Pub Date : 2023-04-05DOI: https://dl.acm.org/doi/10.1145/3568676
Gregorius Satia Budhi, Raymond Chiong
The financial impact of online reviews has prompted some fraudulent sellers to generate fake consumer reviews for either promoting their products or discrediting competing products. In this study, we propose a novel ensemble model—the Multi-type Classifier Ensemble (MtCE)—combined with a textual-based featuring method, which is relatively independent of the system, to detect fake online consumer reviews. Unlike other ensemble models that utilise only the same type of single classifier, our proposed ensemble utilises several customised machine learning classifiers (including deep learning models) as its base classifiers. The results of our experiments show that the MtCE can adequately detect fake reviews, and that it outperforms other single and ensemble methods in terms of accuracy and other measurements for all the relevant public datasets used in this study. Moreover, if set correctly, the parameters of MtCE, such as base-classifier types, the total number of base classifiers, bootstrap, and the method to vote on output (e.g., majority or priority), can further improve the performance of the proposed ensemble.
{"title":"A Multi-type Classifier Ensemble for Detecting Fake Reviews Through Textual-based Feature Extraction","authors":"Gregorius Satia Budhi, Raymond Chiong","doi":"https://dl.acm.org/doi/10.1145/3568676","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3568676","url":null,"abstract":"<p>The financial impact of online reviews has prompted some fraudulent sellers to generate fake consumer reviews for either promoting their products or discrediting competing products. In this study, we propose a novel ensemble model—the <b>Multi-type Classifier Ensemble (MtCE)</b>—combined with a textual-based featuring method, which is relatively independent of the system, to detect fake online consumer reviews. Unlike other ensemble models that utilise only the same type of single classifier, our proposed ensemble utilises several customised machine learning classifiers (including deep learning models) as its base classifiers. The results of our experiments show that the MtCE can adequately detect fake reviews, and that it outperforms other single and ensemble methods in terms of accuracy and other measurements for all the relevant public datasets used in this study. Moreover, if set correctly, the parameters of MtCE, such as base-classifier types, the total number of base classifiers, bootstrap, and the method to vote on output (e.g., majority or priority), can further improve the performance of the proposed ensemble.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"82 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: https://dl.acm.org/doi/10.1145/3465237
Pankaj Mishra, Ahmed Moustafa, Takayuki Ito
Open market environments consist of a set of participants (vendors and consumers) that dynamically leave or join the market. As a result, the arising dynamism leads to uncertainties in supply and demand of the resources in these open markets. In specific, in such uncertain markets, vendors attempt to maximise their revenue by dynamically changing their selling prices according to the market demand. In this regard, an optimal resource allocation approach becomes immensely needed to optimise the selling prices based on the supply and demand of the resources in the open market. Therefore, optimal selling prices should maximise the revenue of vendors while protecting the utility of buyers. In this context, we propose a real-time pricing approach for resource allocation in open market environments. The proposed approach introduces a priority-based fairness mechanism to allocate the available resources in a reverse-auction paradigm. Finally, we compare the proposed approach with two state-of-the-art resource allocation approaches. The experimental results show that the proposed approach outperforms the other two resource allocation approaches in its ability to maximise the vendors’ revenue.
{"title":"Real-time Pricing-based Resource Allocation in Open Market Environments","authors":"Pankaj Mishra, Ahmed Moustafa, Takayuki Ito","doi":"https://dl.acm.org/doi/10.1145/3465237","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3465237","url":null,"abstract":"<p>Open market environments consist of a set of participants (vendors and consumers) that dynamically leave or join the market. As a result, the arising dynamism leads to uncertainties in supply and demand of the resources in these open markets. In specific, in such uncertain markets, vendors attempt to maximise their revenue by dynamically changing their selling prices according to the market demand. In this regard, an optimal resource allocation approach becomes immensely needed to optimise the selling prices based on the supply and demand of the resources in the open market. Therefore, optimal selling prices should maximise the revenue of vendors while protecting the utility of buyers. In this context, we propose a real-time pricing approach for resource allocation in open market environments. The proposed approach introduces a priority-based fairness mechanism to allocate the available resources in a reverse-auction paradigm. Finally, we compare the proposed approach with two state-of-the-art resource allocation approaches. The experimental results show that the proposed approach outperforms the other two resource allocation approaches in its ability to maximise the vendors’ revenue.