首页 > 最新文献

Catalysis Surveys from Asia最新文献

英文 中文
CdS/MoS2 Heterojunctions: Facile Synthesis and Photocatalytic Reduction of the Toxic Cr(VI) to Cr(III) Micronutrient CdS/MoS2 异质结:易合成和光催化将有毒的六价铬还原为三价铬微量元素
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-01 DOI: 10.1007/s10563-024-09440-3
Haseeb Ullah, Rizwana Ghazi, Shili Gai, Abeer A. AlObaid, Nabil Al-Zaqri, Ziaur Rehman

Among the aquatic pollutant remediation reactions, the reduction of toxic Cr(VI) to a benign Cr(III) is of significant interest. Among the avrious remediation methods, photocatalysis is considered optimal due to its efficiency and eco-friendly nature. Therefore, the development of highly active, visible-light-responsive, and noble-metal-free photocatalysts for the elimination of toxic heavy metal ions from wastewater is highly desirable. In this study, a facile two-step method, comprising solvothermal and hydrothermal, was used to synthesize visible-light-responsive CdS/MoS2 heterojunctions (CM-HJs). Extensive structural characterization was performed to assess the crystal structure (XRD and XPS), morphology (SEM and BET), and optical (UV-Vis) properties of the as-synthesized photocatalysts. Aquatic Cr(VI) photoreduction was conducted on these photocatalysts under visible light irradiation. The results revealed the high photocatalytic activity and photostability of CM-HJs for Cr(VI) reduction compared to the bare CdS. Among the heterojunctions, CM-10 (10 wt % MoS2) exhibted the highest acvtivty, reducing 99.04% of Cr(VI) within 60 min. The enhanced photocatalytic activity can be attributed to its high light harvesting capability and efficient separation and transportation of the produced electron-hole pairs due to the intimate contact interfaces and matching band potentials of CdS with MoS2. Based on the literature and experimental evidence, a photocatalytic mechanism for the photoreduction of Cr(VI) is discussed in detail. The effect of different parameters; like the amount of photocatalyst, amount of Cr(VI), and pH were also evaluated. Like other good photocatalysts, CM-10 owes good photostability and recyclability.

在水生污染物的修复反应中,将有毒的Cr(VI)还原为良性的Cr(III)具有重要的意义。在各种各样的修复方法中,光催化因其高效和环保的特性而被认为是最佳的。因此,开发高活性、可见光响应、无贵金属的光催化剂来去除废水中的有毒重金属离子是非常必要的。本研究采用溶剂热法和水热法两步法合成了可见光响应CdS/MoS2异质结(CM-HJs)。对合成的光催化剂进行了广泛的结构表征,以评估其晶体结构(XRD和XPS)、形貌(SEM和BET)和光学(UV-Vis)性能。在可见光照射下,在这些光催化剂上进行了水生Cr(VI)的光还原。结果表明,与裸cd相比,CM-HJs具有较高的光催化活性和光稳定性。在这些异质结中,CM-10 (10 wt % MoS2)表现出最高的活性,在60 min内降低了99.04%的Cr(VI)。这种增强的光催化活性可归因于其高光收集能力和由于CdS与MoS2的紧密接触界面和匹配的带电位而产生的电子空穴对的有效分离和传输。基于文献和实验证据,详细讨论了光催化还原Cr(VI)的机理。不同参数的影响;并对光催化剂用量、Cr(VI)用量、pH值等进行了评价。与其他优良的光催化剂一样,CM-10具有良好的光稳定性和可回收性。
{"title":"CdS/MoS2 Heterojunctions: Facile Synthesis and Photocatalytic Reduction of the Toxic Cr(VI) to Cr(III) Micronutrient","authors":"Haseeb Ullah,&nbsp;Rizwana Ghazi,&nbsp;Shili Gai,&nbsp;Abeer A. AlObaid,&nbsp;Nabil Al-Zaqri,&nbsp;Ziaur Rehman","doi":"10.1007/s10563-024-09440-3","DOIUrl":"10.1007/s10563-024-09440-3","url":null,"abstract":"<div><p>Among the aquatic pollutant remediation reactions, the reduction of toxic Cr(VI) to a benign Cr(III) is of significant interest. Among the avrious remediation methods, photocatalysis is considered optimal due to its efficiency and eco-friendly nature. Therefore, the development of highly active, visible-light-responsive, and noble-metal-free photocatalysts for the elimination of toxic heavy metal ions from wastewater is highly desirable. In this study, a facile two-step method, comprising solvothermal and hydrothermal, was used to synthesize visible-light-responsive CdS/MoS<sub>2</sub> heterojunctions (CM-HJs). Extensive structural characterization was performed to assess the crystal structure (XRD and XPS), morphology (SEM and BET), and optical (UV-Vis) properties of the as-synthesized photocatalysts. Aquatic Cr(VI) photoreduction was conducted on these photocatalysts under visible light irradiation. The results revealed the high photocatalytic activity and photostability of CM-HJs for Cr(VI) reduction compared to the bare CdS. Among the heterojunctions, CM-10 (10 wt % MoS<sub>2</sub>) exhibted the highest acvtivty, reducing 99.04% of Cr(VI) within 60 min. The enhanced photocatalytic activity can be attributed to its high light harvesting capability and efficient separation and transportation of the produced electron-hole pairs due to the intimate contact interfaces and matching band potentials of CdS with MoS<sub>2</sub>. Based on the literature and experimental evidence, a photocatalytic mechanism for the photoreduction of Cr(VI) is discussed in detail. The effect of different parameters; like the amount of photocatalyst, amount of Cr(VI), and pH were also evaluated. Like other good photocatalysts, CM-10 owes good photostability and recyclability.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"58 - 70"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic Activity of MnWO4@g-C3N4 and CuWO4@g-C3N4 Nano-Composites for Green Fuel Production 用于绿色燃料生产的 MnWO4@g-C3N4 和 CuWO4@g-C3N4 纳米复合材料的催化活性
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-01 DOI: 10.1007/s10563-024-09437-y
Muhammad Saeed, Amir Waseem, Azeem Intisar

