbers of slow-twitch oxidative and fast-twitch oxidative-glycolytic myofibers) was studied in spaced, serial transverse, and longitudinal sections of muscles of 14-, 16-, and 18-day in utero and 1- and 5-day postnatal mice. A discrete soleus muscle was distinguished by 14 days in utero. It consisted of groups of closely apposed primary myotubes displaying junctional complexes and a pleomorphic population of mononucleated cells. Between 14 and 16 days in utero there was little de novo myotube formation. At 16 days in utero, basal lamina surrounded groups of primary myotubes; and primitive motor endplates were found on these myotubes. At 18 days in utero, the basal-lamina-enclosed groups of primary myotubes were no longer present. At this stage, basal lamina surrounded clusters (consisting of one primary myotube and one or more secondary myotubes) or independent myotubes (single myotubes surrounded by their own basal lamina). Cluster formation and cluster dispersal occurred concurrently, beginning at 18 days in utero and extending until birth. At birth, there was still a substantial population of immature, secondary myotubes that interdigitated with larger, more mature primary myofibers. At this stage, intermuscular axons had begun to myelinate, and postsynaptic specialization of the motor endplates had begun. Cluster dispersal and myonuclear migration was completed during the first 5 days postnatally with the muscle taking on adult characteristics. Beginning at 16 days in utero and extending into the neonatal period, there was evidence of myotube death in the soleus muscle.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"267-78"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810305","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14491076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H Saito, Y Yokoi, S Watanabe, J Tajima, H Kuroda, T Namihisa
The reticular meshwork of the rat spleen, which consists of both fibrous and cellular reticula, was investigated by transmission electron microscopy. The fibrous reticulum of the splenic pulp is composed of reticular fibers and basement membranes of the sinuses. These reticular fibers and basement membranes are continuous with each other. The reticular fibers are enfolded by reticular cells and are composed of two basic elements: 1) peripheral basal laminae of the reticular cells, and 2) central connective tissue spaces in which microfibrils, collagenous fibrils, elastic fibers, and unmyelinated adrenergic nerve fibers are present. The basement membranes of the sinuses are sandwiched between reticular cells and sinus endothelial cells and are composed of lamina-densalike material, microfibrils, collagenous fibrils, and elastic fibers. The presence of these connective tissue fibrous components indicates that there are connective tissue spaces in these basement membranes. The basement membrane is divided into three parts: the basal lamina of the reticular cell, the connective tissue space, and the basal lamina of the sinus endothelial cell. When the connective tissue space is very small or absent, the two basal laminae may fuse to form a single, thick basement membrane of the splenic sinus wall. The fibrous reticulum having these structures is responsible for support (collagenous fibrils) and rebounding (elastic fibers). The cells of the cellular reticulum--reticular cells and their cytoplasmic processes, which possess abundant contractile microfilaments, dense bodies, hemidesmosomes, basal laminae, and a well-developed, rough-surfaced endoplasmic reticulum, and Golgi complexes, which are characteristic of both fibroblasts and smooth muscle cells--are considered to be myofibroblasts. They may play roles in splenic contraction and in fibrogenesis of the fibrous reticulum. The contractile ability may be influenced by the unmyelinated adrenergic nerve fibers that pass through the reticular fibers. The three-dimensional reticular meshwork of the spleen consists of sustentacular fibrous reticulum and contractile myofibroblastic cellular reticulum. This meshwork not only supports the organ but also contributes to a contractile mechanism in circulation regulation, in collaboration with major contractile elements in the capsulo-trabecular system.
