The postnatal development of the Sertoli cell barrier, tubular lumen, fluid flow, and cytoskeletal elements in Sertoli and myoid cells was investigated in the Sprague-Dawley rat. With the aid of hypertonic fixatives, a barrier to the rapid entry of fluid was noted in the majority of tubules on the 15th and 16th postnatal (p.n.) days and was completely formed in all tubules prior to p.n. day 18. The actin forming the ectoplasmic specialization (ES), a cytoskeletal complex related to the occluding junctions composing the barrier, began its development during the period of initial barrier formation (16 p.n. day) and progressively attained its adult prominence. The ES developed its characteristic adult pattern and adult fluorescent intensity at about p.n. day 22. Some seminiferous tubules showed very small lumina as early as p.n. day 10. All tubules were not open until p.n. day 30. The size (diameter) of the lumen increased slowly from p.n. day 10 until p.n. day 30 when it started to increase rapidly until about p.n. day 50. Fluid flow in seminiferous tubules was detected as early as p.n. day 20 and increased in amount thereafter. Myoid cell actin filament bundles, running in parallel, were present at p.n. day 10. Actin formed a meshwork pattern characteristic of the adult on, or slightly prior to, p.n. day 22. These data indicate that there is a temporal relationship between the development of the actin cytoskeleton within the Sertoli cell and initial formation of the Sertoli cell barrier. Similarly, there is a temporal relationship between the development of the actin cytoskeleton of myoid cells and tubular fluid flow. The rapid increase in tubular lumen diameter, however, does not correlate with the initial development of Sertoli and myoid cytoskeletal elements.
{"title":"Postnatal development of the Sertoli cell barrier, tubular lumen, and cytoskeleton of Sertoli and myoid cells in the rat, and their relationship to tubular fluid secretion and flow.","authors":"L D Russell, A Bartke, J C Goh","doi":"10.1002/aja.1001840302","DOIUrl":"https://doi.org/10.1002/aja.1001840302","url":null,"abstract":"<p><p>The postnatal development of the Sertoli cell barrier, tubular lumen, fluid flow, and cytoskeletal elements in Sertoli and myoid cells was investigated in the Sprague-Dawley rat. With the aid of hypertonic fixatives, a barrier to the rapid entry of fluid was noted in the majority of tubules on the 15th and 16th postnatal (p.n.) days and was completely formed in all tubules prior to p.n. day 18. The actin forming the ectoplasmic specialization (ES), a cytoskeletal complex related to the occluding junctions composing the barrier, began its development during the period of initial barrier formation (16 p.n. day) and progressively attained its adult prominence. The ES developed its characteristic adult pattern and adult fluorescent intensity at about p.n. day 22. Some seminiferous tubules showed very small lumina as early as p.n. day 10. All tubules were not open until p.n. day 30. The size (diameter) of the lumen increased slowly from p.n. day 10 until p.n. day 30 when it started to increase rapidly until about p.n. day 50. Fluid flow in seminiferous tubules was detected as early as p.n. day 20 and increased in amount thereafter. Myoid cell actin filament bundles, running in parallel, were present at p.n. day 10. Actin formed a meshwork pattern characteristic of the adult on, or slightly prior to, p.n. day 22. These data indicate that there is a temporal relationship between the development of the actin cytoskeleton within the Sertoli cell and initial formation of the Sertoli cell barrier. Similarly, there is a temporal relationship between the development of the actin cytoskeleton of myoid cells and tubular fluid flow. The rapid increase in tubular lumen diameter, however, does not correlate with the initial development of Sertoli and myoid cytoskeletal elements.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"184 3","pages":"179-89"},"PeriodicalIF":0.0,"publicationDate":"1989-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001840302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13890872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electron micrograph composites of tangenital sections of the fovea centralis of three cynomolgus monkeys (Macaca irus) and one baboon (Papio anubis) were used to determine the spatial density of the principal retinal cells. In the center of the foveola, the density of cones ranged from 113,000 to 230,000/mm2, and pigment epithelial cells from 4,900 to 7,000/mm2. At a distance of 500 microns from the foveolar center the density of the cone cell pedicles ranged from 29,000 to 36,300/mm2, and the density of horizontal cells ranged from 19,000 to 25,100/mm2. Densities of bipolar, Müller, and amacrine cells were determined in only two monkeys and in the baboon. The fact that the cone cell pedicles have a larger diameter than the foveolar cones explains the geometry of the fovea. The morphology of the junction between foveolar cone outer segments and the pigment epithelium reflects the complex metabolism of this functional unit. The comparison with the peripheral primate retina suggests that the densities of horizontal and bipolar cells, but not of amacrine and Müller cells, are correlated with the density of cone cell pedicles.
