Pipes from industrial process flow diagrams have a predictable risk of failure or damage, so that periodic inspections are carried out. Corrosion that occurs in the pipe can cause a risk of leakage or blockage of the pipe flow which can be fatal to the fluid distribution process. This damage can be anticipated by inhibitors adding and predicting the corrosion rate. This research was conducted to determine the effective concentration of Na2CrO4 inhibitor to inhibit the corrosion rate and predict the lifetime of the furnace cooling water circulation pipe using the weight loss method. Na2CrO4 inhibitor is a type of anodic inhibitor that works by passively the anode by inhibiting corrosion on a whole metal surface. The study begins with the preparation stage, cutting the pipe into specimens of a certain size, smoothing the surface and weighing the initial weight. The testing phase was carried out by immersing the specimens at various times of 120 h, 240 h and 360 h with Na2CrO4 inhibitor variations concentration was 0%; 0,3%; 0,6%; and 0,9%. The corrosion rate was calculated by re-weighing the specimen after the immersion process. The results showed that the most effective inhibitor concentration was 0.6% with a corrosion rate of 0.3021 mmpy and the Remaining Service Lifetime (RSL) was 9.399 years.
{"title":"The Effectiveness of Na2CrO4 to Inhibit Corrosion Rate of a A106 Grade Pipe in the Furnace Circulating Cooling Water with the Weight Loss Method on Pipe Lifetime Determining","authors":"Ika Fitriani J Palupi, Ainun Ma'wa","doi":"10.4028/p-l7b0f7","DOIUrl":"https://doi.org/10.4028/p-l7b0f7","url":null,"abstract":"Pipes from industrial process flow diagrams have a predictable risk of failure or damage, so that periodic inspections are carried out. Corrosion that occurs in the pipe can cause a risk of leakage or blockage of the pipe flow which can be fatal to the fluid distribution process. This damage can be anticipated by inhibitors adding and predicting the corrosion rate. This research was conducted to determine the effective concentration of Na2CrO4 inhibitor to inhibit the corrosion rate and predict the lifetime of the furnace cooling water circulation pipe using the weight loss method. Na2CrO4 inhibitor is a type of anodic inhibitor that works by passively the anode by inhibiting corrosion on a whole metal surface. The study begins with the preparation stage, cutting the pipe into specimens of a certain size, smoothing the surface and weighing the initial weight. The testing phase was carried out by immersing the specimens at various times of 120 h, 240 h and 360 h with Na2CrO4 inhibitor variations concentration was 0%; 0,3%; 0,6%; and 0,9%. The corrosion rate was calculated by re-weighing the specimen after the immersion process. The results showed that the most effective inhibitor concentration was 0.6% with a corrosion rate of 0.3021 mmpy and the Remaining Service Lifetime (RSL) was 9.399 years.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"456 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139860160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corrosion inhibitors are substances that protect metal surfaces by forming a protective film to prevent metallic materials in contact with corrosive environments. Inhibitors are created with capability to adsorb onto the metal surface, creating a barrier film, or neutralizing the detrimental effects of corrosive substances. Their performance are evaluated based on the ability in reducing corrosion rate. Traditionally, corrosion inhibitors made of chemical synthetic compounds. But as synthetic inhibitors have environmental impact, researchers are starting to explore compound alternatives. Currently, inhibitor technologies have demonstrated a remarkable growth in performance marked by the discovery of new types of inhibitors. Ongoing research are focusing on self-healing inhibitor, eco-friendly inhibitor, and nanostructured compounds inhibitors. This paper will comprehensively address the current challenges of advanced corrosion inhibitors. From the investigation, it has been noticed that application of innovative technologies has led to a transformative impact in producing with significant enhancement in their overall performance capabilities.