{"title":"Reticular meshwork of the spleen in rats studied by electron microscopy.","authors":"H Saito, Y Yokoi, S Watanabe, J Tajima, H Kuroda, T Namihisa","doi":"10.1002/aja.1001810303","DOIUrl":"https://doi.org/10.1002/aja.1001810303","url":null,"abstract":"<p><p>The reticular meshwork of the rat spleen, which consists of both fibrous and cellular reticula, was investigated by transmission electron microscopy. The fibrous reticulum of the splenic pulp is composed of reticular fibers and basement membranes of the sinuses. These reticular fibers and basement membranes are continuous with each other. The reticular fibers are enfolded by reticular cells and are composed of two basic elements: 1) peripheral basal laminae of the reticular cells, and 2) central connective tissue spaces in which microfibrils, collagenous fibrils, elastic fibers, and unmyelinated adrenergic nerve fibers are present. The basement membranes of the sinuses are sandwiched between reticular cells and sinus endothelial cells and are composed of lamina-densalike material, microfibrils, collagenous fibrils, and elastic fibers. The presence of these connective tissue fibrous components indicates that there are connective tissue spaces in these basement membranes. The basement membrane is divided into three parts: the basal lamina of the reticular cell, the connective tissue space, and the basal lamina of the sinus endothelial cell. When the connective tissue space is very small or absent, the two basal laminae may fuse to form a single, thick basement membrane of the splenic sinus wall. The fibrous reticulum having these structures is responsible for support (collagenous fibrils) and rebounding (elastic fibers). The cells of the cellular reticulum--reticular cells and their cytoplasmic processes, which possess abundant contractile microfilaments, dense bodies, hemidesmosomes, basal laminae, and a well-developed, rough-surfaced endoplasmic reticulum, and Golgi complexes, which are characteristic of both fibroblasts and smooth muscle cells--are considered to be myofibroblasts. They may play roles in splenic contraction and in fibrogenesis of the fibrous reticulum. The contractile ability may be influenced by the unmyelinated adrenergic nerve fibers that pass through the reticular fibers. The three-dimensional reticular meshwork of the spleen consists of sustentacular fibrous reticulum and contractile myofibroblastic cellular reticulum. This meshwork not only supports the organ but also contributes to a contractile mechanism in circulation regulation, in collaboration with major contractile elements in the capsulo-trabecular system.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"235-52"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14491074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The localization of GABA-like immunoreactivity in the locus ceruleus of rats was studied by the peroxidase-antiperoxidase (PAP) method using a purified antibody raised against GABA applied to paraffin sections, with counterstaining by cresylecht violet, and to floating sections for preembedding immunoelectron microscopy. A few medium-sized and some small neurons showed GABA-like immunoreactivity in both nuclei and perikarya. The preferential localization of these immunopositive neurons in the marginal parts of the locus ceruleus suggests that they are inhibitory local circuit neurons located between this center and the afferent fiber systems. Some of the immunoreactive neurons displayed homogeneous and heterogeneous "paired cells" patterns. Occurrence of the GABA-GABA interaction is indicated. Immunopositive bouton forms are located close to every positive and negative neuron. Electron microscopy confirms GABA-like immunoreactivity in both medium-sized and small neurons of the locus ceruleus and demonstrates that immunoreactive boutons are axosomatic and axosoma spine symmetric synapses on immunopositive and immunonegative cell bodies. These immunocytochemical results support the existence of inhibitory interneurons in the locus ceruleus.