{"title":"Quantitative morphology of the central fovea in the primate retina.","authors":"W Krebs, I P Krebs","doi":"10.1002/aja.1001840306","DOIUrl":"https://doi.org/10.1002/aja.1001840306","url":null,"abstract":"<p><p>Electron micrograph composites of tangenital sections of the fovea centralis of three cynomolgus monkeys (Macaca irus) and one baboon (Papio anubis) were used to determine the spatial density of the principal retinal cells. In the center of the foveola, the density of cones ranged from 113,000 to 230,000/mm2, and pigment epithelial cells from 4,900 to 7,000/mm2. At a distance of 500 microns from the foveolar center the density of the cone cell pedicles ranged from 29,000 to 36,300/mm2, and the density of horizontal cells ranged from 19,000 to 25,100/mm2. Densities of bipolar, Müller, and amacrine cells were determined in only two monkeys and in the baboon. The fact that the cone cell pedicles have a larger diameter than the foveolar cones explains the geometry of the fovea. The morphology of the junction between foveolar cone outer segments and the pigment epithelium reflects the complex metabolism of this functional unit. The comparison with the peripheral primate retina suggests that the densities of horizontal and bipolar cells, but not of amacrine and Müller cells, are correlated with the density of cone cell pedicles.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"184 3","pages":"225-36"},"PeriodicalIF":0.0,"publicationDate":"1989-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001840306","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13890875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study describes the hypophyseal angioarchitecture found in 79 adult New Zealand white rabbits. The pituitary glands and attached hypothalami were removed and carefully processed following routine histological methods, and the vascular organization was studied by light microscopy. Whole mounts of the pituitary median eminence complex were prepared and studied with a binocular dissecting microscope employing transmitted and epi-illumination. Arterial blood was found to be directed primarily to the neurohypophysis by the superior hypophyseal artery (SHA) and the inferior hypophyseal artery (IHA). A direct arterial blood supply was found to the adenohypophysis, but was limited solely to the pars intermedia by branches of the anterior hypophyseal artery (AHA) and the IHA. Capillaries of the pars intermedia were subdivided into an intermediate and a superficial plexus. The superficial plexus was situated between the intermediate plexus and the capillaries of the infundibular process. Capillaries of the superficial plexus did not form anastomoses between themselves, but ramified into the intermediate plexus to form a dense network of anastomosing capillaries that were continuous with capillaries of the pars distalis. A direct arterial blood supply was found only to the superficial plexus.
{"title":"Light microscopic study of the hypophyseal angioarchitecture in the rabbit.","authors":"W G Foster, W H Boyd","doi":"10.1002/aja.1001840304","DOIUrl":"https://doi.org/10.1002/aja.1001840304","url":null,"abstract":"<p><p>This study describes the hypophyseal angioarchitecture found in 79 adult New Zealand white rabbits. The pituitary glands and attached hypothalami were removed and carefully processed following routine histological methods, and the vascular organization was studied by light microscopy. Whole mounts of the pituitary median eminence complex were prepared and studied with a binocular dissecting microscope employing transmitted and epi-illumination. Arterial blood was found to be directed primarily to the neurohypophysis by the superior hypophyseal artery (SHA) and the inferior hypophyseal artery (IHA). A direct arterial blood supply was found to the adenohypophysis, but was limited solely to the pars intermedia by branches of the anterior hypophyseal artery (AHA) and the IHA. Capillaries of the pars intermedia were subdivided into an intermediate and a superficial plexus. The superficial plexus was situated between the intermediate plexus and the capillaries of the infundibular process. Capillaries of the superficial plexus did not form anastomoses between themselves, but ramified into the intermediate plexus to form a dense network of anastomosing capillaries that were continuous with capillaries of the pars distalis. A direct arterial blood supply was found only to the superficial plexus.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"184 3","pages":"205-11"},"PeriodicalIF":0.0,"publicationDate":"1989-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001840304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13890873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Upon release from the seminiferous epithelium, spermatoza show a small droplet of cytoplasm attached to the neck region. During transit of spermatozoa in the caput epididymidis, this cytoplasmic droplet migrates along the middle piece of the flagellum. In the corpus epididymidis, the droplet shows a lateral displacement, while in the cauda epididymidis it detaches from the spermatozoon. In the electron microscope, cytoplasmic droplets attached to spermatozoa were seen to contain numerous, short, straight or C-shaped, flattened membranous elements referred to as lamellae, small vesicles, and small particles (35-nm diameter) with a diffuse wall showing no apparent unit membrane. The lamellae