{"title":"Selection of Inhibitor and Recent Advances in Enhancing Corrosion Prevention","authors":"Yuli Panca Asmara, Firda Herlina, A. Sutjipto","doi":"10.4028/p-ivxj7u","DOIUrl":"https://doi.org/10.4028/p-ivxj7u","url":null,"abstract":"Corrosion inhibitors are substances that protect metal surfaces by forming a protective film to prevent metallic materials in contact with corrosive environments. Inhibitors are created with capability to adsorb onto the metal surface, creating a barrier film, or neutralizing the detrimental effects of corrosive substances. Their performance are evaluated based on the ability in reducing corrosion rate. Traditionally, corrosion inhibitors made of chemical synthetic compounds. But as synthetic inhibitors have environmental impact, researchers are starting to explore compound alternatives. Currently, inhibitor technologies have demonstrated a remarkable growth in performance marked by the discovery of new types of inhibitors. Ongoing research are focusing on self-healing inhibitor, eco-friendly inhibitor, and nanostructured compounds inhibitors. This paper will comprehensively address the current challenges of advanced corrosion inhibitors. From the investigation, it has been noticed that application of innovative technologies has led to a transformative impact in producing with significant enhancement in their overall performance capabilities.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"56 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139860585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Agraval, M. Turchanin, L. Dreval, A. Vodopyanova
Early, the efficiency of the CALPHAD (Calculation of Phase Diagrams) method to a targeted search for compositions of amorphous alloys has been shown. The method for predicting the ranges of amorphization is based on the calculation of diagrams of metastable phase transformations between supercooled melts and boundary solid solutions on the base of pure elements. In this work, the model parameters for thermodynamic properties of liquid alloys and boundary solid solutions were summarized in a self-consistent database for the multicomponent Cu–Fe–Ni–Ti–Zr–Hf system. Such database for the multicomponent system is based on a common set of model parameters for boundary binary and ternary systems. This database was used to predict the concentration ranges of amorphization for the quinary Cu–Fe–Ni–Ti–Zr, Cu–Fe–Ni–Ti–Hf and boundary ternary and quaternary systems. The results of calculations are presented along sections in quaternary and quinary systems. The ternary and quaternary equiatomic alloys along with high entropy CuFeNiTiZr and CuFeNiTiHf alloys are trapped into prognosed composition ranges of amorphization. Predicted composition space of amorphization for melts of the Fe–Ni–Ti–Zr system is shown on the concentration tetrahedron. Based on the obtained results, a new criterion for predicting the concentration regions of amorphization of multicomponent melts is proposed, according to which the presence of a sufficient content of metals that are electron acceptors and donors is a chemical factor that affects the thermodynamic stability of melts and determines their glass-forming ability. For multicomponent melts of the Cu–Fe–Ni–Ti–Zr–Hf system the concentration ranges of amorphization correspond to the simultaneous fulfillment of the conditions xFe + xNi + xCu > 0.25 and xTi + xZr + xHf > 0.15, where Fe, Ni, and Cu are electron acceptors and Ti, Zr, and Hf are electron donors.
{"title":"Application of CALPHAD Method for Predicting of Concentration Range of Amorphization of Transition Metals Melts","authors":"P. Agraval, M. Turchanin, L. Dreval, A. Vodopyanova","doi":"10.4028/p-lvl7lu","DOIUrl":"https://doi.org/10.4028/p-lvl7lu","url":null,"abstract":"Early, the efficiency of the CALPHAD (Calculation of Phase Diagrams) method to a targeted search for compositions of amorphous alloys has been shown. The method for predicting the ranges of amorphization is based on the calculation of diagrams of metastable phase transformations between supercooled melts and boundary solid solutions on the base of pure elements. In this work, the model parameters for thermodynamic properties of liquid alloys and boundary solid solutions were summarized in a self-consistent database for the multicomponent Cu–Fe–Ni–Ti–Zr–Hf system. Such database for the multicomponent system is based on a common set of model parameters for boundary binary and ternary systems. This database was used to predict the concentration ranges of amorphization for the quinary Cu–Fe–Ni–Ti–Zr, Cu–Fe–Ni–Ti–Hf and boundary ternary and quaternary systems. The results of calculations are presented along sections in quaternary and quinary systems. The ternary and quaternary equiatomic alloys along with high entropy CuFeNiTiZr and CuFeNiTiHf alloys are trapped into prognosed composition ranges of amorphization. Predicted composition space of amorphization for melts of the Fe–Ni–Ti–Zr system is shown on the concentration tetrahedron. Based on the obtained results, a new criterion for predicting the concentration regions of amorphization of multicomponent melts is proposed, according to which the presence of a sufficient content of metals that are electron acceptors and donors is a chemical factor that affects the thermodynamic stability of melts and determines their glass-forming ability. For multicomponent melts of the Cu–Fe–Ni–Ti–Zr–Hf system the concentration ranges of amorphization correspond to the simultaneous fulfillment of the conditions xFe + xNi + xCu > 0.25 and xTi + xZr + xHf > 0.15, where Fe, Ni, and Cu are electron acceptors and Ti, Zr, and Hf are electron donors.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"305 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139799343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olayinka Akeem Oladapo, A. Akindele, A. Obalalu, O. Ajala
In various fields such as engineering, nanotechnology, and biomedical sciences, the study of non-Newtonian nanofluid flow with heat generation is becoming increasingly important. However, it is challenging to accurately model such flows due to their complex behavior and slip effects at the fluid-solid interface. This research investigates the impact of first and second-order slip conditions on the flow and heat transfer properties of a non-Newtonian nanofluid using a power law model to describe the fluid's non-Newtonian behavior and numerical methods to solve the resulting equations. To determine the influence of various parameters such as slip parameters, Brinkman number, power law index, and Eckert number on the velocity, temperature, and concentration profiles, which this study examines. The study shows that slip parameters significantly determine the flow and heat transfer properties of non-Newtonian nanofluids, the study also reveals that slip parameters are a crucial factor in understanding the flow and heat transfer characteristics of nanofluids, with the second-order slip condition having a greater impact on velocity and temperature profiles than the first-order slip condition. These findings are valuable for developing and optimizing heat transfer devices that involve non-Newtonian nanofluids with heat generation, which is essential for technological advancements in today's industry.
