The developing anlage of the choroid plexus and supraependymal structures in the fourth ventricular roof plates of nine normal human embryos ranging from Carnegie stages 14 to 19 were investigated with scanning electron microscopy. In the human embryos at stage 18, the first semimacroscopic choroidal anlage developed in the form of bilateral evaginations that ran dorsomedially and caudally from the bilateral corners of the rhombencephalon. The anlage became evident with even smaller and parallel ridges in the embryo at stage 19. Embryos at earlier stages exhibited surface membrane modifications such as convexity, microvilli, cilia, and spherical protrusions at the middle one-third of the rhombencephalon, which corresponded to the future choroidal anlage region. Two morphologically different groups of supraependymal cells (SE cells) were elucidated throughout the stages examined. Type 1 SE cells has spindle or tear-drop-like bodies, frequently with one or more long cytoplasmic processes. Type 2 SE cells were globular, with numerous fine pseudopodial processes. Type 1 SE cells were distributed mainly at the future choroidal anlage regions or on the anlage itself and were less frequently located at the rostral end of the roof. We found no general pattern in the distribution of type 2 SE cells. Supraependymal fibers (SE fibers) were seen as fine processes that were distributed similarly to type 1 SE cells and extended transversely for a long distance.
{"title":"Development of the choroid plexus anlage and supraependymal structures in the fourth ventricular roof plate of human embryos: scanning electron microscopic observations.","authors":"H Otani, O Tanaka","doi":"10.1002/aja.1001810107","DOIUrl":"https://doi.org/10.1002/aja.1001810107","url":null,"abstract":"<p><p>The developing anlage of the choroid plexus and supraependymal structures in the fourth ventricular roof plates of nine normal human embryos ranging from Carnegie stages 14 to 19 were investigated with scanning electron microscopy. In the human embryos at stage 18, the first semimacroscopic choroidal anlage developed in the form of bilateral evaginations that ran dorsomedially and caudally from the bilateral corners of the rhombencephalon. The anlage became evident with even smaller and parallel ridges in the embryo at stage 19. Embryos at earlier stages exhibited surface membrane modifications such as convexity, microvilli, cilia, and spherical protrusions at the middle one-third of the rhombencephalon, which corresponded to the future choroidal anlage region. Two morphologically different groups of supraependymal cells (SE cells) were elucidated throughout the stages examined. Type 1 SE cells has spindle or tear-drop-like bodies, frequently with one or more long cytoplasmic processes. Type 2 SE cells were globular, with numerous fine pseudopodial processes. Type 1 SE cells were distributed mainly at the future choroidal anlage regions or on the anlage itself and were less frequently located at the rostral end of the roof. We found no general pattern in the distribution of type 2 SE cells. Supraependymal fibers (SE fibers) were seen as fine processes that were distributed similarly to type 1 SE cells and extended transversely for a long distance.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"53-66"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report here recent findings on the sperm maturation antigen SMA4, which is secreted by holocrine cells of the distal caput epididymis and binds to the flagellar surface of mouse sperm during epididymal transit. Washed sperm from the caput and corpus epididymides of mice were examined by immunofluorescence and SDS-PAGE using wheat germ agglutinin, which binds specifically to SMA4 as a primary probe. Results indicate that sperm first exhibit WGA reactivity on their flagellae in the region of the distal caput, and that the appearance of WGA receptors is due to the binding of a 54-Kd glycoprotein (SMA4) to the cell surface. Extracts of epididymis containing SMA4 were tested for their ability to bind to the surfaces of caput and corpus sperm. Caput sperm surfaces bound SMA4 in a temperature-independent manner, and binding occurred in the presence of enzyme inhibitors, suggesting a nonenzymatic process. Biochemical studies revealed that SMA4 contains disulfide bonds which stabilize it on the sperm surface and restrict its mobility. Terminal carbohydrate residues of the molecule are sialic acids. The addition of SMA4 to caput sperm flagellae prevented tail-to-tail agglutination, normally seen when caput sperm are diluted into saline; and SMA4 was able to disperse clumps of agglutinated caput sperm. The data suggest that a primary function of SMA4 is to prevent tail-to-tail agglutination of sperm during storage in the epididymis.
