Pub Date : 2024-09-19DOI: 10.1016/j.aim.2024.109950
Yu Min , Yupeng Wang
Let be a smooth p-adic formal scheme over with rigid generic fiber X. In this paper, we construct a new integral period sheaf on and use it to establish an integral p-adic Simpson correspondence for small -representations on and small Higgs bundles on , which recovers rational p-adic Simpson correspondence for small coefficients after inverting p (at least in the good reduction case). Moreover, for a small -representation with induced Higgs bundle , we provide a natural morphism with a bounded -torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small -representations.
{"title":"Integral p-adic non-abelian Hodge theory for small representations","authors":"Yu Min , Yupeng Wang","doi":"10.1016/j.aim.2024.109950","DOIUrl":"10.1016/j.aim.2024.109950","url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> be a smooth <em>p</em>-adic formal scheme over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> with rigid generic fiber <em>X</em>. In this paper, we construct a new integral period sheaf <span><math><mi>O</mi><msubsup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>pd</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and use it to establish an integral <em>p</em>-adic Simpson correspondence for small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and small Higgs bundles on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span>, which recovers rational <em>p</em>-adic Simpson correspondence for small coefficients after inverting <em>p</em> (at least in the good reduction case). Moreover, for a small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representation <span><math><mi>L</mi></math></span> with induced Higgs bundle <span><math><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></math></span>, we provide a natural morphism <span><math><mrow><mi>HIG</mi></mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>R</mi><msub><mrow><mi>ν</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mi>L</mi></math></span> with a bounded <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.aim.2024.109951
Aaron Mazel-Gee
Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).
{"title":"Goerss–Hopkins obstruction theory for ∞-categories","authors":"Aaron Mazel-Gee","doi":"10.1016/j.aim.2024.109951","DOIUrl":"10.1016/j.aim.2024.109951","url":null,"abstract":"<div><p>Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><p>In this paper, we establish a class of isoperimetric inequalities on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See <span><span>Theorem 1.1</span></span>.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span> and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:<span><span><span><math><munder><mi>sup</mi><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mn>1</mn></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo></math></span></span></span> for any <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a smooth and bounded domain containing the origin, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></math></span>. Here <em>F</em> is a convex function, which is even and positively homogeneous of degree 1, and its polar <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup></math></span> represents a Finsler metric on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Lebesgue measure of the unit Wulff ball.</p><p>The presence of the weight in <span><span>Theorem 1.1</span></span> adds significant difficulties because
{"title":"Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities","authors":"Guozhen Lu , Yansheng Shen , Jianwei Xue , Maochun Zhu","doi":"10.1016/j.aim.2024.109949","DOIUrl":"10.1016/j.aim.2024.109949","url":null,"abstract":"<div><p>In this paper, we establish a class of isoperimetric inequalities on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See <span><span>Theorem 1.1</span></span>.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span> and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:<span><span><span><math><munder><mi>sup</mi><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mn>1</mn></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo></math></span></span></span> for any <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a smooth and bounded domain containing the origin, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></math></span>. Here <em>F</em> is a convex function, which is even and positively homogeneous of degree 1, and its polar <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup></math></span> represents a Finsler metric on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Lebesgue measure of the unit Wulff ball.</p><p>The presence of the weight in <span><span>Theorem 1.1</span></span> adds significant difficulties because","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.aim.2024.109945
Erik Carlsson, Raymond Chou
We assign to each Young diagram λ a subset of the collection of Garsia-Stanton descent monomials, and prove that it determines a basis of the Garsia-Procesi module , whose graded character is the Hall-Littlewood polynomial [14], [10], [29]. This basis is a major index analogue of the basis defined by certain recursions, in the same way that the descent basis is related to the Artin basis of the coinvariant algebra , which in fact corresponds to the case when . By anti-symmetrizing a subset of this basis with respect to the corresponding Young subgroup under the Springer action, we obtain a basis in the parabolic case, as well as a corresponding formula for the expansion of . Despite a similar appearance, it does not appear obvious how to connect the formulas appear to the specialization of the modified Macdonald formula of Haglund, Haiman and Loehr at .
