Brett S. Borchardt, Keith D. Sherburn, Russ S. Schumacher
Identifying radar signatures indicative of damaging surface winds produced by convection remains a challenge for operational meteorologists, especially within environments characterized by strong low-level static stability and convection for which inflow is presumably entirely above the planetary boundary layer. Numerical model simulations suggest the most prevalent method through which elevated convection generates damaging surface winds is via “up-down” trajectories, where a near-surface stable layer is dynamically lifted and then dropped with little to no connection to momentum associated with the elevated convection itself. Recently, a number of unique convective episodes during which damaging surface winds were produced by apparently elevated convection coincident with mesoscale gravity waves were identified and cataloged for study. A novel radar signature indicative of damaging surface winds produced by elevated convection is introduced through six representative cases. One case is then explored further via a high-resolution model simulation and related to the conceptual model of “up-down” trajectories. Understanding the processes responsible for, and radar signature indicative of, damaging surface winds produced by gravity-wave coincident convection will help operational forecasters identify and ultimately warn for a previously underappreciated phenomenon that poses a threat to lives and property.
{"title":"Radar Signatures and Surface Observations of Elevated Convection Associated with Damaging Surface Winds","authors":"Brett S. Borchardt, Keith D. Sherburn, Russ S. Schumacher","doi":"10.1175/waf-d-23-0171.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0171.1","url":null,"abstract":"\u0000Identifying radar signatures indicative of damaging surface winds produced by convection remains a challenge for operational meteorologists, especially within environments characterized by strong low-level static stability and convection for which inflow is presumably entirely above the planetary boundary layer. Numerical model simulations suggest the most prevalent method through which elevated convection generates damaging surface winds is via “up-down” trajectories, where a near-surface stable layer is dynamically lifted and then dropped with little to no connection to momentum associated with the elevated convection itself. Recently, a number of unique convective episodes during which damaging surface winds were produced by apparently elevated convection coincident with mesoscale gravity waves were identified and cataloged for study. A novel radar signature indicative of damaging surface winds produced by elevated convection is introduced through six representative cases. One case is then explored further via a high-resolution model simulation and related to the conceptual model of “up-down” trajectories. Understanding the processes responsible for, and radar signature indicative of, damaging surface winds produced by gravity-wave coincident convection will help operational forecasters identify and ultimately warn for a previously underappreciated phenomenon that poses a threat to lives and property.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"93 11-12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139849147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brett S. Borchardt, Keith D. Sherburn, Russ S. Schumacher
Identifying radar signatures indicative of damaging surface winds produced by convection remains a challenge for operational meteorologists, especially within environments characterized by strong low-level static stability and convection for which inflow is presumably entirely above the planetary boundary layer. Numerical model simulations suggest the most prevalent method through which elevated convection generates damaging surface winds is via “up-down” trajectories, where a near-surface stable layer is dynamically lifted and then dropped with little to no connection to momentum associated with the elevated convection itself. Recently, a number of unique convective episodes during which damaging surface winds were produced by apparently elevated convection coincident with mesoscale gravity waves were identified and cataloged for study. A novel radar signature indicative of damaging surface winds produced by elevated convection is introduced through six representative cases. One case is then explored further via a high-resolution model simulation and related to the conceptual model of “up-down” trajectories. Understanding the processes responsible for, and radar signature indicative of, damaging surface winds produced by gravity-wave coincident convection will help operational forecasters identify and ultimately warn for a previously underappreciated phenomenon that poses a threat to lives and property.
