Jianquan Tian, Bin Yuan, Jinchang Li, Wei Zhang, Rouzbeh Ghanbarnezhad-Moghanloo
Rate-transient analysis (RTA) has been widely applied to extract reservoir/fracture properties using analytical and semi-analytical methods with simplifying assumptions. However, current RTA models may lead to misdiagnosis of flow regimes and incorrect estimates of reservoir/fracture information when complex fracture network, multiphase flow, and pressure-dependent properties occur in tight reservoirs simultaneously. A semi-analytical model is developed to account for multiphase flow, complex fracture network, and pressure-dependent properties. The technique uses the black oil formulation and butterfly model to determine three nonlinear partial differential equations (PDEs) that describe the flow of oil, gas, and water in the reservoir with complex fracture network. A modified Boltzmann variable considering the heterogeneity of complex fracture network is proposed to convert the fluid flow PDEs to a set of ordinary differential equations (ODEs) that can be solved through the Runge-Kutta method. A new rate-transient analysis workflow is also developed to improve flow regime identification (ID) and the accuracy for tight oil reservoirs with complex fracture network. It is applied to a synthetic case with equivalently modeled complex fracture network and multiphase flow. The estimated fracture properties are in excellent agreement with model inputs.
{"title":"A semi-analytical rate-transient analysis model for fractured horizontal well in tight reservoirs under multiphase flow conditions","authors":"Jianquan Tian, Bin Yuan, Jinchang Li, Wei Zhang, Rouzbeh Ghanbarnezhad-Moghanloo","doi":"10.1115/1.4065031","DOIUrl":"https://doi.org/10.1115/1.4065031","url":null,"abstract":"\u0000 Rate-transient analysis (RTA) has been widely applied to extract reservoir/fracture properties using analytical and semi-analytical methods with simplifying assumptions. However, current RTA models may lead to misdiagnosis of flow regimes and incorrect estimates of reservoir/fracture information when complex fracture network, multiphase flow, and pressure-dependent properties occur in tight reservoirs simultaneously. A semi-analytical model is developed to account for multiphase flow, complex fracture network, and pressure-dependent properties. The technique uses the black oil formulation and butterfly model to determine three nonlinear partial differential equations (PDEs) that describe the flow of oil, gas, and water in the reservoir with complex fracture network. A modified Boltzmann variable considering the heterogeneity of complex fracture network is proposed to convert the fluid flow PDEs to a set of ordinary differential equations (ODEs) that can be solved through the Runge-Kutta method. A new rate-transient analysis workflow is also developed to improve flow regime identification (ID) and the accuracy for tight oil reservoirs with complex fracture network. It is applied to a synthetic case with equivalently modeled complex fracture network and multiphase flow. The estimated fracture properties are in excellent agreement with model inputs.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"16 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140257968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Gomes Vargas, Pablo Silva Ortiz, Silvio de Oliveira Junior
This study assesses renewable hydrogen production via gasification of residual biomass, using Artificial Neural Networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from Aspen Plus® software predicts hydrogen conversion from each biomass type, with a 3-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed maximum HHV of 18.1 MJ/kg for sewage sludge, highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.