{"title":"Maturation antigen of the mouse sperm flagellum. I. Analysis of its secretion, association with sperm, and function.","authors":"F A Feuchter, A J Tabet, M F Green","doi":"10.1002/aja.1001810108","DOIUrl":"https://doi.org/10.1002/aja.1001810108","url":null,"abstract":"<p><p>We report here recent findings on the sperm maturation antigen SMA4, which is secreted by holocrine cells of the distal caput epididymis and binds to the flagellar surface of mouse sperm during epididymal transit. Washed sperm from the caput and corpus epididymides of mice were examined by immunofluorescence and SDS-PAGE using wheat germ agglutinin, which binds specifically to SMA4 as a primary probe. Results indicate that sperm first exhibit WGA reactivity on their flagellae in the region of the distal caput, and that the appearance of WGA receptors is due to the binding of a 54-Kd glycoprotein (SMA4) to the cell surface. Extracts of epididymis containing SMA4 were tested for their ability to bind to the surfaces of caput and corpus sperm. Caput sperm surfaces bound SMA4 in a temperature-independent manner, and binding occurred in the presence of enzyme inhibitors, suggesting a nonenzymatic process. Biochemical studies revealed that SMA4 contains disulfide bonds which stabilize it on the sperm surface and restrict its mobility. Terminal carbohydrate residues of the molecule are sialic acids. The addition of SMA4 to caput sperm flagellae prevented tail-to-tail agglutination, normally seen when caput sperm are diluted into saline; and SMA4 was able to disperse clumps of agglutinated caput sperm. The data suggest that a primary function of SMA4 is to prevent tail-to-tail agglutination of sperm during storage in the epididymis.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"67-76"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14407066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study reports on the fine structure of human costal cartilage at different ages in order to obtain information on the morphogenesis of amianthoid fibers. Our results reveal an overall increase of collagen fibril diameter with increasing age, even in areas with no signs of amianthoid transformation. Ultrastructural evidence is presented that this increase in diameter is due to a gathering of the preexisting collagen fibrils. The age-related change in collagen fibril diameter is paralleled by changes in the composition and ultrastructural appearance of cartilage proteoglycans (as revealed by acridine orange staining). Acridine-orange-positive filaments indicative for proteoglycans are markedly reduced in size with advancing age in centrally located regions of costal cartilage. Treatment with testicular hyaluronidase previous to acridine-orange staining leaves these small proteoglycan filaments unaffected. By contrast, the filaments visible after acridine-orange staining in the extracellular matrix near to the perichondrium are susceptible to hyaluronidase treatment. Infrequently, a sharp increase in collagen fibril diameter can be observed in territorial matrix areas of degenerating chondrocytes. This observation is conspicuous at ages of 10 and 20 years. Amianthoid transformation is characterized by the appearance of collagen fibrils strictly arranged in parallel. These amianthoid fibers are embedded in a matrix rich in small acridine-orange-positive filaments similar to the proteoglycan filaments observed in centrally located matrix regions. It can be concluded that extensive remodelling not only of the collagen fibrils but also of the cartilage proteoglycans is involved in the development of amianthoid transformation.