{"title":"Immunocytochemical study using a GABA antiserum for the demonstration of inhibitory neurons in the rat locus ceruleus.","authors":"K Iijima, K Ohtomo, K Ijima","doi":"10.1002/aja.1001810106","DOIUrl":"https://doi.org/10.1002/aja.1001810106","url":null,"abstract":"<p><p>The localization of GABA-like immunoreactivity in the locus ceruleus of rats was studied by the peroxidase-antiperoxidase (PAP) method using a purified antibody raised against GABA applied to paraffin sections, with counterstaining by cresylecht violet, and to floating sections for preembedding immunoelectron microscopy. A few medium-sized and some small neurons showed GABA-like immunoreactivity in both nuclei and perikarya. The preferential localization of these immunopositive neurons in the marginal parts of the locus ceruleus suggests that they are inhibitory local circuit neurons located between this center and the afferent fiber systems. Some of the immunoreactive neurons displayed homogeneous and heterogeneous \"paired cells\" patterns. Occurrence of the GABA-GABA interaction is indicated. Immunopositive bouton forms are located close to every positive and negative neuron. Electron microscopy confirms GABA-like immunoreactivity in both medium-sized and small neurons of the locus ceruleus and demonstrates that immunoreactive boutons are axosomatic and axosoma spine symmetric synapses on immunopositive and immunonegative cell bodies. These immunocytochemical results support the existence of inhibitory interneurons in the locus ceruleus.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"43-52"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M D Bentley, E A Hoffman, M J Fiksen-Olsen, F G Knox, E L Ritman, J C Romero
The dynamic spatial reconstructor--a unique, high speed, volume-scanning, X-ray computed tomographic imaging system--was utilized to examine canine renovascular anatomy and renal circulation in situ. In each of the four kidneys examined in this study initial scans were done during bolus injections of angiographic contrast material into the renal artery. A subsequent scan was then performed following an injection of methyl-methacrylate-based casting compound that had been contrast enhanced with ethiodol. After the scans, each kidney was removed, and its parenchyma was digested in potassium hydroxide to expose the vascular cast. Comparison of casts with their reconstructed images and with images obtained during injection of contrast material showed that interlobar arteries and occasionally arcuate arteries could be clearly detected. Although discrete vessels less than 1 mm in diameter could not be resolved, dynamic changes in parenchymal distribution of density during passage of contrast material allowed interpretation of flow through the multiple capillary beds of the kidney. Such analysis indicated that maximal density was in the outer-middle zone of the cortex throughout the duration of the scan. Analysis of artery-to-vein transit time showed arrival of contrast material in the renal vein as soon as 3 sec, and continuation for longer than 8 sec, after the renal artery bolus. In conclusion, renal circulation in the dog can be discretely visualized with the dynamic spatial reconstructor up to the level of the arcuate arteries; however, capillary flow as a whole can be followed through the cortex, and the results suggest the presence of both rapid and slow components of peritubular circulation.
{"title":"Three-dimensional canine renovascular structure and circulation visualized in situ with the dynamic spatial reconstructor.","authors":"M D Bentley, E A Hoffman, M J Fiksen-Olsen, F G Knox, E L Ritman, J C Romero","doi":"10.1002/aja.1001810109","DOIUrl":"https://doi.org/10.1002/aja.1001810109","url":null,"abstract":"<p><p>The dynamic spatial reconstructor--a unique, high speed, volume-scanning, X-ray computed tomographic imaging system--was utilized to examine canine renovascular anatomy and renal circulation in situ. In each of the four kidneys examined in this study initial scans were done during bolus injections of angiographic contrast material into the renal artery. A subsequent scan was then performed following an injection of methyl-methacrylate-based casting compound that had been contrast enhanced with ethiodol. After the scans, each kidney was removed, and its parenchyma was digested in potassium hydroxide to expose the vascular cast. Comparison of casts with their reconstructed images and with images obtained during injection of contrast material showed that interlobar arteries and occasionally arcuate arteries could be clearly detected. Although discrete vessels less than 1 mm in diameter could not be resolved, dynamic changes in parenchymal distribution of density during passage of contrast material allowed interpretation of flow through the multiple capillary beds of the kidney. Such analysis indicated that maximal density was in the outer-middle zone of the cortex throughout the duration of the scan. Analysis of artery-to-vein transit time showed arrival of contrast material in the renal vein as soon as 3 sec, and continuation for longer than 8 sec, after the renal artery bolus. In conclusion, renal circulation in the dog can be discretely visualized with the dynamic spatial reconstructor up to the level of the arcuate arteries; however, capillary flow as a whole can be followed through the cortex, and the results suggest the presence of both rapid and slow components of peritubular circulation.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"77-88"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.