{"title":"Radar Signatures and Surface Observations of Elevated Convection Associated with Damaging Surface Winds","authors":"Brett S. Borchardt, Keith D. Sherburn, Russ S. Schumacher","doi":"10.1175/waf-d-23-0171.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0171.1","url":null,"abstract":"\u0000Identifying radar signatures indicative of damaging surface winds produced by convection remains a challenge for operational meteorologists, especially within environments characterized by strong low-level static stability and convection for which inflow is presumably entirely above the planetary boundary layer. Numerical model simulations suggest the most prevalent method through which elevated convection generates damaging surface winds is via “up-down” trajectories, where a near-surface stable layer is dynamically lifted and then dropped with little to no connection to momentum associated with the elevated convection itself. Recently, a number of unique convective episodes during which damaging surface winds were produced by apparently elevated convection coincident with mesoscale gravity waves were identified and cataloged for study. A novel radar signature indicative of damaging surface winds produced by elevated convection is introduced through six representative cases. One case is then explored further via a high-resolution model simulation and related to the conceptual model of “up-down” trajectories. Understanding the processes responsible for, and radar signature indicative of, damaging surface winds produced by gravity-wave coincident convection will help operational forecasters identify and ultimately warn for a previously underappreciated phenomenon that poses a threat to lives and property.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":" 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139789283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter J. Marinescu, Daniel Abdi, Kyle Hilburn, Isidora Jankov, Liao-Fan Lin
Estimates of soil moisture from two National Oceanic and Atmospheric Administration (NOAA) models are compared to in situ observations. The estimates are from a high-resolution atmospheric model with a land surface model (High-Resolution Rapid Refresh or HRRR model) and a hydrologic model from the NOAA Climate Prediction Center (CPC). Both models produce wetter soils in dry regions and drier soils in wet regions, as compared to the in situ observations. These soil moisture differences occur at most soil depths but are larger at the deeper depths below the surface (100 cm). Comparisons of soil moisture variability are also assessed as a function of soil moisture regime. Both models have lower standard deviations as compared to the in situ observations for all soil moisture regimes. The HRRR model’s soil moisture is better correlated with in situ observations for dryer soils as compared to wetter soils – a trend that was not present in the CPC model comparisons. In terms of seasonality, soil moisture comparisons vary depending on the metric, time of year, and soil moisture regime. Therefore, consideration of both the seasonality and soil moisture regime is needed to accurately determine model biases. These NOAA soil moisture estimates are used for a variety of forecasting and societal applications, and understanding their differences provides important context for their applications and can lead to model improvements.
{"title":"An Evaluation of NOAA Modeled and In Situ Soil Moisture Values and Variability Across the Continental United States","authors":"Peter J. Marinescu, Daniel Abdi, Kyle Hilburn, Isidora Jankov, Liao-Fan Lin","doi":"10.1175/waf-d-23-0136.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0136.1","url":null,"abstract":"\u0000Estimates of soil moisture from two National Oceanic and Atmospheric Administration (NOAA) models are compared to in situ observations. The estimates are from a high-resolution atmospheric model with a land surface model (High-Resolution Rapid Refresh or HRRR model) and a hydrologic model from the NOAA Climate Prediction Center (CPC). Both models produce wetter soils in dry regions and drier soils in wet regions, as compared to the in situ observations. These soil moisture differences occur at most soil depths but are larger at the deeper depths below the surface (100 cm). Comparisons of soil moisture variability are also assessed as a function of soil moisture regime. Both models have lower standard deviations as compared to the in situ observations for all soil moisture regimes. The HRRR model’s soil moisture is better correlated with in situ observations for dryer soils as compared to wetter soils – a trend that was not present in the CPC model comparisons. In terms of seasonality, soil moisture comparisons vary depending on the metric, time of year, and soil moisture regime. Therefore, consideration of both the seasonality and soil moisture regime is needed to accurately determine model biases. These NOAA soil moisture estimates are used for a variety of forecasting and societal applications, and understanding their differences provides important context for their applications and can lead to model improvements.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"27 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139857958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study assesses the accuracy of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) forecasts for clouds within stable and unstable environments (thereafter refers as “stable” and “unstable” clouds). This evaluation is conducted by comparing these forecasts against satellite retrievals through a combination of traditional, spatial, and object-based methods. To facilitate this assessment, the Model Evaluation Tools (MET) community tool is employed. The findings underscore the significance of fine-tuning the MET parameters to achieve a more accurate representation of the features under scrutiny. The study's results reveal that when employing traditional point-wise statistics (e.g., frequency bias and equitable threat score), there is consistency in the results whether calculated from Method for Object-Based Diagnostic Evaluation (MODE)-based objects or derived from the complete fields. Furthermore, the object-based statistics offer valuable insights, indicating that COAMPS generally predicts cloud object locations accurately, though the spread of these predicted locations tends to increase with time. It tends to over-predict the object area for unstable clouds while under-predicting it for stable clouds over time. These results are in alignment with the traditional pointwise bias scores for the entire grid. Overall, the spatial metrics provided by the object-based verification methods emerge as crucial and practical tools for the validation of cloud forecasts.