{"title":"Performance analysis of waste biomass gasification and renewable hydrogen production by neural network algorithm","authors":"Gabriel Gomes Vargas, Pablo Silva Ortiz, Silvio de Oliveira Junior","doi":"10.1115/1.4064849","DOIUrl":"https://doi.org/10.1115/1.4064849","url":null,"abstract":"\u0000 This study assesses renewable hydrogen production via gasification of residual biomass, using Artificial Neural Networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from Aspen Plus® software predicts hydrogen conversion from each biomass type, with a 3-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed maximum HHV of 18.1 MJ/kg for sewage sludge, highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"94 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140426529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yttria stabilized zirconia (YSZ) ((ZrO2)0.93(Y2O3)0.07) and alumina-yttria stabilized zirconia ((Al2O3)0.853 + (ZrO2)0.93(Y2O3)0.07) thermal barrier coatings (TBCs) were modeled in the presence of hydrogen enriched combustion product gases to evaluate phase composition and thermal expansivity (coefficient of thermal expansion). Thermal equilibrium simulations for various equivalence ratios (0.5–0.75) and hydrogen enrichment percentages (0%–50%) were conducted to determine the product gas composition for various combustor operating conditions. The obtained product gases were then used in a second thermal equilibrium simulation to demonstrate their effect on the defined thermal barrier coatings. The modeling predictions showed that hydrogen enrichment percentage and equivalence ratio were positively correlated to thermal expansivity for both the thermal barrier coatings examined. The alumina-YSZ composite coating exhibited a higher coefficient of thermal expansion (CTE), more closely matching the CTE of a metallic bond coat, for the studied conditions. This closer match of thermal expansivity results in less significant thermal stresses than the YSZ thermal barrier coating. Increase in hydrogen enrichment percentage and equivalence ratio yielded increased percentages of phase transitions from tetragonal zirconia (t-ZrO2) to cubic zirconia (c-ZrO2). The YSZ thermal barrier coating had a larger percentage of phase transitions throughout the operating range examined, which renders concerns for potential failure from thermal cycling and creep. Theoretical examination of the phase composition and thermal expansivity provided further insights on the fate and behavior of the thermal barrier coatings.
{"title":"Theoretical Evaluation of YSZ and Alumina-YSZ Thermal Barrier Coatings in a Hydrogen Enriched Combustion Environment","authors":"Ezekiel Salvo, Murat Sahin, Ashwani K. Gupta","doi":"10.1115/1.4064711","DOIUrl":"https://doi.org/10.1115/1.4064711","url":null,"abstract":"\u0000 Yttria stabilized zirconia (YSZ) ((ZrO2)0.93(Y2O3)0.07) and alumina-yttria stabilized zirconia ((Al2O3)0.853 + (ZrO2)0.93(Y2O3)0.07) thermal barrier coatings (TBCs) were modeled in the presence of hydrogen enriched combustion product gases to evaluate phase composition and thermal expansivity (coefficient of thermal expansion). Thermal equilibrium simulations for various equivalence ratios (0.5–0.75) and hydrogen enrichment percentages (0%–50%) were conducted to determine the product gas composition for various combustor operating conditions. The obtained product gases were then used in a second thermal equilibrium simulation to demonstrate their effect on the defined thermal barrier coatings. The modeling predictions showed that hydrogen enrichment percentage and equivalence ratio were positively correlated to thermal expansivity for both the thermal barrier coatings examined. The alumina-YSZ composite coating exhibited a higher coefficient of thermal expansion (CTE), more closely matching the CTE of a metallic bond coat, for the studied conditions. This closer match of thermal expansivity results in less significant thermal stresses than the YSZ thermal barrier coating. Increase in hydrogen enrichment percentage and equivalence ratio yielded increased percentages of phase transitions from tetragonal zirconia (t-ZrO2) to cubic zirconia (c-ZrO2). The YSZ thermal barrier coating had a larger percentage of phase transitions throughout the operating range examined, which renders concerns for potential failure from thermal cycling and creep. Theoretical examination of the phase composition and thermal expansivity provided further insights on the fate and behavior of the thermal barrier coatings.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"294 1-2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yttria stabilized zirconia (YSZ) ((ZrO2)0.93(Y2O3)0.07) and alumina-yttria stabilized zirconia ((Al2O3)0.853 + (ZrO2)0.93(Y2O3)0.07) thermal barrier coatings (TBCs) were modeled in the presence of hydrogen enriched combustion product gases to evaluate phase composition and thermal expansivity (coefficient of thermal expansion). Thermal equilibrium simulations for various equivalence ratios (0.5–0.75) and hydrogen enrichment percentages (0%–50%) were conducted to determine the product gas composition for various combustor operating conditions. The obtained product gases were then used in a second thermal equilibrium simulation to demonstrate their effect on the defined thermal barrier coatings. The modeling predictions showed that hydrogen enrichment percentage and equivalence ratio were positively correlated to thermal expansivity for both the thermal barrier coatings examined. The alumina-YSZ composite coating exhibited a higher coefficient of thermal expansion (CTE), more closely matching the CTE of a metallic bond coat, for the studied conditions. This closer match of thermal expansivity results in less significant thermal stresses than the YSZ thermal barrier coating. Increase in hydrogen enrichment percentage and equivalence ratio yielded increased percentages of phase transitions from tetragonal zirconia (t-ZrO2) to cubic zirconia (c-ZrO2). The YSZ thermal barrier coating had a larger percentage of phase transitions throughout the operating range examined, which renders concerns for potential failure from thermal cycling and creep. Theoretical examination of the phase composition and thermal expansivity provided further insights on the fate and behavior of the thermal barrier coatings.