{"title":"Amianthoid (asbestoid) transformation: electron microscopical studies on aging human costal cartilage.","authors":"R Mallinger, L Stockinger","doi":"10.1002/aja.1001810104","DOIUrl":"https://doi.org/10.1002/aja.1001810104","url":null,"abstract":"<p><p>The present study reports on the fine structure of human costal cartilage at different ages in order to obtain information on the morphogenesis of amianthoid fibers. Our results reveal an overall increase of collagen fibril diameter with increasing age, even in areas with no signs of amianthoid transformation. Ultrastructural evidence is presented that this increase in diameter is due to a gathering of the preexisting collagen fibrils. The age-related change in collagen fibril diameter is paralleled by changes in the composition and ultrastructural appearance of cartilage proteoglycans (as revealed by acridine orange staining). Acridine-orange-positive filaments indicative for proteoglycans are markedly reduced in size with advancing age in centrally located regions of costal cartilage. Treatment with testicular hyaluronidase previous to acridine-orange staining leaves these small proteoglycan filaments unaffected. By contrast, the filaments visible after acridine-orange staining in the extracellular matrix near to the perichondrium are susceptible to hyaluronidase treatment. Infrequently, a sharp increase in collagen fibril diameter can be observed in territorial matrix areas of degenerating chondrocytes. This observation is conspicuous at ages of 10 and 20 years. Amianthoid transformation is characterized by the appearance of collagen fibrils strictly arranged in parallel. These amianthoid fibers are embedded in a matrix rich in small acridine-orange-positive filaments similar to the proteoglycan filaments observed in centrally located matrix regions. It can be concluded that extensive remodelling not only of the collagen fibrils but also of the cartilage proteoglycans is involved in the development of amianthoid transformation.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"23-32"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Components of the testis and cytoplasmic organelles in Leydig cells were quantified with morphometric techniques in hamster, rat, and guinea pig. Testosterone secretory capacity per gram of testis and per Leydig cell in response to luteinizing hormone (LH) (100 ng/ml) stimulation was determined in these three species from testes perfused in vitro. Numerous correlations were measured among structures, and between structures and testosterone secretion, to provide structural evidence of intratesticular control of Leydig cell function. Testosterone secretion per gm testis and per Leydig cell was significantly different in the three species: highest in the guinea pig, intermediate in the rat, and lowest in the hamster. The volume of seminiferous tubules per gm testis was negatively correlated, and the volumes of interstitium, Leydig cells, and lymphatic space per gm testis were positively correlated with testosterone secretion. No correlations were observed between volumes of blood vessels, elongated spindleshaped cells, or macrophages per gm testes and testosterone secretion. The average volume of a Leydig cell and the volume and surface area of smooth endoplasmic reticulum (SER) and peroxisomes per Leydig cell were positively correlated, and the volume of lysosomes and surface area of inner mitochondrial membrane per Leydig cell were negatively correlated with testosterone secretion. No correlations were observed between volume and surface area of rough endoplasmic reticulum (RER), Golgi apparatus, and lipid, and volume of ribosomes, cytoplasmic matrix, and the nucleus with testosterone secretion per Leydig cell. These results suggest that Leydig cell size is more important than number of Leydig cells in explaining the difference in testosterone-secreting capacity among the three species, and that this increase in average volume of a Leydig cell is associated specifically with increased volume and surface area of SER and peroxisomes. An important unresolved question is what is the role of peroxisomes in Leydig cell steroidogenesis.
{"title":"Comparison of components of the testis interstitium with testosterone secretion in hamster, rat, and guinea pig testes perfused in vitro.","authors":"S M Mendis-Handagama, B R Zirkin, L L Ewing","doi":"10.1002/aja.1001810103","DOIUrl":"https://doi.org/10.1002/aja.1001810103","url":null,"abstract":"<p><p>Components of the testis and cytoplasmic organelles in Leydig cells were quantified with morphometric techniques in hamster, rat, and guinea pig. Testosterone secretory capacity per gram of testis and per Leydig cell in response to luteinizing hormone (LH) (100 ng/ml) stimulation was determined in these three species from testes perfused in vitro. Numerous correlations were measured among structures, and between structures and testosterone secretion, to provide structural evidence of intratesticular control of Leydig cell function. Testosterone secretion per gm testis and per Leydig cell was significantly different in the three species: highest in the guinea pig, intermediate in the rat, and lowest in the hamster. The volume of seminiferous tubules per gm testis was negatively correlated, and the volumes of interstitium, Leydig cells, and lymphatic space per gm testis were positively correlated with testosterone secretion. No correlations were observed between volumes of blood vessels, elongated spindleshaped cells, or macrophages per gm testes and testosterone secretion. The average volume of a Leydig cell and the