Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for applications ranging from dynamic programming to machine learning. However, the various ad hoc mappings of algorithms into hardware rely on researcher ingenuity and result in custom architectures that are difficult to systematize. We propose to associate race logic with the mathematical field of tropical algebra, enabling a more methodical approach toward building temporal circuits. This association between the mathematical primitives of tropical algebra and generalized race logic computations guides the design of temporally coded tropical circuits. It also serves as a framework for expressing high-level timing-based algorithms. This abstraction, when combined with temporal memory, allows for the systematic exploration of race logic-based temporal architectures by making it possible to partition feed-forward computations into stages and organize them into a state machine. We leverage analog memristor-based temporal memories to design such a state machine that operates purely on time-coded wavefronts. We implement a version of Dijkstra's algorithm to evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility of temporal computing to enable it to deliver significant energy and throughput advantages.
With the rise of Internet of Things (IoT), devices such as smartphones, embedded medical devices, smart home appliances as well as traditional computing platforms such as personal computers and servers have been increasingly targeted with a variety of cyber attacks. Due to limited hardware resources for embedded devices and difficulty in wide-coverage and on-time software updates, software-only cyber defense techniques, such as traditional anti-virus and malware detectors, do not offer a silver-bullet solution. Hardware-based security monitoring and protection techniques, therefore, have gained significant attention. Monitoring devices using side channel leakage information, e.g. power supply variation and electromagnetic (EM) radiation, is a promising avenue that promotes multiple directions in security and trust applications. In this paper, we provide a taxonomy of hardware-based monitoring techniques against different cyber and hardware attacks, highlight the potentials and unique challenges, and display how power-based side-channel instruction-level monitoring can offer suitable solutions to prevailing embedded device security issues. Further, we delineate approaches for future research directions.