Pub Date : 2025-05-23DOI: 10.1016/j.aam.2025.102911
Arthur Rodelet–Causse , Lenny Tevlin
We derive a number of combinatorial identities satisfied by the q-super Catalan numbers. In particular, we extend some of the known combinatorial identities (Touchard, Koshy, Reed Dawson) to the q-super Catalan numbers.
Next, we introduce some q-convolution identities involving q-central binomial and q-Catalan numbers, and derive a generating function for q-Catalan numbers.
Then we introduce Narayana-type refinements of the super Catalan numbers. We prove algebraically the γ-positivity of those refinements and give a combinatorial proof in a special case through the type B analog of noncrossing partitions. Then we introduce their natural q-analogs, prove their q-γ-positivity, and prove some identities they satisfy, generalizing identities of Kreweras [17] and Le Jen-Shoo [11]. Using yet another identity, we prove that these refinements are positive integer polynomials in q.
我们得到了一些由q-超加泰罗尼亚数满足的组合恒等式。特别地,我们将一些已知的组合恒等式(Touchard, Koshy, Reed Dawson)推广到q-超加泰罗尼亚数。其次,我们引入了一些涉及q-中心二项式和q-加泰罗尼亚数的q-卷积恒等式,并推导了q-加泰罗尼亚数的生成函数。然后我们引入了超加泰罗尼亚数的narayana型细化。我们从代数上证明了这些改进的γ-正性,并通过非交叉分区的B型模拟给出了一个特殊情况下的组合证明。然后引入它们的天然q-类似物,证明了它们的q-γ-正性,并证明了它们满足的一些恒等式,推广了Kreweras[17]和Le jen - sho[11]的恒等式。利用另一个恒等式,我们证明了这些改进是q的正整数多项式。
{"title":"q-Super Catalan numbers: Combinatorial identities, generating functions, and Narayana refinements","authors":"Arthur Rodelet–Causse , Lenny Tevlin","doi":"10.1016/j.aam.2025.102911","DOIUrl":"10.1016/j.aam.2025.102911","url":null,"abstract":"<div><div>We derive a number of combinatorial identities satisfied by the <em>q</em>-super Catalan numbers. In particular, we extend some of the known combinatorial identities (Touchard, Koshy, Reed Dawson) to the <em>q</em>-super Catalan numbers.</div><div>Next, we introduce some <em>q</em>-convolution identities involving q-central binomial and q-Catalan numbers, and derive a generating function for <em>q</em>-Catalan numbers.</div><div>Then we introduce Narayana-type refinements of the super Catalan numbers. We prove algebraically the <em>γ</em>-positivity of those refinements and give a combinatorial proof in a special case through the type B analog of noncrossing partitions. Then we introduce their natural <em>q</em>-analogs, prove their <em>q</em>-<em>γ</em>-positivity, and prove some identities they satisfy, generalizing identities of Kreweras <span><span>[17]</span></span> and Le Jen-Shoo <span><span>[11]</span></span>. Using yet another identity, we prove that these refinements are positive integer polynomials in <em>q</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102911"},"PeriodicalIF":1.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144116089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-20DOI: 10.1016/j.aam.2025.102910
Seung-Il Choi , Sun-Young Nam , Young-Tak Oh
<div><div>Let <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the set of nonempty left weak Bruhat intervals in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We investigate the equivalence relation <figure><img></figure> on <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <figure><img></figure> if and only if there exists a descent-preserving poset isomorphism between <em>I</em> and <em>J</em>. For each equivalence class <em>C</em> of <figure><img></figure>, a partial order ⪯ is defined by <span><math><msub><mrow><mo>[</mo><mi>σ</mi><mo>,</mo><mi>ρ</mi><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub><mo>⪯</mo><msub><mrow><mo>[</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> if and only if <span><math><mi>σ</mi><msub><mrow><mo>⪯</mo></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. Kim–Lee–Oh (2024) showed that the poset <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mo>⪯</mo><mo>)</mo></math></span> is isomorphic to a right weak Bruhat interval.