{"title":"Theoretical Evaluation of YSZ and Alumina-YSZ Thermal Barrier Coatings in a Hydrogen Enriched Combustion Environment","authors":"Ezekiel Salvo, Murat Sahin, Ashwani K. Gupta","doi":"10.1115/1.4064711","DOIUrl":"https://doi.org/10.1115/1.4064711","url":null,"abstract":"\u0000 Yttria stabilized zirconia (YSZ) ((ZrO2)0.93(Y2O3)0.07) and alumina-yttria stabilized zirconia ((Al2O3)0.853 + (ZrO2)0.93(Y2O3)0.07) thermal barrier coatings (TBCs) were modeled in the presence of hydrogen enriched combustion product gases to evaluate phase composition and thermal expansivity (coefficient of thermal expansion). Thermal equilibrium simulations for various equivalence ratios (0.5–0.75) and hydrogen enrichment percentages (0%–50%) were conducted to determine the product gas composition for various combustor operating conditions. The obtained product gases were then used in a second thermal equilibrium simulation to demonstrate their effect on the defined thermal barrier coatings. The modeling predictions showed that hydrogen enrichment percentage and equivalence ratio were positively correlated to thermal expansivity for both the thermal barrier coatings examined. The alumina-YSZ composite coating exhibited a higher coefficient of thermal expansion (CTE), more closely matching the CTE of a metallic bond coat, for the studied conditions. This closer match of thermal expansivity results in less significant thermal stresses than the YSZ thermal barrier coating. Increase in hydrogen enrichment percentage and equivalence ratio yielded increased percentages of phase transitions from tetragonal zirconia (t-ZrO2) to cubic zirconia (c-ZrO2). The YSZ thermal barrier coating had a larger percentage of phase transitions throughout the operating range examined, which renders concerns for potential failure from thermal cycling and creep. Theoretical examination of the phase composition and thermal expansivity provided further insights on the fate and behavior of the thermal barrier coatings.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to growing concerns about the environmental impact of refrigerants, carbon dioxide (CO2) heat pumps have been increasingly evaluated as efficient alternatives for conventional heat pumps. Performance analyses of CO2 heat pump water heaters (HPWHs) have been the subject of many studies, but these are typically limited to parametric analyses of air-source HPWHs. The interrelated behavior of the supercritical and subcritical thermodynamic properties, component operation, and efficiency means that a parametric study cannot adequately capture the inherent nonlinearity. Therefore, this paper, for the first time, aims to perform a multi-objective optimization on CO2 water-sourced HPWH performance in order to minimize the total component costs, maximize gas cooler (GC) heating capacity, and maximize the coefficient of performance (COP) using two different optimization scenarios. The decision variables are defined as GC pressure (75 to 140 bar), evaporator temperature (−19.5 to 0.2°C), and GC outlet temperature for CO2 (16 to 36°C). The model performance is constrained by the practical ranges of the GC and evaporator inlet and outlet temperatures for water. A coupled simulation-optimization model through Python is developed using Engineering Equation Solver (EES) software and the non-dominated sorting genetic algorithm II (NSGA-II). The result of the optimal Pareto front showed that the optimal GC heating capacity changes from 19.2 to 56.7 kW, with a lowest cost of 7, 771 to a highest cost of 9,742, respectively. When the lower bound of the GC outlet temperature was set to 32°C, the Pareto front showed a maximum COP of 3.23, with a corresponding GC heating capacity of 44.36 kW.