{"title":"A descent basis for the Garsia-Procesi module","authors":"Erik Carlsson, Raymond Chou","doi":"10.1016/j.aim.2024.109945","DOIUrl":"10.1016/j.aim.2024.109945","url":null,"abstract":"<div><p>We assign to each Young diagram <em>λ</em> a subset <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mi>maj</mi></mrow></msubsup></math></span> of the collection of Garsia-Stanton descent monomials, and prove that it determines a basis of the Garsia-Procesi module <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>, whose graded character is the Hall-Littlewood polynomial <span><math><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>;</mo><mi>t</mi><mo>]</mo></math></span> <span><span>[14]</span></span>, <span><span>[10]</span></span>, <span><span>[29]</span></span>. This basis is a major index analogue of the basis <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>⊂</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined by certain recursions, in the same way that the descent basis is related to the Artin basis of the coinvariant algebra <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which in fact corresponds to the case when <span><math><mi>λ</mi><mo>=</mo><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>. By anti-symmetrizing a subset of this basis with respect to the corresponding Young subgroup under the Springer action, we obtain a basis in the parabolic case, as well as a corresponding formula for the expansion of <span><math><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>;</mo><mi>t</mi><mo>]</mo></math></span>. Despite a similar appearance, it does not appear obvious how to connect the formulas appear to the specialization of the modified Macdonald formula of Haglund, Haiman and Loehr at <span><math><mi>q</mi><mo>=</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.aim.2024.109948
Andrej Zlatoš
We show that long time solution dynamic for general reaction-advection-diffusion equations with KPP reactions is virtually linear in the following sense. Its leading order depends on the non-linear reaction only through its linearization at , and it can also be recovered for general initial data by instead solving the PDE for restrictions of the initial condition to unit cubes on (the latter means that non-linear interaction of these restricted solutions has only lower order effects on the overall solution dynamic). The result holds under a uniform bound on the advection coefficient, which we show to be sharp. We also extend it to models with non-local diffusion and KPP reactions.
{"title":"Virtual linearity for KPP reaction-diffusion equations","authors":"Andrej Zlatoš","doi":"10.1016/j.aim.2024.109948","DOIUrl":"10.1016/j.aim.2024.109948","url":null,"abstract":"<div><p>We show that long time solution dynamic for general reaction-advection-diffusion equations with KPP reactions is virtually linear in the following sense. Its leading order depends on the non-linear reaction only through its linearization at <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span>, and it can also be recovered for general initial data by instead solving the PDE for restrictions of the initial condition to unit cubes on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (the latter means that non-linear interaction of these restricted solutions has only lower order effects on the overall solution dynamic). The result holds under a uniform bound on the advection coefficient, which we show to be sharp. We also extend it to models with non-local diffusion and KPP reactions.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1016/j.aim.2024.109939
Cristina Benea , Frédéric Bernicot , Victor Lie , Marco Vitturi
<div><p>In this paper we introduce the class of bilinear Hilbert-Carleson operators <span><math><msub><mrow><mo>{</mo><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></msub></math></span> defined by<span><span><span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></munder><mo></mo><mo>|</mo><mo>∫</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>t</mi><mo>)</mo><mspace></mspace><mi>g</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>t</mi><mo>)</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></mrow></msup><mspace></mspace><mfrac><mrow><mi>d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>|</mo></math></span></span></span> and show that in the non-resonant case <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∖</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> the operator <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> extends continuously from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> into <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> whenever <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo><</mo><mi>r</mi><mo><</mo><mo>∞</mo></math></span>.</p><p>A key novel feature of these operators is that – in the non-resonant case – <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> has a <em>hybrid</em> nature enjoying both</p><ul><li><span>(I)</span><span><p><em>zero curvature</em> features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and</p></span></li><li><span>(II)</span><span><p><em>non-zero curvature</em> features arising from the Carleson-type operator with nonlinear phase <span><math><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul> In order to simultaneously control these two competing facets of our operator we develop a <em>two-resolution approach</em>:<ul><li><span>•</span><span><p>A <em>low resolution, multi-scale an