本研究评估了海洋/大气中尺度耦合预报系统(COAMPS)对稳定和不稳定环境中的云(以下简称 "稳定云 "和 "不稳定云")预报的准确性。这项评估是通过结合传统、空间和基于对象的方法,将这些预报与卫星检索结果进行比较。为便于评估,使用了模式评估工具(MET)社区工具。研究结果强调了对 MET 参数进行微调的重要性,以便更准确地呈现所审查的特征。研究结果表明,在使用传统的按点统计(如频率偏差和公平威胁分值)时,无论是根据基于对象的诊断评估方法(MODE)计算的对象,还是根据完整字段得出的结果,都具有一致性。此外,基于对象的统计数据提供了有价值的见解,表明 COAMPS 通常能准确预测云对象的位置,尽管这些预测位置的分布往往会随着时间的推移而增加。随着时间的推移,COAMPS 往往会对不稳定云的云对象面积预测过高,而对稳定云的云对象面积预测不足。这些结果与整个网格的传统点状偏差分数一致。总之,基于对象的验证方法所提供的空间度量是验证云预报的关键和实用工具。
{"title":"Regional Cloud Forecast Verification using Standard, Spatial and Object-Oriented Methods","authors":"H. Christophersen, J. Nachamkin, W. Davis","doi":"10.1175/waf-d-23-0197.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0197.1","url":null,"abstract":"\u0000This study assesses the accuracy of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) forecasts for clouds within stable and unstable environments (thereafter refers as “stable” and “unstable” clouds). This evaluation is conducted by comparing these forecasts against satellite retrievals through a combination of traditional, spatial, and object-based methods. To facilitate this assessment, the Model Evaluation Tools (MET) community tool is employed. The findings underscore the significance of fine-tuning the MET parameters to achieve a more accurate representation of the features under scrutiny. The study's results reveal that when employing traditional point-wise statistics (e.g., frequency bias and equitable threat score), there is consistency in the results whether calculated from Method for Object-Based Diagnostic Evaluation (MODE)-based objects or derived from the complete fields. Furthermore, the object-based statistics offer valuable insights, indicating that COAMPS generally predicts cloud object locations accurately, though the spread of these predicted locations tends to increase with time. It tends to over-predict the object area for unstable clouds while under-predicting it for stable clouds over time. These results are in alignment with the traditional pointwise bias scores for the entire grid. Overall, the spatial metrics provided by the object-based verification methods emerge as crucial and practical tools for the validation of cloud forecasts.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"347 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139796503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study assesses the accuracy of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) forecasts for clouds within stable and unstable environments (thereafter refers as “stable” and “unstable” clouds). This evaluation is conducted by comparing these forecasts against satellite retrievals through a combination of traditional, spatial, and object-based methods. To facilitate this assessment, the Model Evaluation Tools (MET) community tool is employed. The findings underscore the significance of fine-tuning the MET parameters to achieve a more accurate representation of the features under scrutiny. The study's results reveal that when employing traditional point-wise statistics (e.g., frequency bias and equitable threat score), there is consistency in the results whether calculated from Method for Object-Based Diagnostic Evaluation (MODE)-based objects or derived from the complete fields. Furthermore, the object-based statistics offer valuable insights, indicating that COAMPS generally predicts cloud object locations accurately, though the spread of these predicted locations tends to increase with time. It tends to over-predict the object area for unstable clouds while under-predicting it for stable clouds over time. These results are in alignment with the traditional pointwise bias scores for the entire grid. Overall, the spatial metrics provided by the object-based verification methods emerge as crucial and practical tools for the validation of cloud forecasts.