{"title":"Enhancing CO2 Water-to-Water Heat Pump Performance through the Application of a Multi-Objective Evolutionary Algorithm","authors":"Shima Soleimani, Laura Schaefer, Kashif Liaqat, Aaron Cole, Jörg Temming, Heiner Kösters","doi":"10.1115/1.4064657","DOIUrl":"https://doi.org/10.1115/1.4064657","url":null,"abstract":"\u0000 Due to growing concerns about the environmental impact of refrigerants, carbon dioxide (CO2) heat pumps have been increasingly evaluated as efficient alternatives for conventional heat pumps. Performance analyses of CO2 heat pump water heaters (HPWHs) have been the subject of many studies, but these are typically limited to parametric analyses of air-source HPWHs. The interrelated behavior of the supercritical and subcritical thermodynamic properties, component operation, and efficiency means that a parametric study cannot adequately capture the inherent nonlinearity. Therefore, this paper, for the first time, aims to perform a multi-objective optimization on CO2 water-sourced HPWH performance in order to minimize the total component costs, maximize gas cooler (GC) heating capacity, and maximize the coefficient of performance (COP) using two different optimization scenarios. The decision variables are defined as GC pressure (75 to 140 bar), evaporator temperature (−19.5 to 0.2°C), and GC outlet temperature for CO2 (16 to 36°C). The model performance is constrained by the practical ranges of the GC and evaporator inlet and outlet temperatures for water. A coupled simulation-optimization model through Python is developed using Engineering Equation Solver (EES) software and the non-dominated sorting genetic algorithm II (NSGA-II). The result of the optimal Pareto front showed that the optimal GC heating capacity changes from 19.2 to 56.7 kW, with a lowest cost of 7, 771 to a highest cost of 9,742, respectively. When the lower bound of the GC outlet temperature was set to 32°C, the Pareto front showed a maximum COP of 3.23, with a corresponding GC heating capacity of 44.36 kW.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"13 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139805863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to growing concerns about the environmental impact of refrigerants, carbon dioxide (CO2) heat pumps have been increasingly evaluated as efficient alternatives for conventional heat pumps. Performance analyses of CO2 heat pump water heaters (HPWHs) have been the subject of many studies, but these are typically limited to parametric analyses of air-source HPWHs. The interrelated behavior of the supercritical and subcritical thermodynamic properties, component operation, and efficiency means that a parametric study cannot adequately capture the inherent nonlinearity. Therefore, this paper, for the first time, aims to perform a multi-objective optimization on CO2 water-sourced HPWH performance in order to minimize the total component costs, maximize gas cooler (GC) heating capacity, and maximize the coefficient of performance (COP) using two different optimization scenarios. The decision variables are defined as GC pressure (75 to 140 bar), evaporator temperature (−19.5 to 0.2°C), and GC outlet temperature for CO2 (16 to 36°C). The model performance is constrained by the practical ranges of the GC and evaporator inlet and outlet temperatures for water. A coupled simulation-optimization model through Python is developed using Engineering Equation Solver (EES) software and the non-dominated sorting genetic algorithm II (NSGA-II). The result of the optimal Pareto front showed that the optimal GC heating capacity changes from 19.2 to 56.7 kW, with a lowest cost of 7, 771 to a highest cost of 9,742, respectively. When the lower bound of the GC outlet temperature was set to 32°C, the Pareto front showed a maximum COP of 3.23, with a corresponding GC heating capacity of 44.36 kW.