The present study successfully synthesized MnWO4@g-C3N4 and CuWO4@g-C3N4 nanocomposites which demonstrated high efficiency and recoverability as a robust catalyst for ODS of model (DBT) and real fuel oil (kerosene and diesel). The manufactured composites were thoroughly characterized using XRD, TGA, FTIR, SEM and EDX confirming its physicochemical properties. The SEM results revealed that MnWO4 and CuWOnanoparticles were well organized on the exterior of g-C3N4 forming interesting spherical particle morphology. Under optimized conditions, the nanocomposites MnWO4@g-C3N4 and CuWO4@g-C3N4 exhibited an impressive 98 and 98.5% removal of DBT, respectively from the model fuel (100 mg/L) within 180 min at a temperature of 45 °C using 1 mL of oxidant and 0.1 g of catalyst amount. Furthermore, the catalytic activity of composites was investigated for real fuel desulfurization and promising results were achieved. Moreover, the fuel properties were in accordance with ASTM specifications. The study found that the desulfurization reaction followed the pseudo 1st order kinetic models and the negative ∆G indicated a spontaneous method. The nanocomposites exhibited promising reusability as it could be used up to five times without significantly reducing their ability to desulfurize fuel oil. The study highlights its potential for practical applications in reducing sulfur content in fuel oils contributing to cleaner and environment friendly energy production and utilization.