volume and surface area of smooth endoplasmic reticulum (SER) and peroxisomes per Leydig cell were positively correlated, and the volume of lysosomes and surface area of inner mitochondrial membrane per Leydig cell were negatively correlated with testosterone secretion. No correlations were observed between volume and surface area of rough endoplasmic reticulum (RER), Golgi apparatus, and lipid, and volume of ribosomes, cytoplasmic matrix, and the nucleus with testosterone secretion per Leydig cell. These results suggest that Leydig cell size is more important than number of Leydig cells in explaining the difference in testosterone-secreting capacity among the three species, and that this increase in average volume of a Leydig cell is associated specifically with increased volume and surface area of SER and peroxisomes. An important unresolved question is what is the role of peroxisomes in Leydig cell steroidogenesis.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"181 1","pages":"12-22"},"PeriodicalIF":0.0,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001810103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14474485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A morphological evaluation of intercellular bridges was undertaken during rat spermatogenesis. The dimensions and relationships of the bridges were shown to vary during different phases of spermatogenesis. Cellular divisions of spermatogonia and spermatocytes resulted in the partitioning of pre-existing bridges by complex structures termed bridge partitioning complexes, which are described in detail, as is the process whereby new bridges are formed. The structure of premeiotic bridges was generally consistent; however, during spermiogenesis, the structure of bridges and bridge contents were modified at specific phases of their development. The plasma membrane density associated with the cytoplasmic aspect of early step 1 spermatids separated into multiple dense bands that encircled the peripheral aspect of late step 1 spermatid bridges. By step 2 of spermiogenesis, these dense bands became associated with several cisternae of endoplasmic reticulum, which later coalesced into a single saccule that completely encircled the bridge structure by step 4. At steps 10-13 of spermiogenesis, the single saccule of endoplasmic reticulum vesiculated into many smaller cisternae. Also, filament-bounded densities (measuring 10-12 nm in diameter) appeared within the bridge channel. At step 17 of spermiogenesis, the filament-bounded densities were no longer apparent, but an anastomosing network of endoplasmic reticulum, often in the configuration of a sphere, occupied the entire central region of the bridge. In step 19 spermatids, the smooth endoplasmic reticulum within the bridge channel and the multiple cisternae lining the bridge density were gradually displaced. The subsurface density of bridges gradually lost its prominence. Some cytoplasmic lobes were connected by extremely narrow (approximately 22 nm) cytoplasmic channels. Similar-appearing channels were seen on the surface zone of cytoplasmic lobes or residual bodies, this observation suggesting that channels were sites of severence of bridges. Just prior to the separation or disengagement of the spermatid from the cytoplasmic lobe, selected bridges appeared to open to form large masses. After spermiation, residual bodies were not found joined by bridges; but from the size of some of the residual bodies, it was suspected that they were formed by coalescence of more than one cytoplasmic lobe. Freeze-fracture demonstrated few intramembranous particles on either the P or E face of the plasma membrane forming the bridge; this finding suggested bridge structures restricted free lateral movement of membrane constituents across the bridge.(ABSTRACT TRUNCATED AT 400 WORDS)
{"title":"A study of intercellular bridges during spermatogenesis in the rat.","authors":"J E Weber, L D Russell","doi":"10.1002/aja.1001800102","DOIUrl":"https://doi.org/10.1002/aja.1001800102","url":null,"abstract":"<p><p>A morphological evaluation of intercellular bridges was undertaken during rat spermatogenesis. The dimensions and relationships of the bridges were shown to vary during different phases of spermatogenesis. Cellular divisions of spermatogonia and spermatocytes resulted in the partitioning of pre-existing bridges by complex structures termed bridge partitioning complexes, which are described in detail, as is the process whereby new bridges are formed. The structure of premeiotic bridges was generally consistent; however, during spermiogenesis, the structure of bridges and bridge contents were modified at specific phases of their development. The plasma membrane density associated with the cytoplasmic aspect of early step 1 spermatids separated into multiple dense bands that encircled the peripheral aspect of late step 1 spermatid bridges. By step 2 of spermiogenesis, these dense bands became associated with several cisternae of endoplasmic reticulum, which later coalesced into a single saccule that completely encircled the bridge structure by step 4. At steps 10-13 of spermiogenesis, the single saccule of endoplasmic reticulum vesiculated into many smaller cisternae. Also, filament-bounded densities (measuring 10-12 nm in diameter) appeared within the bridge channel. At step 17 of spermiogenesis, the filament-bounded densities were no longer apparent, but an anastomosing network of endoplasmic reticulum, often in the configuration of a sphere, occupied the entire central region of the bridge. In step 19 spermatids, the smooth endoplasmic reticulum