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"82 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The popularity of intelligent devices provides straightforward access to the Internet and online social networks. However, the quick and easy data updates from networks also benefit the risk spreading, such as rumor, malware, or computer viruses. To this end, this article studies the problem of source detection, which is to infer the source node out of an aftermath of a cascade, that is, the observed infected graph GN of the network at some time. Prior arts have adopted various statistical quantities such as degree, distance, or infection size to reflect the structural centrality of the source. In this article, we propose a new metric that we call the infected tree entropy (ITE), to utilize richer underlying structural features for source detection. Our idea of ITE is inspired by the conception of structural entropy [21], which demonstrated that the minimization of average bits to encode the network structures with different partitions is the principle for detecting the natural or true structures in real-world networks. Accordingly, our proposed ITE based estimator for the source tries to minimize the coding of network partitions brought by the infected tree rooted at all the potential sources, thus minimizing the structural deviation between the cascades from the potential sources and the actual infection process included in GN. On polynomially growing geometric trees, with increasing tree heterogeneity, the ITE estimator remarkably yields more reliable detection under only moderate infection sizes, and returns an asymptotically complete detection. In contrast, for regular expanding trees, we still observe guaranteed detection probability of ITE estimator even with an infinite infection size, thanks to the degree regularity property. We also algorithmically realize the ITE based detection that enjoys linear time complexity via a message-passing scheme, and further extend it to general graphs. Extensive experiments on synthetic and real datasets confirm the superiority of ITE to the baselines. For example, ITE returns an accuracy of 85%, ranking the source among the top 10%, far exceeding 55% of the classic algorithm on scale-free networks.
{"title":"Finding the Source in Networks: An Approach Based on Structural Entropy","authors":"Chong Zhang, Qiang Guo, Luoyi Fu, Jiaxin Ding, Xinde Cao, Fei Long, Xinbing Wang, Chenghu Zhou","doi":"https://dl.acm.org/doi/10.1145/3568309","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3568309","url":null,"abstract":"<p>The popularity of intelligent devices provides straightforward access to the Internet and online social networks. However, the quick and easy data updates from networks also benefit the risk spreading, such as rumor, malware, or computer viruses. To this end, this article studies the problem of source detection, which is to infer the source node out of an aftermath of a cascade, that is, the observed infected graph <i>G<sub>N</sub></i> of the network at some time. Prior arts have adopted various statistical quantities such as degree, distance, or infection size to reflect the structural centrality of the source. In this article, we propose a new metric that we call the infected tree entropy (ITE), to utilize richer underlying structural features for source detection. Our idea of ITE is inspired by the conception of structural entropy [21], which demonstrated that the minimization of average bits to encode the network structures with different partitions is the principle for detecting the natural or true structures in real-world networks. Accordingly, our proposed ITE based estimator for the source tries to minimize the coding of network partitions brought by the infected tree rooted at all the potential sources, thus minimizing the structural deviation between the cascades from the potential sources and the actual infection process included in <i>G<sub>N</sub></i>. On polynomially growing geometric trees, with increasing tree heterogeneity, the ITE estimator remarkably yields more reliable detection under only moderate infection sizes, and returns an asymptotically complete detection. In contrast, for regular expanding trees, we still observe guaranteed detection probability of ITE estimator even with an infinite infection size, thanks to the degree regularity property. We also algorithmically realize the ITE based detection that enjoys linear time complexity via a message-passing scheme, and further extend it to general graphs. Extensive experiments on synthetic and real datasets confirm the superiority of ITE to the baselines. For example, ITE returns an accuracy of 85%, ranking the source among the top 10%, far exceeding 55% of the classic algorithm on scale-free networks.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"1 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Software Defect Prediction (SDP) is crucial towards software quality assurance in software engineering. SDP analyzes the software metrics data for timely prediction of defect prone software modules. Prediction process is automated by constructing defect prediction classification models using machine learning techniques. These models are trained using metrics data from historical projects of similar types. Based on the learned experience, models are used to predict defect prone modules in currently tested software. These models perform well if the concept is stationary in a dynamic software development environment. But their performance degrades unexpectedly in the presence of change in concept (Concept Drift). Therefore, concept drift (CD) detection is an important activity for improving the overall accuracy of the prediction model. Previous studies on SDP have shown that CD may occur in software defect data and the used defect prediction model may require to be updated to deal with CD. This phenomenon of handling the CD is known as CD adaptation. It is observed that still efforts need to be done in this direction in the SDP domain. In this article, we have proposed a pair of paired learners (PoPL) approach for handling CD in SDP. We combined the drift detection capabilities of two independent paired learners and used the paired learner (PL) with the best performance in recent time for next prediction. We experimented on various publicly available software defect datasets garnered from public data repositories. Experimentation results showed that our proposed approach performed better than the existing similar works and the base PL model based on various performance measures.