Graphical Abstract

本研究成功合成了MnWO4@g-C3N4和CuWO4@g-C3N4纳米复合材料,作为模型(DBT)和实际燃料油(煤油和柴油)的ODS催化剂,具有高效和可回收性。采用XRD、TGA、FTIR、SEM和EDX等手段对复合材料进行了表征,确定了复合材料的理化性质。SEM结果表明,MnWO4和CuWO4纳米颗粒在g-C3N4表面组织良好,形成了有趣的球形颗粒形态。在优化条件下,纳米复合材料MnWO4@g-C3N4和CuWO4@g-C3N4在45℃温度下,使用1 mL氧化剂和0.1 g催化剂,在180 min内对模型燃料(100 mg/L)的DBT去除率分别达到了98%和98.5%。此外,还对复合材料在实际燃料脱硫中的催化活性进行了研究,取得了令人满意的结果。此外,燃料性能符合ASTM规范。研究发现,脱硫反应符合准一级动力学模型,负∆G为自发反应。纳米复合材料具有良好的可重复使用性,因为它可以使用多达五次而不会显著降低其脱硫燃油的能力。该研究强调了其在降低燃料油中硫含量方面的实际应用潜力,有助于更清洁和环保的能源生产和利用。图形抽象
{"title":"Catalytic Activity of MnWO4@g-C3N4 and CuWO4@g-C3N4 Nano-Composites for Green Fuel Production","authors":"Muhammad Saeed,&nbsp;Amir Waseem,&nbsp;Azeem Intisar","doi":"10.1007/s10563-024-09437-y","DOIUrl":"10.1007/s10563-024-09437-y","url":null,"abstract":"<div><p>The present study successfully synthesized MnWO<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> and CuWO<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> nanocomposites which demonstrated high efficiency and recoverability as a robust catalyst for ODS of model (DBT) and real fuel oil (kerosene and diesel). The manufactured composites were thoroughly characterized using XRD, TGA, FTIR, SEM and EDX confirming its physicochemical properties. The SEM results revealed that MnWO<sub>4</sub> and CuWO<sub>4 </sub>nanoparticles were well organized on the exterior of g-C<sub>3</sub>N<sub>4</sub> forming interesting spherical particle morphology. Under optimized conditions, the nanocomposites MnWO<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> and CuWO<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> exhibited an impressive 98 and 98.5% removal of DBT, respectively from the model fuel (100 mg/L) within 180 min at a temperature of 45 °C using 1 mL of oxidant and 0.1 g of catalyst amount. Furthermore, the catalytic activity of composites was investigated for real fuel desulfurization and promising results were achieved. Moreover, the fuel properties were in accordance with ASTM specifications. The study found that the desulfurization reaction followed the pseudo 1st order kinetic models and the negative ∆G indicated a spontaneous method. The nanocomposites exhibited promising reusability as it could be used up to five times without significantly reducing their ability to desulfurize fuel oil. The study highlights its potential for practical applications in reducing sulfur content in fuel oils contributing to cleaner and environment friendly energy production and utilization.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"11 - 25"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Applications of Zinc Oxide Nanorods, Copper-Doped Zinc Oxide Nanorods, Nickel Hydroxide/Zinc Oxide Nanorods, Iron (III) Oxide/Zinc Oxide Nanorods and Zinc Oxide/Graphene Oxide Nanorods for Batch Adsorption, Fixed-Bed Column Study, and Degradation of Cationic Dye (Blue Tur-XGB B-3) from Wastewater 氧化锌纳米棒、铜掺杂氧化锌纳米棒、氢氧化镍/氧化锌纳米棒、氧化铁(III) /氧化锌纳米棒、氧化锌/氧化石墨烯纳米棒的合成及批量吸附、固定床柱研究,以及废水中阳离子染料(蓝turr - xgb B-3)的降解
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-30 DOI: 10.1007/s10563-024-09441-2
Humna Munawwar, Ruba Munir, Amna Muneer, Fatima Zaheer, Muhammad Zeeshan Bashir, Murtaza Sayed, Muhammad Zahid, Raziya Nadeem, Nazish Jahan, Saima Noreen

Industrial dyes from commercial sector are one of the major contributors to the environmental contamination. This research work mainly focuses on the elimination of synthetic cationic dye (Blue Tur-XGB B-3) through column and batch studies followed adsorption phenomenon. Various methods were employed to prepare the Zinc Oxide nanorods (ZnO) and different metal doped Zinc Oxide nanorods (Cu/ZnO, Ni(OH)2/ZnO, α-Fe2O3/ZnO, GO/ZnO) as adsorbents. The synthesize nanorods were characterized by using FTIR analysis and SEM to confirmed the morphology and functional group of the prepared nano adsorbents. Followed the adsorption procedure the optimum pH for the cationic dye (Blue Tur-XGB B-3) was detected in the basic range which was 9 for ZnO (29.54 mg g−1), 10 for Cu/ZnO (37.96 mg g−1), 10 for Ni(OH)2/ZnO (35.76 mg g−1), 9 for α-Fe2O3/ZnO (31.88 mg g−1), 9 for GO/ZnO (33.05 mg g−1). The optimum dosage for all the prepared adsorbents were detected 0.05 g/50 mL and showed best adsorption capacity at temperature of 30 °C and 60 min of contact time. The initial concentration of dye was observed at the range of 125–150 mg L−1 and best adsorption capacity was achieved at 100 mg L−1 by all adsorbents. Photocatalysis experiment for determination of effect indicated the highest degradation efficiency of 90.49% for Cu doped ZnO NRs, 87.90% for Ni(OH)2/ZnO NRs, 79.16% for α-Fe2O3/ZnO, 70% for ZnO/GONRs and 60.53% for ZnO NRs at 308 K for catalytic degradation of cationic dye (Blue Tur-XGB B-3). Adsorption followed both Langmuir and Freundlich isotherms for all adsorbents. Kinetic adsorption data supported Pseudo 1st and pseudo 2nd order kinetics while thermodynamics analysis indicated spontaneous and exothermic nature. Effect of surfactants, electrolytes, heavy metals and desorption were also evaluated. For column study, optimum bed height (3 cm), optimum flow rate (1.8 mL min−1) and optimum inlet dye concentration (70 mg L−1) were also observed for maximum adsorption of cationic dye (Blue Tur-XGB B-3). With the help of ZnO, the degradation of Blue Tur-XGB B-3 dye was also investigated. These methods are very cost effective, ecofriendly and easy to manufacture. The recycling results show that the ZnO nanostructures displayed good stability and long-term durability.