{"title":"Spontaneous regeneration of older dystrophic muscle does not reflect its regenerative capacity.","authors":"D L Bourke, M Ontell, F Taylor","doi":"10.1002/aja.1001810102","DOIUrl":"https://doi.org/10.1002/aja.1001810102","url":null,"abstract":"<p><p>Young dystrophic (dy) murine muscle is capable of \"spontaneous\" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of \"spontaneous\" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E Becchetti, R Evangelisti, G Stabellini, A Pagliarini, E del Borrello, C Calastrini, P Carinci
The presence and distribution of mesenchymal components in the extracellular matrix during lung development in the chick embryo (from 5 1/2/6 to 18 incubation days) has been examined histochemically. Attention is focused mainly on glycosaminoglycans (GAG). Morphological reconstructions show three main stages: first (5 1/2/6-8 days), formation of 2nd-order branching; second (9-12 days), proliferation of parabronchi and third (from 13th day on), formation of air capillaries. In the first phase, hyaluronic acid (HA) prevails around the mesobronchus, but chondroitin sulfate (CS) dominates the 2nd-order branches. Basement membranes of 2nd-order branches are strongly positive for sulphated GAG. In the second phase, CSA increases in the ground substance of mesenchyme. This increase is irregular, being smaller in older areas (mesobronchus, branches of 2nd order) and larger in the more recent parabronchi, which extend into the lateral and dorsal areas of the rudiment. An increase in both sulfated GAG and glycoprotein (GP) occurs in basement membranes. In the third phase, GAGs are uniformly distributed in the mesenchymal septa and around the interlobular vascular network. This concentration decreases while the GP concentration increases. Basement membranes around every branch of the 1st, 2nd, and 3rd orders possess large quantities of GP. Mesenchymal GAG occurs in every stage of lung development, temporally correlating with the morphogenesis and differentiation of epithelium. Our results provide necessary information, which has not been available so far. Experimental studies specifically designed to clarify the developmental significance of such a heterogeneous distribution may be interpreted in the light of this information.
{"title":"Developmental heterogeneity of mesenchymal glycosaminoglycans (GAG) distribution in chick embryo lung anlagen.","authors":"E Becchetti, R Evangelisti, G Stabellini, A Pagliarini, E del Borrello, C Calastrini, P Carinci","doi":"10.1002/aja.1001810105","DOIUrl":"https://doi.org/10.1002/aja.1001810105","url":null,"abstract":"<p><p>The presence and distribution of mesenchymal components in the extracellular matrix during lung development in the chick embryo (from 5 1/2/6 to 18 incubation days) has been examined histochemically. Attention is focused mainly on glycosaminoglycans (GAG). Morphological reconstructions show three main stages: first (5 1/2/6-8 days), formation of 2nd-order branching; second (9-12 days), proliferation of parabronchi and third (from 13th day on), formation of air capillaries. In the first phase, hyaluronic acid (HA) prevails around the mesobronchus, but chondroitin sulfate (CS) dominates the 2nd-order branches. Basement membranes of 2nd-order branches are strongly positive for sulphated GAG. In the second phase, CSA increases in the ground substance of mesenchyme. This increase is irregular, being smaller in older areas (mesobronchus, branches of 2nd order) and larger in the more recent parabronchi, which extend into the lateral and dorsal areas of the rudiment. An increase in both sulfated GAG and glycoprotein (GP) occurs in basement membranes. In the third phase, GAGs are uniformly distributed in the mesenchymal septa and around the interlobular vascular network. This concentration decreases while the GP concentration increases. Basement membranes around every branch of the 1st, 2nd, and 3rd orders possess large quantities of GP. Mesenchymal GAG occurs in every stage of lung development, temporally correlating with the morphogenesis and differentiation of epithelium. Our results provide necessary information, which has not been available so far. Experimental studies specifically designed to clarify the developmental significance of such a heterogeneous distribution may be interpreted in the light of this information.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"33-42"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}