本研究评估了海洋/大气中尺度耦合预报系统(COAMPS)对稳定和不稳定环境中的云(以下简称 "稳定云 "和 "不稳定云")预报的准确性。这项评估是通过结合传统、空间和基于对象的方法,将这些预报与卫星检索结果进行比较。为便于评估,使用了模式评估工具(MET)社区工具。研究结果强调了对 MET 参数进行微调的重要性,以便更准确地呈现所审查的特征。研究结果表明,在使用传统的按点统计(如频率偏差和公平威胁分值)时,无论是根据基于对象的诊断评估方法(MODE)计算的对象,还是根据完整字段得出的结果,都具有一致性。此外,基于对象的统计数据提供了有价值的见解,表明 COAMPS 通常能准确预测云对象的位置,尽管这些预测位置的分布往往会随着时间的推移而增加。随着时间的推移,COAMPS 往往会对不稳定云的云对象面积预测过高,而对稳定云的云对象面积预测不足。这些结果与整个网格的传统点状偏差分数一致。总之,基于对象的验证方法所提供的空间度量是验证云预报的关键和实用工具。
{"title":"Regional Cloud Forecast Verification using Standard, Spatial and Object-Oriented Methods","authors":"H. Christophersen, J. Nachamkin, W. Davis","doi":"10.1175/waf-d-23-0197.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0197.1","url":null,"abstract":"\u0000This study assesses the accuracy of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) forecasts for clouds within stable and unstable environments (thereafter refers as “stable” and “unstable” clouds). This evaluation is conducted by comparing these forecasts against satellite retrievals through a combination of traditional, spatial, and object-based methods. To facilitate this assessment, the Model Evaluation Tools (MET) community tool is employed. The findings underscore the significance of fine-tuning the MET parameters to achieve a more accurate representation of the features under scrutiny. The study's results reveal that when employing traditional point-wise statistics (e.g., frequency bias and equitable threat score), there is consistency in the results whether calculated from Method for Object-Based Diagnostic Evaluation (MODE)-based objects or derived from the complete fields. Furthermore, the object-based statistics offer valuable insights, indicating that COAMPS generally predicts cloud object locations accurately, though the spread of these predicted locations tends to increase with time. It tends to over-predict the object area for unstable clouds while under-predicting it for stable clouds over time. These results are in alignment with the traditional pointwise bias scores for the entire grid. Overall, the spatial metrics provided by the object-based verification methods emerge as crucial and practical tools for the validation of cloud forecasts.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139856317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter J. Marinescu, Daniel Abdi, Kyle Hilburn, Isidora Jankov, Liao-Fan Lin
Estimates of soil moisture from two National Oceanic and Atmospheric Administration (NOAA) models are compared to in situ observations. The estimates are from a high-resolution atmospheric model with a land surface model (High-Resolution Rapid Refresh or HRRR model) and a hydrologic model from the NOAA Climate Prediction Center (CPC). Both models produce wetter soils in dry regions and drier soils in wet regions, as compared to the in situ observations. These soil moisture differences occur at most soil depths but are larger at the deeper depths below the surface (100 cm). Comparisons of soil moisture variability are also assessed as a function of soil moisture regime. Both models have lower standard deviations as compared to the in situ observations for all soil moisture regimes. The HRRR model’s soil moisture is better correlated with in situ observations for dryer soils as compared to wetter soils – a trend that was not present in the CPC model comparisons. In terms of seasonality, soil moisture comparisons vary depending on the metric, time of year, and soil moisture regime. Therefore, consideration of both the seasonality and soil moisture regime is needed to accurately determine model biases. These NOAA soil moisture estimates are used for a variety of forecasting and societal applications, and understanding their differences provides important context for their applications and can lead to model improvements.
{"title":"An Evaluation of NOAA Modeled and In Situ Soil Moisture Values and Variability Across the Continental United States","authors":"Peter J. Marinescu, Daniel Abdi, Kyle Hilburn, Isidora Jankov, Liao-Fan Lin","doi":"10.1175/waf-d-23-0136.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0136.1","url":null,"abstract":"\u0000Estimates of soil moisture from two National Oceanic and Atmospheric Administration (NOAA) models are compared to in situ observations. The estimates are from a high-resolution atmospheric model with a land surface model (High-Resolution Rapid Refresh or HRRR model) and a hydrologic model from the NOAA Climate Prediction Center (CPC). Both models produce wetter soils in dry regions and drier soils in wet regions, as compared to the in situ observations. These soil moisture differences occur at most soil depths but are larger at the deeper depths below the surface (100 cm). Comparisons of soil moisture variability are also assessed as a function of soil moisture regime. Both models have lower standard deviations as compared to the in situ observations for all soil moisture regimes. The HRRR model’s soil moisture is better correlated with in situ observations for dryer soils as compared to wetter soils – a trend that was not present in the CPC model comparisons. In terms of seasonality, soil moisture comparisons vary depending on the metric, time of year, and soil moisture regime. Therefore, consideration of both the seasonality and soil moisture regime is needed to accurately determine model biases. These NOAA soil moisture estimates are used for a variety of forecasting and societal applications, and understanding their differences provides important context for their applications and can lead to model improvements.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"46 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Wang, Qiying Chen, Ning Jiang, Jianglin Hu, Guoqiang Xu