within the bridge channel and the multiple cisternae lining the bridge density were gradually displaced. The subsurface density of bridges gradually lost its prominence. Some cytoplasmic lobes were connected by extremely narrow (approximately 22 nm) cytoplasmic channels. Similar-appearing channels were seen on the surface zone of cytoplasmic lobes or residual bodies, this observation suggesting that channels were sites of severence of bridges. Just prior to the separation or disengagement of the spermatid from the cytoplasmic lobe, selected bridges appeared to open to form large masses. After spermiation, residual bodies were not found joined by bridges; but from the size of some of the residual bodies, it was suspected that they were formed by coalescence of more than one cytoplasmic lobe. Freeze-fracture demonstrated few intramembranous particles on either the P or E face of the plasma membrane forming the bridge; this finding suggested bridge structures restricted free lateral movement of membrane constituents across the bridge.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"180 1","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001800102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14781839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filaments about 6-7 nm in diameter were seen associated with germ cell intercellular bridges in detergent-permeabilized cells treated with tannic acid. Approximately 40-50 filaments were present subjacent to the bridge density. Filaments encircled the bridge channel in a manner similar to contractile ring actin filaments of dividing cells. NBD-phallacidin and myosin S-1 subfragments were employed to demonstrate that the filaments observed at intercellular bridges are actin. Intratesticular injection of a single dose of cytochalasin D, a specific inhibitor of actin filaments, caused certain intercellular bridges of spermatids to open within 3 hr after injection, leading to the production of symplasts. During bridge opening, remnants of bridge densities were gradually incorporated into the lateral aspect of the plasma membrane of the symplast. Thus actin, present in bridge structures, appeared to participate in maintaining certain intercellular bridges. A model of intercellular bridge structure is presented.
{"title":"Actin localization in male germ cell intercellular bridges in the rat and ground squirrel and disruption of bridges by cytochalasin D.","authors":"L D Russell, A W Vogl, J E Weber","doi":"10.1002/aja.1001800103","DOIUrl":"https://doi.org/10.1002/aja.1001800103","url":null,"abstract":"<p><p>Filaments about 6-7 nm in diameter were seen associated with germ cell intercellular bridges in detergent-permeabilized cells treated with tannic acid. Approximately 40-50 filaments were present subjacent to the bridge density. Filaments encircled the bridge channel in a manner similar to contractile ring actin filaments of dividing cells. NBD-phallacidin and myosin S-1 subfragments were employed to demonstrate that the filaments observed at intercellular bridges are actin. Intratesticular injection of a single dose of cytochalasin D, a specific inhibitor of actin filaments, caused certain intercellular bridges of spermatids to open within 3 hr after injection, leading to the production of symplasts. During bridge opening, remnants of bridge densities were gradually incorporated into the lateral aspect of the plasma membrane of the symplast. Thus actin, present in bridge structures, appeared to participate in maintaining certain intercellular bridges. A model of intercellular bridge structure is presented.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"180 1","pages":"25-40"},"PeriodicalIF":0.0,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001800103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14437271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.
{"title":"Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development.","authors":"R O'Rahilly, F Müller, G M Hutchins, G W Moore","doi":"10.1002/aja.1001800106","DOIUrl":"https://doi.org/10.1002/aja.1001800106","url":null,"abstract":"<p><p>The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"180 1","pages":"69-86"},"PeriodicalIF":0.0,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001800106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14781842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leydig cell ultrastructure and function in diabetic rats were studied by concurrent cytochemistry, morphometry, and testosterone assay. The streptozotocin (Stz) model was modified to include nondiabetic Stz-injected rats, an insulin-treated diabetic group, and semistarved animals in addition to controls and untreated diabetic rats. The separation of the effects of diabetes, Stz, semistarvation, and insulin treatments was achieved by application of orthogonal contrast statistics. After 3 months of treatments, testes were perfusion-fixed, incubated for delta 5,3 beta-hydroxysteroid dehydrogenase (HSD) activity, and processed for electron microscopy. Diabetes increased Leydig cell smooth endoplasmic reticulum (SER), increased mitochondrial and lipid content, decreased HSD staining, and decreased serum testosterone levels. Insulin treatment reduced SER and increased testosterone concentrations. Semistarvation also increased SER and reduced testosterone levels but did not alter HSD staining. Stz had no significant effect on these variables. The results suggested that the hypoandrogen state was due to a primary Leydig cell compromise and not solely to malnutrition and that it was correctable by insulin treatment.