were stacked closely on one another or arranged in a loose array. Structurally as well as cytochemically, with different cytochemical markers, the lamellae and vesicular elements failed to show any evidence of being components of the Golgi apparatus or elements of the endoplasmic reticulum. The lamellae, vesicular elements, and 35-nm particles were also seen free in the lumen of the corpus epididymidis but were especially prominent in the cauda epididymidis at a time when droplets were being released from spermatozoa. The lumen of the epididymis, as spermatozoa passed from the caput to the cauda epididymidis, was also noted to acquire progressively a flocculent background material. The epididymal epithelium is composed predominantly of principal and clear cells. The endocytic activity of clear cells was examined in rats at different time intervals after a single injection of cationic ferritin into the lumen of the cauda epididymidis. At 2 min the tracer was bound to the microvilli of these cells and was also observed within large coated and uncoated pits, subsurface coated vesicles, and numerous subsurface small uncoated vesicular membranous elements (150-200-nm diameter). At 5 min, in addition to the above structures, the tracer was present in endosomes, while at 15 and 30 min, pale and dense multivesicular bodies appeared labeled, respectively. At 1 and 2 hr, but more so at 6 hr large dense membrane-bound bodies identified cytochemically as secondary lysosomes became labeled. All of the above endocytic structures were also seen to contain the 35-nm particles, flattened or vesicular membranous profiles, and a fine flocculent background material reminiscent of those seen free in the lumen or found in cytoplasmic droplets attached to spermatozoa. (ABSTRACT TRUNCATED AT 400 WORDS)
{"title":"Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa.","authors":"L Hermo, J Dworkin, R Oko","doi":"10.1002/aja.1001830202","DOIUrl":"https://doi.org/10.1002/aja.1001830202","url":null,"abstract":"<p><p>Upon release from the seminiferous epithelium, spermatoza show a small droplet of cytoplasm attached to the neck region. During transit of spermatozoa in the caput epididymidis, this cytoplasmic droplet migrates along the middle piece of the flagellum. In the corpus epididymidis, the droplet shows a lateral displacement, while in the cauda epididymidis it detaches from the spermatozoon. In the electron microscope, cytoplasmic droplets attached to spermatozoa were seen to contain numerous, short, straight or C-shaped, flattened membranous elements referred to as lamellae, small vesicles, and small particles (35-nm diameter) with a diffuse wall showing no apparent unit membrane. The lamellae were stacked closely on one another or arranged in a loose array. Structurally as well as cytochemically, with different cytochemical markers, the lamellae and vesicular elements failed to show any evidence of being components of the Golgi apparatus or elements of the endoplasmic reticulum. The lamellae, vesicular elements, and 35-nm particles were also seen free in the lumen of the corpus epididymidis but were especially prominent in the cauda epididymidis at a time when droplets were being released from spermatozoa. The lumen of the epididymis, as spermatozoa passed from the caput to the cauda epididymidis, was also noted to acquire progressively a flocculent background material. The epididymal epithelium is composed predominantly of principal and clear cells. The endocytic activity of clear cells was examined in rats at different time intervals after a single injection of cationic ferritin into the lumen of the cauda epididymidis. At 2 min the tracer was bound to the microvilli of these cells and was also observed within large coated and uncoated pits, subsurface coated vesicles, and numerous subsurface small uncoated vesicular membranous elements (150-200-nm diameter). At 5 min, in addition to the above structures, the tracer was present in endosomes, while at 15 and 30 min, pale and dense multivesicular bodies appeared labeled, respectively. At 1 and 2 hr, but more so at 6 hr large dense membrane-bound bodies identified cytochemically as secondary lysosomes became labeled. All of the above endocytic structures were also seen to contain the 35-nm particles, flattened or vesicular membranous profiles, and a fine flocculent background material reminiscent of those seen free in the lumen or found in cytoplasmic droplets attached to spermatozoa. (ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"107-24"},"PeriodicalIF":0.0,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13987511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The toothless (tl) rat is a nonlethal osteopetrotic mutation characterized by the presence of few osteoclasts and the failure to be cured by bone-marrow transplantation. We examined the skeletal biology of tl rats and normal littermates up to 6 weeks after birth. Osteoclasts in tl rats were small, reduced 25-fold in number, and had greatly reduced concentrations of acid hydrolases. Bone shape internally and externally reflected reduced bone resorption, and tl rats were hypophosphatemic and mildly hypocalcemic at 2 weeks. These data indicate that the basic defect in tl rats is one of differentiation of osteoclasts and, coupled with the observation that normal bone-marrow cells cannot develop into osteoclasts in the tl skeleton, suggest that the defect lies in the skeletal micro-environment.