</div><div>In this paper, we focus on lower and upper descent weak Bruhat intervals, specifically those of the form <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>,</mo><mi>σ</mi><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> or <span><math><msub><mrow><mo>[</mo><mi>σ</mi><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is the longest element in the parabolic subgroup <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, generated by <span><math><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mi>i</mi><mo>∈</mo><mi>S</mi><mo>}</mo></math></span> for a subset <span><math><mi>S</mi><mo>⊆</mo><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is the longest element among the minimal-length representatives of left <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo><mo>∖</mo><mi>S</mi></mrow></msub></math></span>-cosets in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We begin by providing a poset-theoretic characterization of the equivalence relation <figure><img></figure>. Using
{"title":"Equivalence classes of lower and upper descent weak Bruhat intervals","authors":"Seung-Il Choi , Sun-Young Nam , Young-Tak Oh","doi":"10.1016/j.aam.2025.102910","DOIUrl":"10.1016/j.aam.2025.102910","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the set of nonempty left weak Bruhat intervals in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We investigate the equivalence relation <figure><img></figure> on <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <figure><img></figure> if and only if there exists a descent-preserving poset isomorphism between <em>I</em> and <em>J</em>. For each equivalence class <em>C</em> of <figure><img></figure>, a partial order ⪯ is defined by <span><math><msub><mrow><mo>[</mo><mi>σ</mi><mo>,</mo><mi>ρ</mi><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub><mo>⪯</mo><msub><mrow><mo>[</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> if and only if <span><math><mi>σ</mi><msub><mrow><mo>⪯</mo></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. Kim–Lee–Oh (2024) showed that the poset <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mo>⪯</mo><mo>)</mo></math></span> is isomorphic to a right weak Bruhat interval.</div><div>In this paper, we focus on lower and upper descent weak Bruhat intervals, specifically those of the form <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>,</mo><mi>σ</mi><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> or <span><math><msub><mrow><mo>[</mo><mi>σ</mi><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is the longest element in the parabolic subgroup <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, generated by <span><math><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mi>i</mi><mo>∈</mo><mi>S</mi><mo>}</mo></math></span> for a subset <span><math><mi>S</mi><mo>⊆</mo><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is the longest element among the minimal-length representatives of left <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo><mo>∖</mo><mi>S</mi></mrow></msub></math></span>-cosets in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We begin by providing a poset-theoretic characterization of the equivalence relation <figure><img></figure>. Using","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102910"},"PeriodicalIF":1.0,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144088875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-19DOI: 10.1016/j.aam.2025.102912
Yongjiang Wu, Lihua Feng, Yongtao Li
Two families and are called cross-intersecting if for every and , the intersection is non-empty. It is significant to determine the maximum sum of sizes of cross-intersecting families under the additional assumption that one of the two families is intersecting. Such a pair of families is said to be hemi-bundled. In particular, Frankl (2016) proved that for and , if and are cross-intersecting families, in which is non-empty and -intersecting, then . This bound is achieved when consists of a single set. In this paper, we generalize this result under the constraint for every . Moreover, we investigate the stability results of Katona's theorem for non-uniform families with the s-union property. Our result extends the stabilities established by Frankl (2017) and Li and Wu (2024). As applications, we revisit a recent result of Frankl and Wang (2024) as well as a result of Kupavskii (2018). Furthermore, we determine the extremal families in these two results.