{"title":"Concept Drift in Software Defect Prediction: A Method for Detecting and Handling the Drift","authors":"Arvind Kumar Gangwar, Surinder Kumar","doi":"10.1145/3589342","DOIUrl":"https://doi.org/10.1145/3589342","url":null,"abstract":"Software Defect Prediction (SDP) is crucial towards software quality assurance in software engineering. SDP analyzes the software metrics data for timely prediction of defect prone software modules. Prediction process is automated by constructing defect prediction classification models using machine learning techniques. These models are trained using metrics data from historical projects of similar types. Based on the learned experience, models are used to predict defect prone modules in currently tested software. These models perform well if the concept is stationary in a dynamic software development environment. But their performance degrades unexpectedly in the presence of change in concept (Concept Drift). Therefore, concept drift (CD) detection is an important activity for improving the overall accuracy of the prediction model. Previous studies on SDP have shown that CD may occur in software defect data and the used defect prediction model may require to be updated to deal with CD. This phenomenon of handling the CD is known as CD adaptation. It is observed that still efforts need to be done in this direction in the SDP domain. In this article, we have proposed a pair of paired learners (PoPL) approach for handling CD in SDP. We combined the drift detection capabilities of two independent paired learners and used the paired learner (PL) with the best performance in recent time for next prediction. We experimented on various publicly available software defect datasets garnered from public data repositories. Experimentation results showed that our proposed approach performed better than the existing similar works and the base PL model based on various performance measures.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"23 1","pages":"1 - 28"},"PeriodicalIF":5.3,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43163924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: https://dl.acm.org/doi/10.1145/3561820
Gonul Ayci, Murat Sensoy, Arzucan Özgür, Pinar Yolum
Many software systems, such as online social networks, enable users to share information about themselves. Although the action of sharing is simple, it requires an elaborate thought process on privacy: what to share, with whom to share, and for what purposes. Thinking about these for each piece of content to be shared is tedious. Recent approaches to tackle this problem build personal assistants that can help users by learning what is private over time and recommending privacy labels such as private or public to individual content that a user considers sharing. However, privacy is inherently ambiguous and highly personal. Existing approaches to recommend privacy decisions do not address these aspects of privacy sufficiently. Ideally, a personal assistant should be able to adjust its recommendation based on a given user, considering that user’s privacy understanding. Moreover, the personal assistant should be able to assess when its recommendation would be uncertain and let the user make the decision on her own. Accordingly, this article proposes a personal assistant that uses evidential deep learning to classify content based on its privacy label. An important characteristic of the personal assistant is that it can model its uncertainty in its decisions explicitly, determine that it does not know the answer, and delegate from making a recommendation when its uncertainty is high. By factoring in the user’s own understanding of privacy, such as risk factors or own labels, the personal assistant can personalize its recommendations per user. We evaluate our proposed personal assistant using a well-known dataset. Our results show that our personal assistant can accurately identify uncertain cases, personalize them to its user’s needs, and thus helps users preserve their privacy well.
{"title":"Uncertainty-Aware Personal Assistant for Making Personalized Privacy Decisions","authors":"Gonul Ayci, Murat Sensoy, Arzucan Özgür, Pinar Yolum","doi":"https://dl.acm.org/doi/10.1145/3561820","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3561820","url":null,"abstract":"<p>Many software systems, such as online social networks, enable users to share information about themselves. Although the action of sharing is simple, it requires an elaborate thought process on privacy: what to share, with whom to share, and for what purposes. Thinking about these for each piece of content to be shared is tedious. Recent approaches to tackle this problem build personal assistants that can help users by learning what is private over time and recommending privacy labels such as private or public to individual content that a user considers sharing. However, privacy is inherently <i>ambiguous</i> and highly <i>personal</i>. Existing approaches to recommend privacy decisions do not address these aspects of privacy sufficiently. Ideally, a personal assistant should be able to adjust its recommendation based on a given user, considering that user’s privacy understanding. Moreover, the personal assistant should be able to assess when its recommendation would be uncertain and let the user make the decision on her own. Accordingly, this article proposes a personal assistant that uses evidential deep learning to classify content based on its privacy label. An important characteristic of the personal assistant is that it can model its uncertainty in its decisions explicitly, determine that it does not know the answer, and delegate from making a recommendation when its uncertainty is high. By factoring in the user’s own understanding of privacy, such as risk factors or own labels, the personal assistant can personalize its recommendations per user. We evaluate our proposed personal assistant using a well-known dataset. Our results show that our personal assistant can accurately identify uncertain cases, personalize them to its user’s needs, and thus helps users preserve their privacy well.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"72 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-turn response selection is a key issue in retrieval-based chatbots and has attracted considerable attention in the NLP (Natural Language processing) field. So far, researchers have developed many solutions that can select appropriate responses for multi-turn conversations. However, these works are still suffering from the semantic mismatch problem when responses and context share similar words with different meanings. In this article, we propose a novel chatbot model based on Semantic Awareness Matching, called SAM. SAM can capture both similarity and semantic features in the context by a two-layer matching network. Appropriate responses are selected according to the matching probability made through the aggregation of the two feature types. In the evaluation, we pick 4 widely used datasets and compare SAM’s performance to that of 12 other models. Experiment results show that SAM achieves substantial improvements, with up to 1.5% R10@1 on Ubuntu Dialogue Corpus V2, 0.5% R10@1 on Douban Conversation Corpus, and 1.3% R10@1 on E-commerce Corpus.