{"title":"Enhancing CO2 Water-to-Water Heat Pump Performance through the Application of a Multi-Objective Evolutionary Algorithm","authors":"Shima Soleimani, Laura Schaefer, Kashif Liaqat, Aaron Cole, Jörg Temming, Heiner Kösters","doi":"10.1115/1.4064657","DOIUrl":"https://doi.org/10.1115/1.4064657","url":null,"abstract":"\u0000 Due to growing concerns about the environmental impact of refrigerants, carbon dioxide (CO2) heat pumps have been increasingly evaluated as efficient alternatives for conventional heat pumps. Performance analyses of CO2 heat pump water heaters (HPWHs) have been the subject of many studies, but these are typically limited to parametric analyses of air-source HPWHs. The interrelated behavior of the supercritical and subcritical thermodynamic properties, component operation, and efficiency means that a parametric study cannot adequately capture the inherent nonlinearity. Therefore, this paper, for the first time, aims to perform a multi-objective optimization on CO2 water-sourced HPWH performance in order to minimize the total component costs, maximize gas cooler (GC) heating capacity, and maximize the coefficient of performance (COP) using two different optimization scenarios. The decision variables are defined as GC pressure (75 to 140 bar), evaporator temperature (−19.5 to 0.2°C), and GC outlet temperature for CO2 (16 to 36°C). The model performance is constrained by the practical ranges of the GC and evaporator inlet and outlet temperatures for water. A coupled simulation-optimization model through Python is developed using Engineering Equation Solver (EES) software and the non-dominated sorting genetic algorithm II (NSGA-II). The result of the optimal Pareto front showed that the optimal GC heating capacity changes from 19.2 to 56.7 kW, with a lowest cost of 7, 771 to a highest cost of 9,742, respectively. When the lower bound of the GC outlet temperature was set to 32°C, the Pareto front showed a maximum COP of 3.23, with a corresponding GC heating capacity of 44.36 kW.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139865887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contemporary Problems of Thermal Engineering (CPOTE2022)","authors":"","doi":"10.1115/1.4064513","DOIUrl":"https://doi.org/10.1115/1.4064513","url":null,"abstract":"","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"9 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140497421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The global adoption of Savonius wind rotors as an eco-friendly means of small-scale power production is on the rise. However, their suboptimal performance remains a significant challenge due to the generation of higher unproductive torque. This paper aims to address this issue by obtaining an optimal blade profile considering the power coefficient (CP) as an output function using the optimization techniques. The objective function includes the overlap ratio, intermediate points on the curve, inlet velocity, and tip speed ratio (TSR) as the optimization geometric parameters. To achieve this, the simplex search method and the non-dominated sorting genetic algorithm II are opted to develop the blade profile. The blade profile is developed using a natural cubic spline curve with fixed end points and variable intermediate points along with other parameters. The computational analysis is done using ANSYS Fluent software with shear-stress transport k-ω turbulence model. The solver setup employs the finite volume method to simulate the transient 2D flow around the blade profile. A direct comparison is made between the optimized blade profile and the conventional semicircular one over a range of TSRs. The results clearly indicate the superior performance of the former exhibiting a higher CPmax by 23% compared to the conventional one at TSR = 0.8. Finally, experiments have been conducted in a wind tunnel to find the practical feasibility of the optimized blade profile generated through the simplex search method.