{"title":"A result for hemi-bundled cross-intersecting families","authors":"Yongjiang Wu, Lihua Feng, Yongtao Li","doi":"10.1016/j.aam.2025.102912","DOIUrl":"10.1016/j.aam.2025.102912","url":null,"abstract":"<div><div>Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. It is significant to determine the maximum sum of sizes of cross-intersecting families under the additional assumption that one of the two families is intersecting. Such a pair of families is said to be hemi-bundled. In particular, Frankl (2016) proved that for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span>, if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, in which <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. This bound is achieved when <span><math><mi>F</mi></math></span> consists of a single set. In this paper, we generalize this result under the constraint <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≥</mo><mi>r</mi></math></span> for every <span><math><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn></math></span>. Moreover, we investigate the stability results of Katona's theorem for non-uniform families with the <em>s</em>-union property. Our result extends the stabilities established by Frankl (2017) and Li and Wu (2024). As applications, we revisit a recent result of Frankl and Wang (2024) as well as a result of Kupavskii (2018). Furthermore, we determine the extremal families in these two results.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102912"},"PeriodicalIF":1.0,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissections of lacunary eta quotients and identically vanishing coefficients","authors":"Tim Huber , James McLaughlin , Dongxi Ye","doi":"10.1016/j.aam.2025.102902","DOIUrl":"10.1016/j.aam.2025.102902","url":null,"abstract":"<div><div>For any function <span><math><mi>A</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> define<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>:</mo><mo>=</mo><mo>{</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>}</mo><mo>.</mo></math></span></span></span> Now suppose <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> are two functions whose <em>m</em>-dissections are given by<span><span><span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>q</mi><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span><span><span><span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>q</mi><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>.</mo></math></span></span></span> If it is the case that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>⟺</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, then we say that <span><math><mi>C</mi><mo>(</mo><mi","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102902"},"PeriodicalIF":1.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143888196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-22DOI: 10.1016/j.aam.2025.102900
Dein Wong , Qi Zhou , Xinlei Wang
Google's success derives in large part from its PageRank algorithm, which assign a score to every web page according to its importance. Recently, G. Modjtaba et al. (2021) [19] proved that similar vertices in a graph have the same PageRank score and they proposed a conjecture, suspecting that two graphs are completely non-Co-PR if they are non-Co-PR graphs. The investigation of this paper mainly concerns the influence of the automorphism group of a graph on its PageRank scores of vertices. The main results of this article are as follows.
1.
Based on matrix analysis, two conditions on what kinds of vertices have the same PageRank score are obtained.
2.
Four techniques for constructing Co-PR graphs are established.
3.
A non-regular connected graph of order n, with as PR scores of most of its vertices, is constructed, which provides a negative answer to Modjtaba's conjecture above.
{"title":"Influence of the automorphism group of a graph on its PageRank scores of vertices","authors":"Dein Wong , Qi Zhou , Xinlei Wang","doi":"10.1016/j.aam.2025.102900","DOIUrl":"10.1016/j.aam.2025.102900","url":null,"abstract":"<div><div>Google's success derives in large part from its PageRank algorithm, which assign a score to every web page according to its importance. Recently, G. Modjtaba et al. (2021) <span><span>[19]</span></span> proved that similar vertices in a graph have the same PageRank score and they proposed a conjecture, suspecting that two graphs are completely non-Co-PR if they are non-Co-PR graphs. The investigation of this paper mainly concerns the influence of the automorphism group of a graph on its PageRank scores of vertices. The main results of this article are as follows.<ul><li><span>1.</span><span><div>Based on matrix analysis, two conditions on what kinds of vertices have the same PageRank score are obtained.</div></span></li><li><span>2.</span><span><div>Four techniques for constructing Co-PR graphs are established.</div></span></li><li><span>3.</span><span><div>A non-regular connected graph of order <em>n</em>, with <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> as PR scores of most of its vertices, is constructed, which provides a negative answer to Modjtaba's conjecture above.</div></span></li></ul></div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102900"},"PeriodicalIF":1.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-14DOI: 10.1016/j.aam.2025.102901
Houshan Fu , Xiangyu Ren , Suijie Wang