{"title":"The non-resonant bilinear Hilbert-Carleson operator","authors":"Cristina Benea , Frédéric Bernicot , Victor Lie , Marco Vitturi","doi":"10.1016/j.aim.2024.109939","DOIUrl":"10.1016/j.aim.2024.109939","url":null,"abstract":"<div><p>In this paper we introduce the class of bilinear Hilbert-Carleson operators <span><math><msub><mrow><mo>{</mo><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></msub></math></span> defined by<span><span><span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></munder><mo></mo><mo>|</mo><mo>∫</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>t</mi><mo>)</mo><mspace></mspace><mi>g</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>t</mi><mo>)</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></mrow></msup><mspace></mspace><mfrac><mrow><mi>d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>|</mo></math></span></span></span> and show that in the non-resonant case <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∖</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> the operator <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> extends continuously from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> into <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> whenever <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo><</mo><mi>r</mi><mo><</mo><mo>∞</mo></math></span>.</p><p>A key novel feature of these operators is that – in the non-resonant case – <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> has a <em>hybrid</em> nature enjoying both</p><ul><li><span>(I)</span><span><p><em>zero curvature</em> features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and</p></span></li><li><span>(II)</span><span><p><em>non-zero curvature</em> features arising from the Carleson-type operator with nonlinear phase <span><math><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul> In order to simultaneously control these two competing facets of our operator we develop a <em>two-resolution approach</em>:<ul><li><span>•</span><span><p>A <em>low resolution, multi-scale an","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.aim.2024.109933
Zoltán Léka , Miklós Pálfia
Sturm's strong law of large numbers in spaces and in the Thompson metric space of positive invertible operators is not only an important theoretical generalization of the classical strong law but also serves as a root-finding algorithm in the spirit of a proximal point method with splitting. It provides an easily computable stochastic approximation based on inductive means. The purpose of this paper is to extend Sturm's strong law and its deterministic counterpart, known as the “nodice” version, to unique solutions of nonlinear operator equations that generate exponentially contracting ODE flows in the Thompson metric. This includes a broad family of so-called generalized (Karcher) operator means introduced by Pálfia in 2016. The setting of the paper also covers the framework of order-preserving flows on Thompson metric spaces, as investigated by Gaubert and Qu in 2014, and provides a generally applicable resolvent theory for this setting.
{"title":"Strong law of large numbers for generalized operator means","authors":"Zoltán Léka , Miklós Pálfia","doi":"10.1016/j.aim.2024.109933","DOIUrl":"10.1016/j.aim.2024.109933","url":null,"abstract":"<div><p>Sturm's strong law of large numbers in <span><math><mrow><mi>CAT</mi></mrow><mo>(</mo><mn>0</mn><mo>)</mo></math></span> spaces and in the Thompson metric space of positive invertible operators is not only an important theoretical generalization of the classical strong law but also serves as a root-finding algorithm in the spirit of a proximal point method with splitting. It provides an easily computable stochastic approximation based on inductive means. The purpose of this paper is to extend Sturm's strong law and its deterministic counterpart, known as the “nodice” version, to unique solutions of nonlinear operator equations that generate exponentially contracting ODE flows in the Thompson metric. This includes a broad family of so-called generalized (Karcher) operator means introduced by Pálfia in 2016. The setting of the paper also covers the framework of order-preserving flows on Thompson metric spaces, as investigated by Gaubert and Qu in 2014, and provides a generally applicable resolvent theory for this setting.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004481/pdfft?md5=d3a3a3dd73c6f07b12612b0683cffa2d&pid=1-s2.0-S0001870824004481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.aim.2024.109934
Qiang Sun, Ge Xiong
The mixed volume measure of compact convex sets in is the localization of the classic Minkowski mixed volume and is one of the generalizations of the important cone-volume measure. When are zonotopes and is a convex body or are zonoids in , the subspace concentration of is proved. As applications, a subspace concentration phenomenon for quermassintegrals is revealed and a sharp affine isoperimetric inequality for the Minkowski mixed volume is established.