萨沃尼风力转子作为一种环保的小型发电手段,在全球范围内的应用正在不断增加。然而,由于会产生较高的非生产转矩,它们的次优性能仍然是一个重大挑战。本文旨在利用优化技术,通过将功率系数(CP)作为输出函数来获得最佳叶片轮廓,从而解决这一问题。目标函数包括作为优化几何参数的重叠率、曲线上的中间点、入口速度和叶尖速度比(TSR)。为此,选择了单纯形搜索法和非支配排序遗传算法 II 来开发叶片轮廓。叶片轮廓采用自然立方样条曲线,端点固定,中间点可变,并配有其他参数。计算分析采用 ANSYS Fluent 软件和剪应力传输 k-ω 湍流模型。求解器设置采用有限体积法模拟叶片轮廓周围的瞬态二维流动。在一定的 TSR 范围内,对优化的叶片轮廓和传统的半圆形叶片轮廓进行了直接比较。结果清楚地表明,在 TSR = 0.8 时,前者的 CPmax 比传统的高出 23%。最后,在风洞中进行了实验,以确定通过单纯搜索法生成的优化叶片轮廓的实际可行性。
{"title":"Evolving a Novel Blade Shape of a Savonius Wind Rotor Using an Optimization Technique Coupled with Numerical Simulations and Wind Tunnel Tests","authors":"Man Mohan, U. Saha","doi":"10.1115/1.4064529","DOIUrl":"https://doi.org/10.1115/1.4064529","url":null,"abstract":"\u0000 The global adoption of Savonius wind rotors as an eco-friendly means of small-scale power production is on the rise. However, their suboptimal performance remains a significant challenge due to the generation of higher unproductive torque. This paper aims to address this issue by obtaining an optimal blade profile considering the power coefficient (CP) as an output function using the optimization techniques. The objective function includes the overlap ratio, intermediate points on the curve, inlet velocity, and tip speed ratio (TSR) as the optimization geometric parameters. To achieve this, the simplex search method and the non-dominated sorting genetic algorithm II are opted to develop the blade profile. The blade profile is developed using a natural cubic spline curve with fixed end points and variable intermediate points along with other parameters. The computational analysis is done using ANSYS Fluent software with shear-stress transport k-ω turbulence model. The solver setup employs the finite volume method to simulate the transient 2D flow around the blade profile. A direct comparison is made between the optimized blade profile and the conventional semicircular one over a range of TSRs. The results clearly indicate the superior performance of the former exhibiting a higher CPmax by 23% compared to the conventional one at TSR = 0.8. Finally, experiments have been conducted in a wind tunnel to find the practical feasibility of the optimized blade profile generated through the simplex search method.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"29 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139603960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The flamelet model is a commonly used tool for turbulent combustion simulations in the engineering field due to its computational efficiency and compatibility with complex chemical reaction mechanisms. Despite being widely used for decades, the flamelet model still faces challenges when applied to complex flame configurations, such as partially premixed flames, inhomogeneous inlets, supersonic combustion, or multiphase combustion. The principal challenges are posed by the uncertainty of the presumed shapes for probability density functions of the flamelet tabulation variables and the coupled process of turbulent diffusion and chemical reaction in turbulent combustion. Recent progress is reviewed from the viewpoint of the reaction manifold, with connections made to other combustion models, as well as the determination of joint (or conditional) PDFs for flamelet manifold parameters (e.g., progress variable, scalar dissipation rates, etc.). Promising improvements have been outlined in computational efficiency and the accuracy of predicted variable fields in simulating complex combustion systems (such as turbulent inhomogeneous combustion, combustion with multi-regime modes, and two-phase combustion). Advances in computational resources, DNS data, artificial intelligence, stochastic simulation methods, and other dimension reduction combustion models will contribute to the development of more accurate and efficient flamelet-like models for engineering applications.