It is known that the southwest vortex (SWV) is an important weather system that may induce severe weather. The southward deviation of an SWV track forecasted by the Global Assimilation and Prediction System of the China Meteorological Administration (CMA-GFS) is systematically diagnosed in this study. The southward shift of the SWV is directly attributed to the deviation of the steering flow caused by the weak forecast of the upper-level trough. According to the diagnosis of potential tendency, the underestimation of the initial vorticity advection forecasted by CMA-GFS dominates the weak development of the upper-level trough. The underestimation of the vorticity advection is eventually sourced to the weak geostrophic wind caused by the weak initial meridional and zonal gradients of the midlevel height in front of the trough. The assimilation process on the initial field of the CMA-GFS acts a negative effect on forecasting this SWV track. It weakens the π field at midmodel level, resulting in the weak midlevel height gradient in front of the trough. A verified numerical experiment initialized by a more reasonable field is carried out and the southward shift of the SWV is obviously modified. This study suggests that a reasonable analysis field is crucial for the accurate forecast of the SWV track. The important impact of initial field deviation in key regions on the forecast in the late period is highlighted. A systematic diagnosis process for identifying and addressing forecast issues on SWV track is proposed. This research provides a comprehensive approach for diagnosing the forecast deviation associated with SWV track.
{"title":"A Diagnostic Study on a Southward Southwest Vortex Track Forecasted by CMA-GFS: The Role of Initial Field","authors":"Lei Wang, Qiying Chen, Ning Jiang, Jianglin Hu, Guoqiang Xu","doi":"10.1175/waf-d-22-0229.1","DOIUrl":"https://doi.org/10.1175/waf-d-22-0229.1","url":null,"abstract":"\u0000It is known that the southwest vortex (SWV) is an important weather system that may induce severe weather. The southward deviation of an SWV track forecasted by the Global Assimilation and Prediction System of the China Meteorological Administration (CMA-GFS) is systematically diagnosed in this study. The southward shift of the SWV is directly attributed to the deviation of the steering flow caused by the weak forecast of the upper-level trough. According to the diagnosis of potential tendency, the underestimation of the initial vorticity advection forecasted by CMA-GFS dominates the weak development of the upper-level trough. The underestimation of the vorticity advection is eventually sourced to the weak geostrophic wind caused by the weak initial meridional and zonal gradients of the midlevel height in front of the trough. The assimilation process on the initial field of the CMA-GFS acts a negative effect on forecasting this SWV track. It weakens the π field at midmodel level, resulting in the weak midlevel height gradient in front of the trough. A verified numerical experiment initialized by a more reasonable field is carried out and the southward shift of the SWV is obviously modified. This study suggests that a reasonable analysis field is crucial for the accurate forecast of the SWV track.\u0000\u0000\u0000The important impact of initial field deviation in key regions on the forecast in the late period is highlighted. A systematic diagnosis process for identifying and addressing forecast issues on SWV track is proposed. This research provides a comprehensive approach for diagnosing the forecast deviation associated with SWV track.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139687178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climate variability affects sea levels as certain climate modes can accelerate or decelerate the rising sea level trend, but subseasonal variability of coastal sea levels is under-explored. This study is the first to investigate how remote tropical forcing from the MJO and ENSO impact subseasonal U.S. coastal sea level variability. Here, composite analyses using tide gauge data from six coastal regions along the East and West Coasts of the U.S. reveal influences on sea level anomalies from both the MJO and ENSO. Tropical MJO deep convection forces a signal that results in U.S. coastal sea levels anomalies that vary based on MJO phase. Further, ENSO is shown to modulate both the MJO sea level response and background state of the teleconnections. The sea level anomalies can be significantly enhanced or weakened by the MJO-associated anomaly along the East Coast due to constructive or destructive interference with the ENSO-associated anomaly, respectively. The West Coast anomaly is found to be dominated by ENSO. We examine physical mechanisms by which MJO and ENSO teleconnections impact coastal sea levels and find consistent relationships between low-level winds and sea level pressure which are spatially-varying drivers of the variability. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.