{"title":"SAM: Multi-turn Response Selection Based on Semantic Awareness Matching","authors":"Rongjunchen Zhang, Tingmin Wu, Sheng Wen, Surya Nepal, Cecile Paris, Yang Xiang","doi":"https://dl.acm.org/doi/10.1145/3545570","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3545570","url":null,"abstract":"<p>Multi-turn response selection is a key issue in retrieval-based chatbots and has attracted considerable attention in the NLP (Natural Language processing) field. So far, researchers have developed many solutions that can select appropriate responses for multi-turn conversations. However, these works are still suffering from the semantic mismatch problem when responses and context share similar words with different meanings. In this article, we propose a novel chatbot model based on Semantic Awareness Matching, called SAM. SAM can capture both similarity and semantic features in the context by a two-layer matching network. Appropriate responses are selected according to the matching probability made through the aggregation of the two feature types. In the evaluation, we pick 4 widely used datasets and compare SAM’s performance to that of 12 other models. Experiment results show that SAM achieves substantial improvements, with up to 1.5% <i>R</i><sub>10</sub>@1 on Ubuntu Dialogue Corpus V2, 0.5% <i>R</i><sub>10</sub>@1 on Douban Conversation Corpus, and 1.3% <i>R</i><sub>10</sub>@1 on E-commerce Corpus.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"1206 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open market environments consist of a set of participants (vendors and consumers) that dynamically leave or join the market. As a result, the arising dynamism leads to uncertainties in supply and demand of the resources in these open markets. In specific, in such uncertain markets, vendors attempt to maximise their revenue by dynamically changing their selling prices according to the market demand. In this regard, an optimal resource allocation approach becomes immensely needed to optimise the selling prices based on the supply and demand of the resources in the open market. Therefore, optimal selling prices should maximise the revenue of vendors while protecting the utility of buyers. In this context, we propose a real-time pricing approach for resource allocation in open market environments. The proposed approach introduces a priority-based fairness mechanism to allocate the available resources in a reverse-auction paradigm. Finally, we compare the proposed approach with two state-of-the-art resource allocation approaches. The experimental results show that the proposed approach outperforms the other two resource allocation approaches in its ability to maximise the vendors’ revenue.
{"title":"Real-time Pricing-based Resource Allocation in Open Market Environments","authors":"P. Mishra, Ahmed Moustafa, T. Ito","doi":"10.1145/3465237","DOIUrl":"https://doi.org/10.1145/3465237","url":null,"abstract":"Open market environments consist of a set of participants (vendors and consumers) that dynamically leave or join the market. As a result, the arising dynamism leads to uncertainties in supply and demand of the resources in these open markets. In specific, in such uncertain markets, vendors attempt to maximise their revenue by dynamically changing their selling prices according to the market demand. In this regard, an optimal resource allocation approach becomes immensely needed to optimise the selling prices based on the supply and demand of the resources in the open market. Therefore, optimal selling prices should maximise the revenue of vendors while protecting the utility of buyers. In this context, we propose a real-time pricing approach for resource allocation in open market environments. The proposed approach introduces a priority-based fairness mechanism to allocate the available resources in a reverse-auction paradigm. Finally, we compare the proposed approach with two state-of-the-art resource allocation approaches. The experimental results show that the proposed approach outperforms the other two resource allocation approaches in its ability to maximise the vendors’ revenue.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"23 1","pages":"1 - 22"},"PeriodicalIF":5.3,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46098084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Borges, C. Taconet, S. Chabridon, D. Conan, Everton Cavalcante, T. Batista
In the last years, Internet of Things (IoT) platforms have been designed to provide IoT applications with various services such as device discovery, context management, and data filtering. The lack of standardization has led each IoT platform to propose its own abstractions, APIs, and data models. As a consequence, programming interactions between an IoT consuming application and an IoT platform is time-consuming, is error prone, and depends on the developers’ level of knowledge about the IoT platform. To address these issues, this article introduces IoTvar, a middleware library deployed on the IoT consumer application that manages all its interactions with IoT platforms. IoTvar relies on declaring variables automatically mapped to sensors whose values are transparently updated with sensor observations through proxies on the client side. This article presents the IoTvar architecture and shows how it has been integrated into the FIWARE, OM2M, and muDEBS platforms. We also report the results of experiments performed to evaluate IoTvar, showing that it reduces the effort required to declare and manage IoT variables and has no considerable impact on CPU, memory, and energy consumption.