{"title":"Skeletal biology in the toothless (osteopetrotic) rat.","authors":"M F Seifert, S N Popoff, S C Marks","doi":"10.1002/aja.1001830206","DOIUrl":"https://doi.org/10.1002/aja.1001830206","url":null,"abstract":"<p><p>The toothless (tl) rat is a nonlethal osteopetrotic mutation characterized by the presence of few osteoclasts and the failure to be cured by bone-marrow transplantation. We examined the skeletal biology of tl rats and normal littermates up to 6 weeks after birth. Osteoclasts in tl rats were small, reduced 25-fold in number, and had greatly reduced concentrations of acid hydrolases. Bone shape internally and externally reflected reduced bone resorption, and tl rats were hypophosphatemic and mildly hypocalcemic at 2 weeks. These data indicate that the basic defect in tl rats is one of differentiation of osteoclasts and, coupled with the observation that normal bone-marrow cells cannot develop into osteoclasts in the tl skeleton, suggest that the defect lies in the skeletal micro-environment.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"158-65"},"PeriodicalIF":0.0,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830206","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14333090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Kalisnik, O Vraspir-Porenta, T Kham-Lindtner, M Logonder-Mlinsek, Z Pajer, D Stiblar-Martincic, R Zorc-Pleskovic, M Trobina
The aim of this paper is to summarize some of our quantitative descriptive and experimental studies, to discuss them in view of the literature data, and to present a synthesis of the topic. The results of stereological analysis of some tissue components of the rat thyroid gland have been compared with the results of topological studies on the parafollicular cells of various mammalian species. Localization of the parafollicular cells in the central regions of the thyroid gland lobes, where the follicular cell activity seems to be greater than in the periphery of the lobes, has led to the hypothesis that the parafollicular cells regulate (stimulate and/or suppress) the activity of the follicular cells. Long-term application and antithyroid drugs to mice and rats has shown that excessive concentrations of thyrotropin provoke hyperplasia of both the follicular cells and the intrathyroid mast cells and, transiently, of the parafollicular cells. This and some of the literature data are congruent with the hypothesis that the parafollicular and mast cells also stimulate the follicular cells by their paracrine secretions. Long-term application of antithyroid drugs to mice and rats has shown that excessive concentrations of cular cells but also probably stimulation of the follicular cells, as judged by the stereological measurements. The biological meaning of the spatial integration of follicular and parafollicular cells seems to be a functional coordination of both epithelial cell lines, supported by intrathyroid mast cells.