Graphical Abstract

工业染料是造成环境污染的主要因素之一。本研究工作主要是通过吸附现象后的柱状和批状研究消除合成阳离子染料(Blue turr - xgb B-3)。采用多种方法制备氧化锌纳米棒(ZnO)和不同金属掺杂氧化锌纳米棒(Cu/ZnO、Ni(OH)2/ZnO、α-Fe2O3/ZnO、GO/ZnO)作为吸附剂。利用红外光谱(FTIR)和扫描电镜(SEM)对合成的纳米棒进行了表征,确定了纳米吸附剂的形貌和官能团。结果表明,该阳离子染料(Blue turr - xgb B-3)的最佳pH值为:ZnO (29.54 mg g−1)为9,Cu/ZnO (37.96 mg g−1)为10,Ni(OH)2/ZnO (35.76 mg g−1)为10,α-Fe2O3/ZnO (31.88 mg g−1)为9,GO/ZnO (33.05 mg g−1)为9。各吸附剂的最佳用量均为0.05 g/50 mL,在温度为30℃,接触时间为60 min时吸附量最佳。在125 ~ 150 mg L−1范围内观察到染料的初始浓度,在100 mg L−1时,所有吸附剂的吸附量都达到最佳。光催化实验结果表明,在308 K下,Cu掺杂ZnO NRs的最高降解效率为90.49%,Ni(OH)2/ZnO NRs的最高降解效率为87.90%,α-Fe2O3/ZnO的最高降解效率为79.16%,ZnO/GONRs的最高降解效率为70%,ZnO NRs的最高降解效率为60.53%。所有吸附剂的吸附均遵循Langmuir和Freundlich等温线。动力学吸附数据支持准一级和准二级动力学,而热力学分析显示自发和放热性质。评价了表面活性剂、电解质、重金属和解吸的影响。在色谱柱研究中,最佳床高(3 cm)、最佳流速(1.8 mL min - 1)和最佳进样染料浓度(70 mg L - 1)对阳离子染料(Blue turr - xgb B-3)的最大吸附效果也达到最佳。在氧化锌的帮助下,还研究了Blue turr - xgb B-3染料的降解。这些方法成本效益高,环保,易于制造。回收结果表明,ZnO纳米结构具有良好的稳定性和长期耐久性。图形抽象
{"title":"Synthesis and Applications of Zinc Oxide Nanorods, Copper-Doped Zinc Oxide Nanorods, Nickel Hydroxide/Zinc Oxide Nanorods, Iron (III) Oxide/Zinc Oxide Nanorods and Zinc Oxide/Graphene Oxide Nanorods for Batch Adsorption, Fixed-Bed Column Study, and Degradation of Cationic Dye (Blue Tur-XGB B-3) from Wastewater","authors":"Humna Munawwar,&nbsp;Ruba Munir,&nbsp;Amna Muneer,&nbsp;Fatima Zaheer,&nbsp;Muhammad Zeeshan Bashir,&nbsp;Murtaza Sayed,&nbsp;Muhammad Zahid,&nbsp;Raziya Nadeem,&nbsp;Nazish Jahan,&nbsp;Saima Noreen","doi":"10.1007/s10563-024-09441-2","DOIUrl":"10.1007/s10563-024-09441-2","url":null,"abstract":"<div><p>Industrial dyes from commercial sector are one of the major contributors to the environmental contamination. This research work mainly focuses on the elimination of synthetic cationic dye (Blue Tur-XGB B-3) through column and batch studies followed adsorption phenomenon. Various methods were employed to prepare the Zinc Oxide nanorods (ZnO) and different metal doped Zinc Oxide nanorods (Cu/ZnO, Ni(OH)<sub>2</sub>/ZnO, α-Fe<sub>2</sub>O<sub>3</sub>/ZnO, GO/ZnO) as adsorbents. The synthesize nanorods were characterized by using FTIR analysis and SEM to confirmed the morphology and functional group of the prepared nano adsorbents. Followed the adsorption procedure the optimum pH for the cationic dye (Blue Tur-XGB B-3) was detected in the basic range which was 9 for ZnO (29.54 mg g<sup>−1</sup>), 10 for Cu/ZnO (37.96 mg g<sup>−1</sup>), 10 for Ni(OH)<sub>2</sub>/ZnO (35.76 mg g<sup>−1</sup>), 9 for α-Fe<sub>2</sub>O<sub>3</sub>/ZnO (31.88 mg g<sup>−1</sup>), 9 for GO/ZnO (33.05 mg g<sup>−1</sup>). The optimum dosage for all the prepared adsorbents were detected 0.05 g/50 mL and showed best adsorption capacity at temperature of 30 °C and 60 min of contact time. The initial concentration of dye was observed at the range of 125–150 mg L<sup>−1</sup> and best adsorption capacity was achieved at 100 mg L<sup>−1</sup> by all adsorbents. Photocatalysis experiment for determination of effect indicated the highest degradation efficiency of 90.49% for Cu doped ZnO NRs, 87.90% for Ni(OH)<sub>2</sub>/ZnO NRs, 79.16% for α-Fe<sub>2</sub>O<sub>3</sub>/ZnO, 70% for ZnO/GONRs and 60.53% for ZnO NRs at 308 K for catalytic degradation of cationic dye (Blue Tur-XGB B-3). Adsorption followed both Langmuir and Freundlich isotherms for all adsorbents. Kinetic adsorption data supported Pseudo 1st and pseudo 2nd order kinetics while thermodynamics analysis indicated spontaneous and exothermic nature. Effect of surfactants, electrolytes, heavy metals and desorption were also evaluated. For column study, optimum bed height (3 cm), optimum flow rate (1.8 mL min<sup>−1</sup>) and optimum inlet dye concentration (70 mg L<sup>−1</sup>) were also observed for maximum adsorption of cationic dye (Blue Tur-XGB B-3). With the help of ZnO, the degradation of Blue Tur-XGB B-3 dye was also investigated. These methods are very cost effective, ecofriendly and easy to manufacture. The recycling results show that the ZnO nanostructures displayed good stability and long-term durability.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"71 - 96"},"PeriodicalIF":2.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of SBA-15 Morphology in the Catalytic Performance of Pt/Ce-SBA-15 Catalyst for NOx Reduction SBA-15形态对Pt/Ce-SBA-15催化剂NOx还原性能的影响
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-14 DOI: 10.1007/s10563-024-09438-x
Shyam Sunder Rao, Anjali Bharti, Vivek Kumar Patel, Sweta Sharma