{"title":"Taming Internet of Things Application Development with the IoTvar Middleware","authors":"P. Borges, C. Taconet, S. Chabridon, D. Conan, Everton Cavalcante, T. Batista","doi":"10.1145/3586010","DOIUrl":"https://doi.org/10.1145/3586010","url":null,"abstract":"In the last years, Internet of Things (IoT) platforms have been designed to provide IoT applications with various services such as device discovery, context management, and data filtering. The lack of standardization has led each IoT platform to propose its own abstractions, APIs, and data models. As a consequence, programming interactions between an IoT consuming application and an IoT platform is time-consuming, is error prone, and depends on the developers’ level of knowledge about the IoT platform. To address these issues, this article introduces IoTvar, a middleware library deployed on the IoT consumer application that manages all its interactions with IoT platforms. IoTvar relies on declaring variables automatically mapped to sensors whose values are transparently updated with sensor observations through proxies on the client side. This article presents the IoTvar architecture and shows how it has been integrated into the FIWARE, OM2M, and muDEBS platforms. We also report the results of experiments performed to evaluate IoTvar, showing that it reduces the effort required to declare and manage IoT variables and has no considerable impact on CPU, memory, and energy consumption.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":" ","pages":"1 - 21"},"PeriodicalIF":5.3,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47551992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-27DOI: https://dl.acm.org/doi/10.1145/3563215
Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong
Customizing and deploying an edge system are time-consuming and complex tasks because of hardware heterogeneity, third-party software compatibility, diverse performance requirements, and so on. In this article, we present TinyEdge, a holistic framework for the low-code development of edge systems. The key idea of TinyEdge is to use a top-down approach for designing edge systems. Developers select and configure TinyEdge modules to specify their interaction logic without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimates the performance with sufficient profiling. TinyEdge provides a unified development toolkit to specify module dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: (1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of development time and 67.79% of lines of code on average compared with the state-of-the-art edge computing platforms; (2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message routing efficiency; (3) TinyEdge performance estimation has low absolute errors in various settings.
{"title":"A Low-code Development Framework for Cloud-native Edge Systems","authors":"Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong","doi":"https://dl.acm.org/doi/10.1145/3563215","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3563215","url":null,"abstract":"<p>Customizing and deploying an edge system are time-consuming and complex tasks because of hardware heterogeneity, third-party software compatibility, diverse performance requirements, and so on. In this article, we present TinyEdge, a holistic framework for the low-code development of edge systems. The key idea of TinyEdge is to use a top-down approach for designing edge systems. Developers select and configure TinyEdge modules to specify their interaction logic without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimates the performance with sufficient profiling. TinyEdge provides a unified development toolkit to specify module dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: (1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of development time and 67.79% of lines of code on average compared with the state-of-the-art edge computing platforms; (2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message routing efficiency; (3) TinyEdge performance estimation has low absolute errors in various settings.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"1 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-27DOI: https://dl.acm.org/doi/10.1145/3546867
Carlos Hernández-Castro, David F. Barrero, Maria Dolores R-Moreno
In this article, we present fundamental design flaws of CaptchaStar. We also present a full analysis using the BASECASS methodology that employs machine learning techniques. By means of this methodology, we find an attack that bypasses CaptchaStar with almost 100% accuracy.
{"title":"Breaking CaptchaStar Using the BASECASS Methodology","authors":"Carlos Hernández-Castro, David F. Barrero, Maria Dolores R-Moreno","doi":"https://dl.acm.org/doi/10.1145/3546867","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3546867","url":null,"abstract":"<p>In this article, we present fundamental design flaws of CaptchaStar. We also present a full analysis using the BASECASS methodology that employs machine learning techniques. By means of this methodology, we find an attack that bypasses CaptchaStar with almost 100% accuracy.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"19 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}