{"title":"Important of Slip Effects in Non-Newtonian Nanofluid Flow with Heat Generation for Enhanced Heat Transfer Devices","authors":"Olayinka Akeem Oladapo, A. Akindele, A. Obalalu, O. Ajala","doi":"10.4028/p-baacr1","DOIUrl":"https://doi.org/10.4028/p-baacr1","url":null,"abstract":"In various fields such as engineering, nanotechnology, and biomedical sciences, the study of non-Newtonian nanofluid flow with heat generation is becoming increasingly important. However, it is challenging to accurately model such flows due to their complex behavior and slip effects at the fluid-solid interface. This research investigates the impact of first and second-order slip conditions on the flow and heat transfer properties of a non-Newtonian nanofluid using a power law model to describe the fluid's non-Newtonian behavior and numerical methods to solve the resulting equations. To determine the influence of various parameters such as slip parameters, Brinkman number, power law index, and Eckert number on the velocity, temperature, and concentration profiles, which this study examines. The study shows that slip parameters significantly determine the flow and heat transfer properties of non-Newtonian nanofluids, the study also reveals that slip parameters are a crucial factor in understanding the flow and heat transfer characteristics of nanofluids, with the second-order slip condition having a greater impact on velocity and temperature profiles than the first-order slip condition. These findings are valuable for developing and optimizing heat transfer devices that involve non-Newtonian nanofluids with heat generation, which is essential for technological advancements in today's industry.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"300 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139799436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study analyses physical aspects of power-law fluid flow over a diamond shaped cylinder under the impact of a movable screen fixed in the middle of a channel keeping an aspect ratio as 0.5 with height of the channel. The perforated plate is a screen at the middle especially settled at orientation of π/6, π/4 or π/3 degrees. The Reynolds number (Re) has been kept in the range of 1000-10,000 with power-law index in the range 0.8-1.2. For the corresponding two-dimensional problem, the governing momentum equations coupled with energy equation have been solved numerically using non-isothermal laminar fluid flow interface in the software COMSOL Multiphysics 5.4. The dimensionless velocity magnitude and the non-dimensional temperature on the diamond shaped cylinder along the vertical non-dimensional length are expressed via fixing any two parameters from (Re), angle of screen θ and power-law index. The heat transfer coefficient, effective thermal conductivity and the Nusselt number are also expressed besides the dimonsionless length of the surface of the chosen cylinder. In conclusion, we will be going to suggest points to increase the dynamics and thermal variables with the use of selected parameters Re, θ, and power law index n.
{"title":"On the Analysis of Power Law Fluid over a Diamond Shaped Cylindrical Surface with Screen Boundary Conditions at High Reynolds Number","authors":"A. Memon, M. A. Memon, G. Shaikh, A. Obalalu","doi":"10.4028/p-udyqe2","DOIUrl":"https://doi.org/10.4028/p-udyqe2","url":null,"abstract":"This study analyses physical aspects of power-law fluid flow over a diamond shaped cylinder under the impact of a movable screen fixed in the middle of a channel keeping an aspect ratio as 0.5 with height of the channel. The perforated plate is a screen at the middle especially settled at orientation of π/6, π/4 or π/3 degrees. The Reynolds number (Re) has been kept in the range of 1000-10,000 with power-law index in the range 0.8-1.2. For the corresponding two-dimensional problem, the governing momentum equations coupled with energy equation have been solved numerically using non-isothermal laminar fluid flow interface in the software COMSOL Multiphysics 5.4. The dimensionless velocity magnitude and the non-dimensional temperature on the diamond shaped cylinder along the vertical non-dimensional length are expressed via fixing any two parameters from (Re), angle of screen θ and power-law index. The heat transfer coefficient, effective thermal conductivity and the Nusselt number are also expressed besides the dimonsionless length of the surface of the chosen cylinder. In conclusion, we will be going to suggest points to increase the dynamics and thermal variables with the use of selected parameters Re, θ, and power law index n.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"220 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139799540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The structure and mechanical properties of a multicomponent high-entropy Al4CoCrCuFeNi alloy in the as-cast and melt-quenched states were investigated. The alloy composition was analyzed based on the literature criteria for predicting the phase formation in high-entropy alloys, which considered the entropy and enthalpy of mixing, valence electron concentration as well as the atomic size difference of the components. The alloy films were synthesized by quenching from the melt using a splat-quenching technique. The cooling rate of the films was estimated to be ~ 106 K/s based on the film thickness. The X-ray diffraction analysis revealed that both as-cast and melt-quenched Al4CoCrCuFeNi alloy samples had an ordered B2 phase in their structure. The microhardness of the as-cast alloy was 6500 MPa, while the microhardness of the melt-quenched film was significantly higher and reached 9400 MPa.