{"title":"Brief Review of Recent Achievements in the Flamelet Manifold Selection and Probability Density Distribution for Flamelet Manifold Variables","authors":"Guangying Yu, Bin Li","doi":"10.1115/1.4064526","DOIUrl":"https://doi.org/10.1115/1.4064526","url":null,"abstract":"\u0000 The flamelet model is a commonly used tool for turbulent combustion simulations in the engineering field due to its computational efficiency and compatibility with complex chemical reaction mechanisms. Despite being widely used for decades, the flamelet model still faces challenges when applied to complex flame configurations, such as partially premixed flames, inhomogeneous inlets, supersonic combustion, or multiphase combustion. The principal challenges are posed by the uncertainty of the presumed shapes for probability density functions of the flamelet tabulation variables and the coupled process of turbulent diffusion and chemical reaction in turbulent combustion. Recent progress is reviewed from the viewpoint of the reaction manifold, with connections made to other combustion models, as well as the determination of joint (or conditional) PDFs for flamelet manifold parameters (e.g., progress variable, scalar dissipation rates, etc.). Promising improvements have been outlined in computational efficiency and the accuracy of predicted variable fields in simulating complex combustion systems (such as turbulent inhomogeneous combustion, combustion with multi-regime modes, and two-phase combustion). Advances in computational resources, DNS data, artificial intelligence, stochastic simulation methods, and other dimension reduction combustion models will contribute to the development of more accurate and efficient flamelet-like models for engineering applications.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"10 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Zhou, Quanyou Cheng, Han Zhao, Zongsheng Zhang, Hao Wang
In response to the current problems such as electromagnetic coupling heating equipment relying on the limitations of electronic devices mostly and difficulty in achieving uniform heating of flowing material, this paper proposed a flowing heating system for pipelines of electromagnetic coupling of power frequency without the iron core. Using the heating system of 500kW/10.5kV, structural and electrical parameters were obtained from theoretical calculations, and a finite-element simulation model was established. Aiming at the problems of voltage waveform distortion and low power factor, the factors affecting the heating system such as pipe wall thickness and coupling gap were analyzed, and the influence laws on the heating system were obtained. The structure of the conductive ring was proposed for system optimization. In the case of the no-iron heart, the heat efficiency can reach 89.01%, the power factor increased to 0.915, and the voltage distortion was also significantly reduced. Based on the finite-element simulation results, the structure of the spoiler ball was proposed to address the problem of uneven heating, and the simulation showed that the spoiler balls can optimize the heating uniformity of the heating system. This system can realize the uniform heating of material without the cost of the iron core and has the characteristics of high voltage and high power, which can provide an effective way of thinking for the electric heating of hot water, steam, hot air, etc.
{"title":"Flowing Heating System for Pipeline of Electromagnetic Coupling of Power Frequency without the Iron Core and its Structure Optimization","authors":"Feng Zhou, Quanyou Cheng, Han Zhao, Zongsheng Zhang, Hao Wang","doi":"10.1115/1.4064525","DOIUrl":"https://doi.org/10.1115/1.4064525","url":null,"abstract":"\u0000 In response to the current problems such as electromagnetic coupling heating equipment relying on the limitations of electronic devices mostly and difficulty in achieving uniform heating of flowing material, this paper proposed a flowing heating system for pipelines of electromagnetic coupling of power frequency without the iron core. Using the heating system of 500kW/10.5kV, structural and electrical parameters were obtained from theoretical calculations, and a finite-element simulation model was established. Aiming at the problems of voltage waveform distortion and low power factor, the factors affecting the heating system such as pipe wall thickness and coupling gap were analyzed, and the influence laws on the heating system were obtained. The structure of the conductive ring was proposed for system optimization. In the case of the no-iron heart, the heat efficiency can reach 89.01%, the power factor increased to 0.915, and the voltage distortion was also significantly reduced. Based on the finite-element simulation results, the structure of the spoiler ball was proposed to address the problem of uneven heating, and the simulation showed that the spoiler balls can optimize the heating uniformity of the heating system. This system can realize the uniform heating of material without the cost of the iron core and has the characteristics of high voltage and high power, which can provide an effective way of thinking for the electric heating of hot water, steam, hot air, etc.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"139 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}