F. Mendoza-Villa, Juan A. Ramos-Guivar, R. M. Espinoza-Bernardo
The solution of a quantum periodic potential in solid state physics is relevant because one can understand how electrons behave in a corresponding crystal. In this paper, the analytical solution of the energy formulation for a one-dimensional periodic potential that meets certain boundary conditions is developed in a didactic and detailed way. In turn, the group speed and effective mass are also calculated from the transcendental energy equation of a potential V=V(x). From this, a comparison is made with periodic potentials with known analytical solutions, such as the Dirac delta, as well as rectangular and triangular potentials. Finally, some limits are proposed in which these periodic potentials of the form V=V(x) approach the periodic Dirac delta potential of positive intensity. Therefore, the calculations described in this paper can be used as the basis for more-complex one-dimensional potentials and related simulations.
{"title":"Generalized One-Dimensional Periodic Potential Wells Tending to the Dirac Delta Potential","authors":"F. Mendoza-Villa, Juan A. Ramos-Guivar, R. M. Espinoza-Bernardo","doi":"10.3390/physics6010006","DOIUrl":"https://doi.org/10.3390/physics6010006","url":null,"abstract":"The solution of a quantum periodic potential in solid state physics is relevant because one can understand how electrons behave in a corresponding crystal. In this paper, the analytical solution of the energy formulation for a one-dimensional periodic potential that meets certain boundary conditions is developed in a didactic and detailed way. In turn, the group speed and effective mass are also calculated from the transcendental energy equation of a potential V=V(x). From this, a comparison is made with periodic potentials with known analytical solutions, such as the Dirac delta, as well as rectangular and triangular potentials. Finally, some limits are proposed in which these periodic potentials of the form V=V(x) approach the periodic Dirac delta potential of positive intensity. Therefore, the calculations described in this paper can be used as the basis for more-complex one-dimensional potentials and related simulations.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"120 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Specific properties of quantum field theory are described by considering the combination of the system under investigation and the cloud of virtual or real particles associated with the field. Such a structure is called a “dressed system”, in contrast with the bare one in the absence of the interaction with the field. The description of the properties of such clouds in various physical situations is, today, an active research area. Here, we present the main features associated with virtual and real dressings, focusing on photon dressing. In analogy to virtual photon clouds dressing electrons in vacuum, virtual phonon clouds appear in solid-state physics. The interaction between real photons and the schematized two-level structure of an atom paves the way to flexible quantum control. Here, a unifying Floquet engineering approach is applied to describe single- and multiple-dressed atom configurations. Connections with the past and present atomic physics experiments are presented.
{"title":"Atoms Dressed by Virtual and Real Photons","authors":"Maria Allegrini, E. Arimondo","doi":"10.3390/physics6010005","DOIUrl":"https://doi.org/10.3390/physics6010005","url":null,"abstract":"Specific properties of quantum field theory are described by considering the combination of the system under investigation and the cloud of virtual or real particles associated with the field. Such a structure is called a “dressed system”, in contrast with the bare one in the absence of the interaction with the field. The description of the properties of such clouds in various physical situations is, today, an active research area. Here, we present the main features associated with virtual and real dressings, focusing on photon dressing. In analogy to virtual photon clouds dressing electrons in vacuum, virtual phonon clouds appear in solid-state physics. The interaction between real photons and the schematized two-level structure of an atom paves the way to flexible quantum control. Here, a unifying Floquet engineering approach is applied to describe single- and multiple-dressed atom configurations. Connections with the past and present atomic physics experiments are presented.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"32 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139446194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Altermagnetism Then and Now","authors":"Igor Mazin","doi":"10.1103/physics.17.4","DOIUrl":"https://doi.org/10.1103/physics.17.4","url":null,"abstract":"","PeriodicalId":509432,"journal":{"name":"Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denimara Dias dos Santos, S. Panda, A. Rodr'iguez-Ardila, M. Marinello
Constraining the physical conditions of the ionized media in the vicinity of an active supermassive black hole (SMBH) is crucial to understanding how these complex systems operate. Metal emission lines such as iron (Fe) are useful probes to trace the gaseous media’s abundance, activity, and evolution in these accreting systems. Among these, the Feii emission has been the focus of many prior studies to investigate the energetics, kinematics, and composition of the broad-emission line region (BELR) from where these emission lines are produced. In this paper, we present the first simultaneous Feii modeling in the optical and near-infrared (NIR) regions. We use cloudy photoionization code to simulate both spectral regions in the wavelength interval 4000–12,000 Å. We compare our model predictions with the observed line flux ratios for I Zw (Zwicky) 1—a prototypical strong Feii-emitting active galactic nuclei (AGNs). This allows setting constraints on the BLR cloud density and metal content that is optimal for the production of the Feii emission, which can be extended to I Zw 1-like sources by examining a broad parameter space. We demonstrate the salient and distinct features of the Feii pseudo-continuum in the optical and NIR, giving special attention to the effect of micro-turbulence on the intensity of the Feii emission.