{"title":"Structure and Properties of Melt-Quenched Al4CoCrCuFeNi High-Entropy Alloy","authors":"O. Kushnerov, V. F. Bashev, S. I. Ryabtsev","doi":"10.4028/p-4gvjbc","DOIUrl":"https://doi.org/10.4028/p-4gvjbc","url":null,"abstract":"The structure and mechanical properties of a multicomponent high-entropy Al4CoCrCuFeNi alloy in the as-cast and melt-quenched states were investigated. The alloy composition was analyzed based on the literature criteria for predicting the phase formation in high-entropy alloys, which considered the entropy and enthalpy of mixing, valence electron concentration as well as the atomic size difference of the components. The alloy films were synthesized by quenching from the melt using a splat-quenching technique. The cooling rate of the films was estimated to be ~ 106 K/s based on the film thickness. The X-ray diffraction analysis revealed that both as-cast and melt-quenched Al4CoCrCuFeNi alloy samples had an ordered B2 phase in their structure. The microhardness of the as-cast alloy was 6500 MPa, while the microhardness of the melt-quenched film was significantly higher and reached 9400 MPa.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139800487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuriy Plevachuk, L. Romaka, I. Janotová, P. Svec, D. Janičkovič, R. Novakovic, V. Poverzhuk
According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.
{"title":"Thermophysical Properties of Cu-Based Subsystems of High-Entropy Alloys","authors":"Yuriy Plevachuk, L. Romaka, I. Janotová, P. Svec, D. Janičkovič, R. Novakovic, V. Poverzhuk","doi":"10.4028/p-gl7mcs","DOIUrl":"https://doi.org/10.4028/p-gl7mcs","url":null,"abstract":"According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"56 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139801664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dao Hua Zhan, Han Wang, Xiu Ding Yang, Wei Cheng Ou, Ren Bin Huang, Jian Lin, Kunran Yi, Bei Zhou
In recent years, surface defect detection methods based on deep learning have been widely applied to steel plate surface defect detection. By locating and classifying defects on the surface of steel plates, production efficiency can be improved. However, there is still a conflict between speed and accuracy in the defect detection process. To address this issue, we propose a high-precision, low-latency surface defect detection algorithm called the GhostConv-ECA-YOLOv5 Network (GEA-Net). The GEA-Net model can predict defect categories without compromising classification and detection accuracy. Experimental results show that our proposed improved model has higher performance compared to other comparative models, achieving a 75.6% mAP on the NEU-DET dataset.