{"title":"The interdependence of the follicular, parafollicular, and mast cells in the mammalian thyroid gland: a review and a synthesis.","authors":"M Kalisnik, O Vraspir-Porenta, T Kham-Lindtner, M Logonder-Mlinsek, Z Pajer, D Stiblar-Martincic, R Zorc-Pleskovic, M Trobina","doi":"10.1002/aja.1001830205","DOIUrl":"https://doi.org/10.1002/aja.1001830205","url":null,"abstract":"<p><p>The aim of this paper is to summarize some of our quantitative descriptive and experimental studies, to discuss them in view of the literature data, and to present a synthesis of the topic. The results of stereological analysis of some tissue components of the rat thyroid gland have been compared with the results of topological studies on the parafollicular cells of various mammalian species. Localization of the parafollicular cells in the central regions of the thyroid gland lobes, where the follicular cell activity seems to be greater than in the periphery of the lobes, has led to the hypothesis that the parafollicular cells regulate (stimulate and/or suppress) the activity of the follicular cells. Long-term application and antithyroid drugs to mice and rats has shown that excessive concentrations of thyrotropin provoke hyperplasia of both the follicular cells and the intrathyroid mast cells and, transiently, of the parafollicular cells. This and some of the literature data are congruent with the hypothesis that the parafollicular and mast cells also stimulate the follicular cells by their paracrine secretions. Long-term application of antithyroid drugs to mice and rats has shown that excessive concentrations of cular cells but also probably stimulation of the follicular cells, as judged by the stereological measurements. The biological meaning of the spatial integration of follicular and parafollicular cells seems to be a functional coordination of both epithelial cell lines, supported by intrathyroid mast cells.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"148-57"},"PeriodicalIF":0.0,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13608187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous work from our laboratory has demonstrated that specific rabbit immunoglobulins G (IgG) against a glycoprotein antigen of rat kidney proximal tubule or a cross-reacting visceral yolk-sac endodermal cell antigen will induce abnormal embryonic development when they are injected into pregnant rats during the period of organogenesis. It has been proposed that these antibodies may induce embryopathy by interfering with functions of the visceral yolk-sac placenta, an important organ providing nutrients to the embryo at this stage of development. In order to gain some insight into the underlying pathogenic mechanism(s) in which specific teratogenic IgG may interfere with visceral yolk-sac functions, we examined the uptake of these teratogenic IgG by the visceral yolk-sac endodermal cells at the electron microscopic level. The results demonstrated that teratogenic rabbit IgG specifically localized on the fuzzy coat of the external apical cell membrane of the visceral yolk-sac endoderm at the intermicrovillous region. Within 5 min, the IgG were rapidly internalized via coated pits and micropinocytic vesicles. Within 30 min, an increasing proportion of gold particles appeared within uncoated vesicles or vacuoles of various sizes; most of the gold particles were in close proximity to the inner membranous lining of the vesicles. Similar findings were observed after 1- or 2-hr incubation. After 24- to 48-hr culture, however, the gold particles appeared to have dissociated from the inner surface of the vesicle membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
{"title":"Teratogenic antibody internalization by rat visceral yolk-sac endoderm in vitro: an ultrastructural colloidal gold tracer study.","authors":"C C Leung, C L Yan, B Cheewatrakoolpong","doi":"10.1002/aja.1001830203","DOIUrl":"https://doi.org/10.1002/aja.1001830203","url":null,"abstract":"<p><p>Previous work from our laboratory has demonstrated that specific rabbit immunoglobulins G (IgG) against a glycoprotein antigen of rat kidney proximal tubule or a cross-reacting visceral yolk-sac endodermal cell antigen will induce abnormal embryonic development when they are injected into pregnant rats during the period of organogenesis. It has been proposed that these antibodies may induce embryopathy by interfering with functions of the visceral yolk-sac placenta, an important organ providing nutrients to the embryo at this stage of development. In order to gain some insight into the underlying pathogenic mechanism(s) in which specific teratogenic IgG may interfere with visceral yolk-sac functions, we examined the uptake of these teratogenic IgG by the visceral yolk-sac endodermal cells at the electron microscopic level. The results demonstrated that teratogenic rabbit IgG specifically localized on the fuzzy coat of the external apical cell membrane of the visceral yolk-sac endoderm at the intermicrovillous region. Within 5 min, the IgG were rapidly internalized via coated pits and micropinocytic vesicles. Within 30 min, an increasing proportion of gold particles appeared within uncoated vesicles or vacuoles of various sizes; most of the gold particles were in close proximity to the inner membranous lining of the vesicles. Similar findings were observed after 1- or 2-hr incubation. After 24- to 48-hr culture, however, the gold particles appeared to have dissociated from the inner surface of the vesicle membrane.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"125-9"},"PeriodicalIF":0.0,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14333088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tumor-promoting agent 12-0-tetradecanoyl-phorbol-13-acetate (TPA) caused a time- and dose-dependent morphological change in Y-1 adrenocortical tumor cells. The morphological alteration was apparent 2 hr following addition of 1 microgram/ml TPA to cell cultures and became more striking with longer treatment times. Smaller doses of TPA took a longer time to produce an effect. Cultures grown in the presence of TPA exhibited more rounding and piling up of cells than similar cultures maintained in medium lacking TPA. These TPA-stimulated morphological changes were reversible, and after 24 hr in TPA-free media, the cultured cells began to flatten. After 96 hr in TPA-free media they resembled the control cultures. The reversibility of the morphological change was also dose dependent: cells treated with 1 microgram/ml TPA took a longer time to resume the typical control morphology than did cultures treated with 0.01 microgram/ml TPA. In addition, TPA treatment resulted in a decrease in cell growth rate, an increase in steroid production, and an increase in the localization of free catalytic units of cAMP-dependent protein kinase in the cytoplasm. The steroidogenic effect of ACTH on the cell population was inhibited in cultures maintained in TPA. The results of this study indicate that TPA induces morphological changes in the Y-1 adrenocortical tumor cell population while increasing steroidogenesis and the activation of cAMP-dependent protein kinase and decreasing cell growth rate.