对活动超大质量黑洞(SMBH)附近电离介质的物理条件进行约束,对于了解这些复杂系统的运行方式至关重要。铁(Fe)等金属发射线是追踪这些吸积系统中气态介质的丰度、活性和演化的有用探针。其中,Feii 辐射线是先前许多研究的重点,这些研究旨在调查产生这些辐射线的宽辐射线区域(BELR)的能量学、运动学和组成。在本文中,我们首次在光学和近红外(NIR)区域同时建立了 Feii 模型。我们将模型预测值与观测到的 I Zw (Zwicky) 1--一个典型的强 Fei 发射活动星系核(AGNs)的发射线通量比进行了比较。这就为产生 Feii 辐射的最佳 BLR 云密度和金属含量设定了约束条件,通过研究广阔的参数空间,这些约束条件可以扩展到 I Zw 1 类源。我们展示了Feii伪连续在光学和近红外波段的显著特征,特别关注了微湍流对Feii发射强度的影响。
{"title":"Joint Analysis of the Iron Emission in the Optical and Near-Infrared Spectrum of I Zw 1","authors":"Denimara Dias dos Santos, S. Panda, A. Rodr'iguez-Ardila, M. Marinello","doi":"10.3390/physics6010013","DOIUrl":"https://doi.org/10.3390/physics6010013","url":null,"abstract":"Constraining the physical conditions of the ionized media in the vicinity of an active supermassive black hole (SMBH) is crucial to understanding how these complex systems operate. Metal emission lines such as iron (Fe) are useful probes to trace the gaseous media’s abundance, activity, and evolution in these accreting systems. Among these, the Feii emission has been the focus of many prior studies to investigate the energetics, kinematics, and composition of the broad-emission line region (BELR) from where these emission lines are produced. In this paper, we present the first simultaneous Feii modeling in the optical and near-infrared (NIR) regions. We use cloudy photoionization code to simulate both spectral regions in the wavelength interval 4000–12,000 Å. We compare our model predictions with the observed line flux ratios for I Zw (Zwicky) 1—a prototypical strong Feii-emitting active galactic nuclei (AGNs). This allows setting constraints on the BLR cloud density and metal content that is optimal for the production of the Feii emission, which can be extended to I Zw 1-like sources by examining a broad parameter space. We demonstrate the salient and distinct features of the Feii pseudo-continuum in the optical and NIR, giving special attention to the effect of micro-turbulence on the intensity of the Feii emission.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140513265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Marziani, Alberto Floris, A. Deconto‐Machado, S. Panda, M. Śniegowska, Karla Garnica, D. Dultzin, Mauro D’Onofrio, A. del Olmo, E. Bon, N. Bon
The 4D (four-dimensional) eigenvector 1 (E1) sequence has proven to be a highly effective tool for organizing observational and physical properties of type-1 active galactic nuclei (AGNs). In this paper, we present multiple measurements of metallicity for the broad line region gas, from new and previously-published data. We demonstrate a consistent trend along the optical plane of the E1 (also known as the quasar main sequence), defined by the line width of Balmer hydrogen Hβ profile and by a parameter measuring the prominence of singly-ionized iron emission. The trend involves an increase from sub-solar metallicity in correspondence with extreme Population B (weak Feii emission, large Hβ FWHM (full width at half maximum)) to metallicity several tens the solar value in correspondence with extreme Population A (strongest Feii optical emission, narrower Hβ profiles). The data establish the metallicity as a correlate of the 4DE1/main sequence. If the considerably high metallicity (Z≳10Z⊙, solar metallicity) gas is expelled from the sphere of influence of the central black hole, as indicated by the widespread evidence of nuclear outflows and disk wind in the case of sources radiating at a high Eddington ratio, then it is possible that the outflows from quasars played a role in chemically enriching the host galaxy.
{"title":"From Sub-Solar to Super-Solar Chemical Abundances along the Quasar Main Sequence","authors":"Paola Marziani, Alberto Floris, A. Deconto‐Machado, S. Panda, M. Śniegowska, Karla Garnica, D. Dultzin, Mauro D’Onofrio, A. del Olmo, E. Bon, N. Bon","doi":"10.3390/physics6010016","DOIUrl":"https://doi.org/10.3390/physics6010016","url":null,"abstract":"The 4D (four-dimensional) eigenvector 1 (E1) sequence has proven to be a highly effective tool for organizing observational and physical properties of type-1 active galactic nuclei (AGNs). In this paper, we present multiple measurements of metallicity for the broad line region gas, from new and previously-published data. We demonstrate a consistent trend along the optical plane of the E1 (also known as the quasar main sequence), defined by the line width of Balmer hydrogen Hβ profile and by a parameter measuring the prominence of singly-ionized iron emission. The trend involves an increase from sub-solar metallicity in correspondence with extreme Population B (weak Feii emission, large Hβ FWHM (full width at half maximum)) to metallicity several tens the solar value in correspondence with extreme Population A (strongest Feii optical emission, narrower Hβ profiles). The data establish the metallicity as a correlate of the 4DE1/main sequence. If the considerably high metallicity (Z≳10Z⊙, solar metallicity) gas is expelled from the sphere of influence of the central black hole, as indicated by the widespread evidence of nuclear outflows and disk wind in the case of sources radiating at a high Eddington ratio, then it is possible that the outflows from quasars played a role in chemically enriching the host galaxy.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"13 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140514056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculating How Atoms Scatter Off Surfaces","authors":"Charles Day","doi":"10.1103/physics.17.s1","DOIUrl":"https://doi.org/10.1103/physics.17.s1","url":null,"abstract":"","PeriodicalId":509432,"journal":{"name":"Physics","volume":"70 1-2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140514723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turbulence Modeling No Longer a Drag","authors":"Ryan Wilkinson","doi":"10.1103/physics.17.s2","DOIUrl":"https://doi.org/10.1103/physics.17.s2","url":null,"abstract":"","PeriodicalId":509432,"journal":{"name":"Physics","volume":"128 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140515604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}