{"title":"An Algorithm for Detecting Surface Defects in Steel Strips Based on an Improved Lightweight Network","authors":"Dao Hua Zhan, Han Wang, Xiu Ding Yang, Wei Cheng Ou, Ren Bin Huang, Jian Lin, Kunran Yi, Bei Zhou","doi":"10.4028/p-foi56w","DOIUrl":"https://doi.org/10.4028/p-foi56w","url":null,"abstract":"In recent years, surface defect detection methods based on deep learning have been widely applied to steel plate surface defect detection. By locating and classifying defects on the surface of steel plates, production efficiency can be improved. However, there is still a conflict between speed and accuracy in the defect detection process. To address this issue, we propose a high-precision, low-latency surface defect detection algorithm called the GhostConv-ECA-YOLOv5 Network (GEA-Net). The GEA-Net model can predict defect categories without compromising classification and detection accuracy. Experimental results show that our proposed improved model has higher performance compared to other comparative models, achieving a 75.6% mAP on the NEU-DET dataset.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"25 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eddie J. Lipa, Jhon O. Pomasoncco, Joan R. Casas, R. Delgadillo
Seismic risk is a challenging problem in tall buildings due to the possibility of loss of human life and economic caused by seismic events. Peru is located at the interaction of the South American plate and the Nazca plate, which is why various seismic events of moderate to large magnitude occur. Today there are many ways to solve these problems and it is a very challenging case to reinforce tall buildings. In addition, technological advances in software facilitate and help through programmed models in tall buildings that analyze their structure characteristics such as drift, shear and others. This article proposes a comparative analysis of three types of dissipators: viscous fluid, friction, and metal creep through a Time-History analysis in a 15-story high-rise building located in Peru. The proposed methodology considers three stages: (i) definition of the characteristics and properties of the structure in accordance with Peruvian Standard E.030, in addition three accelerograms are used for the dynamic time-history analysis and maximum displacements and drifts are determined by ETABS software. (ii) calculate the design drift of the tall building and the properties of the viscous fluid, friction, and creep dissipator. In addition, calculations are made for the design parameters of each dissipator, and it is modeled as required for the case study. (iii) the new drifts and the damping values that the building presents for each dissipator are analyzed. According to the results obtained, the dissipator with the best results is of the flow type, since it has better performance in drifts and manages to produce an average damping of 96.87% for tall buildings. While the viscous dissipators obtain a 57.85% damping and the friction ones are estimated at 81.57%.
{"title":"Comparative Analysis of Structural Reinforcement with Viscoelastic Energy Dissipators, Friction and Metal Creep in Tall Buildings","authors":"Eddie J. Lipa, Jhon O. Pomasoncco, Joan R. Casas, R. Delgadillo","doi":"10.4028/p-4btbzq","DOIUrl":"https://doi.org/10.4028/p-4btbzq","url":null,"abstract":"Seismic risk is a challenging problem in tall buildings due to the possibility of loss of human life and economic caused by seismic events. Peru is located at the interaction of the South American plate and the Nazca plate, which is why various seismic events of moderate to large magnitude occur. Today there are many ways to solve these problems and it is a very challenging case to reinforce tall buildings. In addition, technological advances in software facilitate and help through programmed models in tall buildings that analyze their structure characteristics such as drift, shear and others. This article proposes a comparative analysis of three types of dissipators: viscous fluid, friction, and metal creep through a Time-History analysis in a 15-story high-rise building located in Peru. The proposed methodology considers three stages: (i) definition of the characteristics and properties of the structure in accordance with Peruvian Standard E.030, in addition three accelerograms are used for the dynamic time-history analysis and maximum displacements and drifts are determined by ETABS software. (ii) calculate the design drift of the tall building and the properties of the viscous fluid, friction, and creep dissipator. In addition, calculations are made for the design parameters of each dissipator, and it is modeled as required for the case study. (iii) the new drifts and the damping values that the building presents for each dissipator are analyzed. According to the results obtained, the dissipator with the best results is of the flow type, since it has better performance in drifts and manages to produce an average damping of 96.87% for tall buildings. While the viscous dissipators obtain a 57.85% damping and the friction ones are estimated at 81.57%.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"83 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuri Semerenko, Elena Tabachnikova, T. Hryhorova, S. Shumilin, Viktor Zoryansky
The mechanical properties and microstructural evolution of a medium-entropy alloy Co17.5Cr12.5Fe55Ni10Mo5 (at%) in a low temperature range (including the record low temperatures region down to 0.5 K) were investigated. It has been established that low-temperature plastic deformation initiates martensitic phase transformations in this alloy, and the values of the dynamic modulus of elasticity correlate with the degree of phase transformations.
研究了中熵合金 Co17.5Cr12.5Fe55Ni10Mo5(at%)在低温范围(包括低至 0.5 K 的创纪录低温区域)内的力学性能和微观结构演变。研究证实,低温塑性变形引发了该合金的马氏体相变,而动态弹性模量值与相变程度相关。
{"title":"Low-Temperature Elastic Properties of Molybdenum Doped Non-Equiatomic High Entropy Alloys of the Fe-Co-Ni-Cr System","authors":"Yuri Semerenko, Elena Tabachnikova, T. Hryhorova, S. Shumilin, Viktor Zoryansky","doi":"10.4028/p-brt7wl","DOIUrl":"https://doi.org/10.4028/p-brt7wl","url":null,"abstract":"The mechanical properties and microstructural evolution of a medium-entropy alloy Co17.5Cr12.5Fe55Ni10Mo5 (at%) in a low temperature range (including the record low temperatures region down to 0.5 K) were investigated. It has been established that low-temperature plastic deformation initiates martensitic phase transformations in this alloy, and the values of the dynamic modulus of elasticity correlate with the degree of phase transformations.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"34 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}