{"title":"Morphometry and cytochemistry of Leydig cells in experimental diabetes.","authors":"J E Anderson, J A Thliveris","doi":"10.1002/aja.1001800104","DOIUrl":"https://doi.org/10.1002/aja.1001800104","url":null,"abstract":"<p><p>Leydig cell ultrastructure and function in diabetic rats were studied by concurrent cytochemistry, morphometry, and testosterone assay. The streptozotocin (Stz) model was modified to include nondiabetic Stz-injected rats, an insulin-treated diabetic group, and semistarved animals in addition to controls and untreated diabetic rats. The separation of the effects of diabetes, Stz, semistarvation, and insulin treatments was achieved by application of orthogonal contrast statistics. After 3 months of treatments, testes were perfusion-fixed, incubated for delta 5,3 beta-hydroxysteroid dehydrogenase (HSD) activity, and processed for electron microscopy. Diabetes increased Leydig cell smooth endoplasmic reticulum (SER), increased mitochondrial and lipid content, decreased HSD staining, and decreased serum testosterone levels. Insulin treatment reduced SER and increased testosterone concentrations. Semistarvation also increased SER and reduced testosterone levels but did not alter HSD staining. Stz had no significant effect on these variables. The results suggested that the hypoandrogen state was due to a primary Leydig cell compromise and not solely to malnutrition and that it was correctable by insulin treatment.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"180 1","pages":"41-8"},"PeriodicalIF":0.0,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001800104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14437272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M C Orgebin-Crist, L H Hoffman, G E Olson, M D Skudlarek
Protein synthesis in epididymal tissue of intact and castrated rabbits was studied after incubation of epididymal minces with [35S]-cysteine or [35S]-methionine and protein separation by two-dimensional gel electrophoresis. Regional differences in the pattern of protein synthesized were observed. Castration did not change overall protein synthesis, but it reduced these regional differences. The presence of 5 alpha-DHT in the culture medium of the proximal corpus epididymidis perfused for 24 hr did not increase overall protein synthesis in tubules from intact or castrated rabbits and did not reinitiate synthesis of the proteins that had disappeared after castration. The kinetics of glycoprotein synthesis and secretion were studied by light and electron microscopy autoradiography at 0.5, 2, 6, and 24 hr after exposure to [3H]-mannose, [3H]-fucose, and [3H]-glucosamine. Changes in the distribution of mannose- and glucosamine-labeled material indicated that the decline in grain density over the epithelium from 30 min to 24 hr coincided with an increasing reaction over the stereocilia border from 30 min to 2 hr and in the lumen from 2 to 24 hr. The distribution of fucose-labeled material indicated that the grain reaction over the epithelium declined more rapidly than with the mannose label. When the glucosamine-labeled sperm mass was released from the tubules, the labeled material was lost after the first washing, indicating that the glucosamine-labeled glycoproteins did not bind firmly to corpus spermatozoa within 24 hr. After castration, both mannose- and fucose-labeled materials migrated to the cell apex more rapidly than in the intact animal, but they were not released as readily into the lumen. The culture of epididymal tubules from castrated males with 5 alpha-DHT for 24 hr did not promote the release of either mannose- or fucose-labeled material into the lumen. However, testosterone given in vivo for 2 weeks restored secretion of mannose-labeled material into the lumen.