{"title":"Subspace concentration of zonoids and a sharp Minkowski mixed volume inequality","authors":"Qiang Sun, Ge Xiong","doi":"10.1016/j.aim.2024.109934","DOIUrl":"10.1016/j.aim.2024.109934","url":null,"abstract":"<div><p>The mixed volume measure <span><math><msub><mrow><mi>V</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></math></span> of compact convex sets <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is the localization of the classic Minkowski mixed volume <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and is one of the generalizations of the important cone-volume measure. When <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> are zonotopes and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a convex body or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are zonoids in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, the subspace concentration of <span><math><msub><mrow><mi>V</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></math></span> is proved. As applications, a subspace concentration phenomenon for quermassintegrals is revealed and a sharp affine isoperimetric inequality for the Minkowski mixed volume is established.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.aim.2024.109932
Somnath Ghosh , Debkumar Giri
<div><p>In this article, we study the weak-star density of the linear span of the trigonometric functions<span><span><span><math><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mo>(</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mi>y</mi><mo>)</mo></mrow></msup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo><</mo><mi>β</mi><mo>></mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mi>β</mi><mo>(</mo><mi>m</mi><mo>/</mo><mi>x</mi><mo>+</mo><mi>n</mi><mo>/</mo><mi>y</mi><mo>)</mo></mrow></msup><mo>;</mo><mspace></mspace></mrow><mspace></mspace><mrow><mspace></mspace><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span></span></span> for a positive real <em>β</em>. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) <span><span>[18]</span></span> and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) <span><span>[8]</span></span> in the plane. They have extensively studied the weak-star completeness of the <em>hyperbolic trigonometric system</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).</p><p>As in their work, <span><math><mi>β</mi><mo>=</mo><mn>1</mn></math></span> turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> of the set <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∪</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and the corresponding pre-annihilator space has finite dimension whenever <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>. However, for <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>, the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span>. To be precise, let <span><math><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo
{"title":"Density of exponentials and Perron-Frobenius operators","authors":"Somnath Ghosh , Debkumar Giri","doi":"10.1016/j.aim.2024.109932","DOIUrl":"10.1016/j.aim.2024.109932","url":null,"abstract":"<div><p>In this article, we study the weak-star density of the linear span of the trigonometric functions<span><span><span><math><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mo>(</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mi>y</mi><mo>)</mo></mrow></msup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo><</mo><mi>β</mi><mo>></mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mi>β</mi><mo>(</mo><mi>m</mi><mo>/</mo><mi>x</mi><mo>+</mo><mi>n</mi><mo>/</mo><mi>y</mi><mo>)</mo></mrow></msup><mo>;</mo><mspace></mspace></mrow><mspace></mspace><mrow><mspace></mspace><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span></span></span> for a positive real <em>β</em>. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) <span><span>[18]</span></span> and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) <span><span>[8]</span></span> in the plane. They have extensively studied the weak-star completeness of the <em>hyperbolic trigonometric system</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).</p><p>As in their work, <span><math><mi>β</mi><mo>=</mo><mn>1</mn></math></span> turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> of the set <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∪</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and the corresponding pre-annihilator space has finite dimension whenever <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>. However, for <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>, the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span>. To be precise, let <span><math><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.aim.2024.109947
Guowei Yu
For n-body problem with arbitrary positive masses, we prove there are regularizable collinear periodic solutions for any ordering of the masses, going from a simultaneous binary collision to another in half of a period with half of the masses moving monotonically to the right and the other half monotonically to the left. When the masses satisfy certain equality condition, the solutions have extra symmetry. This also gives a new proof of the existence of Schubart orbit, when .
对于具有任意正质量的 n 体问题,我们证明了对于质量的任意排序都存在可正则化的碰撞周期解,从同时发生的二元碰撞到另一组碰撞只需半个周期,其中一半质量单调地向右移动,另一半质量单调地向左移动。当质量满足某些相等条件时,解具有额外的对称性。这也给出了 n=3 时舒巴特轨道存在的新证明。
{"title":"Regularizable collinear periodic solutions in the n-body problem with arbitrary masses","authors":"Guowei Yu","doi":"10.1016/j.aim.2024.109947","DOIUrl":"10.1016/j.aim.2024.109947","url":null,"abstract":"<div><p>For <em>n</em>-body problem with arbitrary positive masses, we prove there are regularizable collinear periodic solutions for any ordering of the masses, going from a simultaneous binary collision to another in half of a period with half of the masses moving monotonically to the right and the other half monotonically to the left. When the masses satisfy certain equality condition, the solutions have extra symmetry. This also gives a new proof of the existence of Schubart orbit, when <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}