<div><div>Kochol introduced the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> to count nowhere-zero <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-flows of a graph <em>G</em>, where <em>A</em> is a finite Abelian group and <em>α</em> is a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning from a family <span><math><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of certain nonempty vertex subsets of <em>G</em> to <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. We introduce the concepts of <em>b</em>-compatible graph and <em>b</em>-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span>, let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> be a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning of <em>G</em> such that for each <span><math><mi>X</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> if and only if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>X</mi></mrow></msub><mi>b</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We show that for any <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning <em>α</em> of <em>G</em>, if there exists a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span> such that <em>G</em> is <em>b</em>-compatible and <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, then the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> has the <em>b</em>-compatible spanning subgraph expansion<span><span><span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mtable><mtr><mtd><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>G</mi><mo>−</mo><mi>S</mi><mrow><mtext> is</mtext><mspace></mspace><mtext>b</mtext><mtext>-compatible</mtext></mrow></mtd></mtr></mtable></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></msup><mo>,</mo></math></span></span></span> and is the following form<span><span><span><math><mi>F</mi>
{"title":"Counting flows of b-compatible graphs","authors":"Houshan Fu , Xiangyu Ren , Suijie Wang","doi":"10.1016/j.aam.2025.102901","DOIUrl":"10.1016/j.aam.2025.102901","url":null,"abstract":"<div><div>Kochol introduced the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> to count nowhere-zero <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-flows of a graph <em>G</em>, where <em>A</em> is a finite Abelian group and <em>α</em> is a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning from a family <span><math><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of certain nonempty vertex subsets of <em>G</em> to <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. We introduce the concepts of <em>b</em>-compatible graph and <em>b</em>-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span>, let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> be a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning of <em>G</em> such that for each <span><math><mi>X</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> if and only if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>X</mi></mrow></msub><mi>b</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We show that for any <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning <em>α</em> of <em>G</em>, if there exists a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span> such that <em>G</em> is <em>b</em>-compatible and <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, then the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> has the <em>b</em>-compatible spanning subgraph expansion<span><span><span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mtable><mtr><mtd><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>G</mi><mo>−</mo><mi>S</mi><mrow><mtext> is</mtext><mspace></mspace><mtext>b</mtext><mtext>-compatible</mtext></mrow></mtd></mtr></mtable></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></msup><mo>,</mo></math></span></span></span> and is the following form<span><span><span><math><mi>F</mi>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102901"},"PeriodicalIF":1.0,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-14DOI: 10.1016/j.aam.2025.102888
Honglin Zhu
Given a grid polygon P in a grid of equilateral triangles, Defant and Jiradilok considered a billiards system where beams of light bounce around inside P. We study the relationship between the perimeter of P and the number of different trajectories that the billiards system has. Resolving a conjecture of Defant and Jiradilok, we prove the sharp inequality and characterize the equality cases.
{"title":"The maximum number of cycles in a triangular-grid billiards system with a given perimeter","authors":"Honglin Zhu","doi":"10.1016/j.aam.2025.102888","DOIUrl":"10.1016/j.aam.2025.102888","url":null,"abstract":"<div><div>Given a grid polygon <em>P</em> in a grid of equilateral triangles, Defant and Jiradilok considered a billiards system where beams of light bounce around inside <em>P</em>. We study the relationship between the perimeter <span><math><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <em>P</em> and the number of different trajectories <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> that the billiards system has. Resolving a conjecture of Defant and Jiradilok, we prove the sharp inequality <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span> and characterize the equality cases.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102888"},"PeriodicalIF":1.0,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-10DOI: 10.1016/j.aam.2025.102889
Sen-Peng Eu , Louis Kao , Juei-Yin Lin
Cai and Readdy proposed a new framework for studying the q-analogue of a combinatorial structure S. Specifically, the aim is to identify two statistics over S and a proper subset of S such that represents the q--expansion over , and to explore the poset and topological interpretations of this expansion. Cai and Readdy provided comprehensive profiles for classical Stirling numbers of both kinds within this framework. In this work, we extend Cai and Readdy's results to colored q-Stirling numbers of both kinds, as well as colored q-Lah numbers. We also briefly discuss q-Stirling and q-Lah numbers of type D.