{"title":"Characterization of the morphological, growth, and steroidogenic effect of TPA on mouse Y-1 adrenal cortical tumor cells in culture.","authors":"S A Murray, S Polizotto","doi":"10.1002/aja.1001830207","DOIUrl":"https://doi.org/10.1002/aja.1001830207","url":null,"abstract":"<p><p>The tumor-promoting agent 12-0-tetradecanoyl-phorbol-13-acetate (TPA) caused a time- and dose-dependent morphological change in Y-1 adrenocortical tumor cells. The morphological alteration was apparent 2 hr following addition of 1 microgram/ml TPA to cell cultures and became more striking with longer treatment times. Smaller doses of TPA took a longer time to produce an effect. Cultures grown in the presence of TPA exhibited more rounding and piling up of cells than similar cultures maintained in medium lacking TPA. These TPA-stimulated morphological changes were reversible, and after 24 hr in TPA-free media, the cultured cells began to flatten. After 96 hr in TPA-free media they resembled the control cultures. The reversibility of the morphological change was also dose dependent: cells treated with 1 microgram/ml TPA took a longer time to resume the typical control morphology than did cultures treated with 0.01 microgram/ml TPA. In addition, TPA treatment resulted in a decrease in cell growth rate, an increase in steroid production, and an increase in the localization of free catalytic units of cAMP-dependent protein kinase in the cytoplasm. The steroidogenic effect of ACTH on the cell population was inhibited in cultures maintained in TPA. The results of this study indicate that TPA induces morphological changes in the Y-1 adrenocortical tumor cell population while increasing steroidogenesis and the activation of cAMP-dependent protein kinase and decreasing cell growth rate.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"166-77"},"PeriodicalIF":0.0,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13987512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The arrangement and structure of renal blood vessels were studied in a marine skate with injection of silicone rubber and methacrylate resin after intravenous administration of epinephrine and perfusion fixation. The methacrylate casts were investigated with the scanning electron microscope. Histology was performed by light and transmission electron microscopy of serial sections. The course of the blood vessels is described in relation to the renal zones of lateral bundles and mesial tissue. Each nephron performs two loops in the lateral bundles and two coilings in the mesial tissue before it joins the collecting duct system. The lateral bundles contain an elaborate countercurrent arrangement of neck segment, proximal tubule segment PIa, early distal tubule segment, and collecting tubule. Within the bundles, the nephron portions are associated with a blind-ended central vessel, which is connected with the venous sinuses of the mesial tissue. The microcirculatory bed around the bundles is supplied with arterial blood via small bundle arteries that originate from the intrarenal arteries in parallel to the afferent arterioles of the glomeruli. The efferent arterioles of the glomeruli convey their blood to the peritubular sinuses of the mesial tissue, which is largely irrigated with venous blood of the renal portal system. The mesial tissue, containing the proximal tubule segments PIb and PII, intermediate segment, and late distal tubule segment LDTb, receives venous blood from the caudal vein and the lateral musculature via afferent renal and intrarenal veins and from the efferent arterioles of the glomeruli and venules of the microcirculation of the bundles. The sinuses are drained by efferent renal veins via efferent intrarenal veins. By comparing the renal structures of the skate with those of dogfish, a unique type of circulation--as related to nephron segments, renal zones, and fine structure of the wall of the vessels--is revealed in marine elasmobranchs of different evolutionary levels.