{"title":"Subseasonal Variability of U.S. Coastal Sea Level from MJO and ENSO Teleconnection Interference","authors":"Marybeth Arcodia, Emily Becker, B. Kirtman","doi":"10.1175/waf-d-23-0002.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0002.1","url":null,"abstract":"\u0000Climate variability affects sea levels as certain climate modes can accelerate or decelerate the rising sea level trend, but subseasonal variability of coastal sea levels is under-explored. This study is the first to investigate how remote tropical forcing from the MJO and ENSO impact subseasonal U.S. coastal sea level variability. Here, composite analyses using tide gauge data from six coastal regions along the East and West Coasts of the U.S. reveal influences on sea level anomalies from both the MJO and ENSO. Tropical MJO deep convection forces a signal that results in U.S. coastal sea levels anomalies that vary based on MJO phase. Further, ENSO is shown to modulate both the MJO sea level response and background state of the teleconnections. The sea level anomalies can be significantly enhanced or weakened by the MJO-associated anomaly along the East Coast due to constructive or destructive interference with the ENSO-associated anomaly, respectively. The West Coast anomaly is found to be dominated by ENSO. We examine physical mechanisms by which MJO and ENSO teleconnections impact coastal sea levels and find consistent relationships between low-level winds and sea level pressure which are spatially-varying drivers of the variability. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139531616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the extreme gradient boosting (XGBoost) algorithm is used to correct tropical cyclone (TC) intensity in ensemble forecast data from the Typhoon Ensemble Data Assimilation and Prediction System (TEDAPS) at the Shanghai Typhoon Institute (STI), China Meteorological Administration (CMA). Results show that the forecast accuracy of TC intensity may be improved substantially using the XGBoost algorithm, especially when compared with a simple ensemble average of all members in the ensemble forecast [as depicted by the ensemble average (EnsAve) algorithm in this study]. The forecast errors for maximum wind speed (MWS) and minimum sea-level pressure (MSLP) have been reduced by a significant margin, ranging from 6.3% to 18.4% for MWS and from 4% to 14.9% for MSLP, respectively. The performance of the XGBoost algorithm is overall better than that of the EnsAve algorithm, although there are a few samples when it is worse. The bias analysis shows that TEDAPS underpredicts the MWS and overpredicts the MSLP, meaning that the TEDAPS underestimates TC intensity. However, the XGBoost algorithm can reduce the bias to improve the forecast accuracy of TC intensity. Specifically, it achieves a reduction of over 20% in forecast errors for both the MWS and MSLP of typhoons compared to the EnsAve algorithm, indicating the XGBoost algorithm’s particular advantage in forecasting intense TCs. These results indicate that the TC intensity forecast can be substantially improved using the XGBoost algorithm, relative to the EnsAve algorithm.
{"title":"Bias correction of tropical cyclone intensity for ensemble forecasts using the XGBoost method","authors":"Songjiang Feng, Yan Tan, Junfeng Kang, Ruiqiang Ding, Yanjie Li, Quanjia Zhong","doi":"10.1175/waf-d-23-0159.1","DOIUrl":"https://doi.org/10.1175/waf-d-23-0159.1","url":null,"abstract":"\u0000In this study, the extreme gradient boosting (XGBoost) algorithm is used to correct tropical cyclone (TC) intensity in ensemble forecast data from the Typhoon Ensemble Data Assimilation and Prediction System (TEDAPS) at the Shanghai Typhoon Institute (STI), China Meteorological Administration (CMA). Results show that the forecast accuracy of TC intensity may be improved substantially using the XGBoost algorithm, especially when compared with a simple ensemble average of all members in the ensemble forecast [as depicted by the ensemble average (EnsAve) algorithm in this study]. The forecast errors for maximum wind speed (MWS) and minimum sea-level pressure (MSLP) have been reduced by a significant margin, ranging from 6.3% to 18.4% for MWS and from 4% to 14.9% for MSLP, respectively. The performance of the XGBoost algorithm is overall better than that of the EnsAve algorithm, although there are a few samples when it is worse. The bias analysis shows that TEDAPS underpredicts the MWS and overpredicts the MSLP, meaning that the TEDAPS underestimates TC intensity. However, the XGBoost algorithm can reduce the bias to improve the forecast accuracy of TC intensity. Specifically, it achieves a reduction of over 20% in forecast errors for both the MWS and MSLP of typhoons compared to the EnsAve algorithm, indicating the XGBoost algorithm’s particular advantage in forecasting intense TCs. These results indicate that the TC intensity forecast can be substantially improved using the XGBoost algorithm, relative to the EnsAve algorithm.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"15 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}