{"title":"Secretion of proteins and glycoproteins by perifused rabbit corpus epididymal tubules: effect of castration.","authors":"M C Orgebin-Crist, L H Hoffman, G E Olson, M D Skudlarek","doi":"10.1002/aja.1001800105","DOIUrl":"https://doi.org/10.1002/aja.1001800105","url":null,"abstract":"<p><p>Protein synthesis in epididymal tissue of intact and castrated rabbits was studied after incubation of epididymal minces with [35S]-cysteine or [35S]-methionine and protein separation by two-dimensional gel electrophoresis. Regional differences in the pattern of protein synthesized were observed. Castration did not change overall protein synthesis, but it reduced these regional differences. The presence of 5 alpha-DHT in the culture medium of the proximal corpus epididymidis perfused for 24 hr did not increase overall protein synthesis in tubules from intact or castrated rabbits and did not reinitiate synthesis of the proteins that had disappeared after castration. The kinetics of glycoprotein synthesis and secretion were studied by light and electron microscopy autoradiography at 0.5, 2, 6, and 24 hr after exposure to [3H]-mannose, [3H]-fucose, and [3H]-glucosamine. Changes in the distribution of mannose- and glucosamine-labeled material indicated that the decline in grain density over the epithelium from 30 min to 24 hr coincided with an increasing reaction over the stereocilia border from 30 min to 2 hr and in the lumen from 2 to 24 hr. The distribution of fucose-labeled material indicated that the grain reaction over the epithelium declined more rapidly than with the mannose label. When the glucosamine-labeled sperm mass was released from the tubules, the labeled material was lost after the first washing, indicating that the glucosamine-labeled glycoproteins did not bind firmly to corpus spermatozoa within 24 hr. After castration, both mannose- and fucose-labeled materials migrated to the cell apex more rapidly than in the intact animal, but they were not released as readily into the lumen. The culture of epididymal tubules from castrated males with 5 alpha-DHT for 24 hr did not promote the release of either mannose- or fucose-labeled material into the lumen. However, testosterone given in vivo for 2 weeks restored secretion of mannose-labeled material into the lumen.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"180 1","pages":"49-68"},"PeriodicalIF":0.0,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001800105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14781841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D B Spagnoli, R G Frederickson, R L Robinson, S W Carmichael
The ultrastructure of the opossum adrenal medulla was examined in its postnatal development. Maturation of chromaffin cells and genesis of chromaffin vesicles were of particular interest. The primitive sympathetic cell was seen to contain few organelles with no apparent polarity. Initial pheochromoblasts contained more organelles with some polarity. Endoplasmic reticulum and the Golgi complex increased as the pheochromoblasts matured, which suggested increased synthetic activity. Structures resembling Golgi/endoplasmic reticulum/lysosome (GERL) systems were seen in the pheochromoblasts. It is suggested that some of the components of the chromaffin vesicle may be processed by the GERL while others come directly through the Golgi complex. It is stressed that the developing pheochromoblast in the opossum presents an interesting model in which to study the genesis of the chromaffin vesicle.
{"title":"Opossum adrenal medulla: II. Differentiation of the chromaffin cell.","authors":"D B Spagnoli, R G Frederickson, R L Robinson, S W Carmichael","doi":"10.1002/aja.1001790304","DOIUrl":"https://doi.org/10.1002/aja.1001790304","url":null,"abstract":"<p><p>The ultrastructure of the opossum adrenal medulla was examined in its postnatal development. Maturation of chromaffin cells and genesis of chromaffin vesicles were of particular interest. The primitive sympathetic cell was seen to contain few organelles with no apparent polarity. Initial pheochromoblasts contained more organelles with some polarity. Endoplasmic reticulum and the Golgi complex increased as the pheochromoblasts matured, which suggested increased synthetic activity. Structures resembling Golgi/endoplasmic reticulum/lysosome (GERL) systems were seen in the pheochromoblasts. It is suggested that some of the components of the chromaffin vesicle may be processed by the GERL while others come directly through the Golgi complex. It is stressed that the developing pheochromoblast in the opossum presents an interesting model in which to study the genesis of the chromaffin vesicle.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"179 3","pages":"220-31"},"PeriodicalIF":0.0,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001790304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14751671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}