{"title":"Renal blood vascular system in the elasmobranch, Raja erinacea Mitchill, in relation to kidney zones.","authors":"H Hentschel","doi":"10.1002/aja.1001830204","DOIUrl":"https://doi.org/10.1002/aja.1001830204","url":null,"abstract":"<p><p>The arrangement and structure of renal blood vessels were studied in a marine skate with injection of silicone rubber and methacrylate resin after intravenous administration of epinephrine and perfusion fixation. The methacrylate casts were investigated with the scanning electron microscope. Histology was performed by light and transmission electron microscopy of serial sections. The course of the blood vessels is described in relation to the renal zones of lateral bundles and mesial tissue. Each nephron performs two loops in the lateral bundles and two coilings in the mesial tissue before it joins the collecting duct system. The lateral bundles contain an elaborate countercurrent arrangement of neck segment, proximal tubule segment PIa, early distal tubule segment, and collecting tubule. Within the bundles, the nephron portions are associated with a blind-ended central vessel, which is connected with the venous sinuses of the mesial tissue. The microcirculatory bed around the bundles is supplied with arterial blood via small bundle arteries that originate from the intrarenal arteries in parallel to the afferent arterioles of the glomeruli. The efferent arterioles of the glomeruli convey their blood to the peritubular sinuses of the mesial tissue, which is largely irrigated with venous blood of the renal portal system. The mesial tissue, containing the proximal tubule segments PIb and PII, intermediate segment, and late distal tubule segment LDTb, receives venous blood from the caudal vein and the lateral musculature via afferent renal and intrarenal veins and from the efferent arterioles of the glomeruli and venules of the microcirculation of the bundles. The sinuses are drained by efferent renal veins via efferent intrarenal veins. By comparing the renal structures of the skate with those of dogfish, a unique type of circulation--as related to nephron segments, renal zones, and fine structure of the wall of the vessels--is revealed in marine elasmobranchs of different evolutionary levels.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"130-47"},"PeriodicalIF":0.0,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14333089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Confusion regarding microcirculatory pathways in normal human spleen has arisen due to extrapolation from pathological material and from other mammalian spleens, not to mention difficulties in tracing intricate three-dimensional routes from the study of thin sections or cut surfaces of tissue. We examined microcirculatory pathways in normal human spleens freshly obtained from organ transplant donors. A modified corrosion casting procedure was used to obtain an open view of vessels and their connections. Our results demonstrate: 1) "arteriolar-capillary bundles" within lymphatic nodules and extensive branching of arterioles in the marginal zone (MZ); 2) the marginal sinus around lymphatic nodules; 3) the peri-marginal cavernous sinus (PMCS) outside the MZ or immediately adjacent to the nodule itself; the PMCS receives flow via ellipsoid sheaths and MZ, or directly from arterial capillaries, and drains into venous sinuses; 4) fast pathways for flow into venous sinuses via ellipsoid sheaths; 5) arterial capillary terminations in the reticular meshwork of the red pulp or MZ ("open" circulation); direct connections to venous sinuses also occur ("closed" circulation), although rarely; and 6) numerous open-ended venous sinuses in the MZ, allowing a large proportion of the splenic inflow to bypass the red cell filtration sites in the reticular meshwork and at venous sinus walls.
{"title":"Microcirculatory pathways in normal human spleen, demonstrated by scanning electron microscopy of corrosion casts.","authors":"E E Schmidt, I C MacDonald, A C Groom","doi":"10.1002/aja.1001810304","DOIUrl":"https://doi.org/10.1002/aja.1001810304","url":null,"abstract":"<p><p>Confusion regarding microcirculatory pathways in normal human spleen has arisen due to extrapolation from pathological material and from other mammalian spleens, not to mention difficulties in tracing intricate three-dimensional routes from the study of thin sections or cut surfaces of tissue. We examined microcirculatory pathways in normal human spleens freshly obtained from organ transplant donors. A modified corrosion casting procedure was used to obtain an open view of vessels and their connections. Our results demonstrate: 1) \"arteriolar-capillary bundles\" within lymphatic nodules and extensive branching of arterioles in the marginal zone (MZ); 2) the marginal sinus around lymphatic nodules; 3) the peri-marginal cavernous sinus (PMCS) outside the MZ or immediately adjacent to the nodule itself; the PMCS receives flow via ellipsoid sheaths and MZ, or directly from arterial capillaries, and drains into venous sinuses; 4) fast pathways for flow into venous sinuses via ellipsoid sheaths; 5) arterial capillary terminations in the reticular meshwork of the red pulp or MZ (\"open\" circulation); direct connections to venous sinuses also occur (\"closed\" circulation), although rarely; and 6) numerous open-ended venous sinuses in the MZ, allowing a large proportion of the splenic inflow to bypass the red cell filtration sites in the reticular meshwork and at venous sinus walls.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 3","pages":"253-66"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14491075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}