蔡和瑞迪提出了一个研究组合结构 S 的 q-analogue f(q) 的新框架。具体来说,其目的是找出 S 上的两个统计量和 S 的一个适当子集 S′,从而使 f(q) 代表 S′上的 q-(1+q)- 展开,并探索这种展开的正集和拓扑解释。Cai 和 Readdy 在此框架内提供了两种经典斯特林数的全面剖面图。在这项工作中,我们将蔡和雷迪的结果扩展到两种彩色 q-Stirling 数以及彩色 q-Lah 数。我们还简要讨论了 D 型的 q-Stirling 和 q-Lah 数。
{"title":"Colored q-Stirling and q-Lah numbers: A new view continued","authors":"Sen-Peng Eu , Louis Kao , Juei-Yin Lin","doi":"10.1016/j.aam.2025.102889","DOIUrl":"10.1016/j.aam.2025.102889","url":null,"abstract":"<div><div>Cai and Readdy proposed a new framework for studying the <em>q</em>-analogue <span><math><mi>f</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> of a combinatorial structure <em>S</em>. Specifically, the aim is to identify two statistics over <em>S</em> and a proper subset <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>S</em> such that <span><math><mi>f</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> represents the <em>q</em>-<span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-expansion over <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and to explore the poset and topological interpretations of this expansion. Cai and Readdy provided comprehensive profiles for classical Stirling numbers of both kinds within this framework. In this work, we extend Cai and Readdy's results to colored <em>q</em>-Stirling numbers of both kinds, as well as colored <em>q</em>-Lah numbers. We also briefly discuss <em>q</em>-Stirling and <em>q</em>-Lah numbers of type <em>D</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102889"},"PeriodicalIF":1.0,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-09DOI: 10.1016/j.aam.2025.102890
Irem Portakal , Daniel Windisch
This paper is a significant step forward in understanding dependency equilibria within the framework of real algebraic geometry encompassing both pure and mixed equilibria. In alignment with Spohn's original definition of dependency equilibria, we propose two alternative definitions, allowing for an algebro-geometric comprehensive study of all dependency equilibria. We give a sufficient condition for the existence of a pure dependency equilibrium and show that every Nash equilibrium lies on the Spohn variety, the algebraic model for dependency equilibria. For generic games, the set of real points of the Spohn variety is Zariski dense. Furthermore, every Nash equilibrium in this case is a dependency equilibrium. Finally, we present a detailed analysis of the geometric structure of dependency equilibria for -games.
{"title":"Dependency equilibria: Boundary cases and their real algebraic geometry","authors":"Irem Portakal , Daniel Windisch","doi":"10.1016/j.aam.2025.102890","DOIUrl":"10.1016/j.aam.2025.102890","url":null,"abstract":"<div><div>This paper is a significant step forward in understanding dependency equilibria within the framework of real algebraic geometry encompassing both pure and mixed equilibria. In alignment with Spohn's original definition of dependency equilibria, we propose two alternative definitions, allowing for an algebro-geometric comprehensive study of all dependency equilibria. We give a sufficient condition for the existence of a pure dependency equilibrium and show that every Nash equilibrium lies on the Spohn variety, the algebraic model for dependency equilibria. For generic games, the set of real points of the Spohn variety is Zariski dense. Furthermore, every Nash equilibrium in this case is a dependency equilibrium. Finally, we present a detailed analysis of the geometric structure of dependency equilibria for <span><math><mo>(</mo><mn>2</mn><mo>×</mo><mn>2</mn><mo>)</mo></math></span>-games.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102890"},"PeriodicalIF":1.0,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-08DOI: 10.1016/j.aam.2025.102899
Colin Defant, Mitchell Lee
Defant found that the relationship between a sequence of (univariate) classical cumulants and the corresponding sequence of (univariate) free cumulants can be described combinatorially in terms of families of binary plane trees called troupes. Using a generalization of troupes that we call weighted troupes, we generalize this result to allow for multivariate cumulants. Our result also gives a combinatorial description of the corresponding Boolean cumulants. This allows us to answer a question of Defant regarding his troupe transform. We also provide explicit distributions whose cumulants correspond to some specific weighted troupes.
{"title":"Boolean, free, and classical cumulants as tree enumerations","authors":"Colin Defant, Mitchell Lee","doi":"10.1016/j.aam.2025.102899","DOIUrl":"10.1016/j.aam.2025.102899","url":null,"abstract":"<div><div>Defant found that the relationship between a sequence of (univariate) classical cumulants and the corresponding sequence of (univariate) free cumulants can be described combinatorially in terms of families of binary plane trees called <em>troupes</em>. Using a generalization of troupes that we call <em>weighted troupes</em>, we generalize this result to allow for multivariate cumulants. Our result also gives a combinatorial description of the corresponding Boolean cumulants. This allows us to answer a question of Defant regarding his <em>troupe transform</em>. We also provide explicit distributions whose cumulants correspond to some specific weighted troupes.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102899"},"PeriodicalIF":1.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143792352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}