This research used hydrothermal technique to synthesize three different morphologies of SBA-15 supports, such as rod, hexagonal prism, and spherical. Afterward, it impregnated Pt/Ce metal on the SBA-15 supports via wet-impregnation methods and investigated their NO reduction activity using the H2-SCR technique in the temperature range of 50–450℃. The catalysts were characterized by Brunauer-Emmett-Teller (BET), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy, energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), and Raman spectroscopy. Among the catalysts, Pt/Ce-SBA-15-rod exhibited the best performance with NO conversion of 52.23% and N2 selectivity of more than 83.25% at 150℃. The Pt/Ce-SBA-15-rod catalysts’ activation energy (21.188 kJ-mol− 1) was the lowest of all the catalysts. The catalysts with the highest NO conversion have the highest BET properties, surface oxygen (30.33%), Ce3+ (40.23%), Pt (0) (70.45%), and oxygen storage capacity.

本研究利用水热技术合成了棒状、六角形和球形三种不同形态的SBA-15载体。随后,采用湿浸渍法将Pt/Ce金属浸渍在SBA-15载体上,并在50 ~ 450℃的温度范围内采用H2-SCR技术研究了其NO还原活性。采用brunauer - emmet - teller (BET)、x射线衍射(XRD)、x射线光电子能谱(XPS)、扫描电镜、x射线能谱(SEM-EDS)、透射电镜(TEM)和拉曼光谱对催化剂进行了表征。其中,Pt/Ce-SBA-15-rod在150℃下的NO转化率为52.23%,N2选择性大于83.25%,表现出最佳的催化性能。Pt/ ce - sba -15棒催化剂的活化能最低,为21.188 kJ-mol−1。NO转化率最高的催化剂具有最高的BET性能、表面氧(30.33%)、Ce3+(40.23%)、Pt(70.45%)和储氧能力。
{"title":"Effect of SBA-15 Morphology in the Catalytic Performance of Pt/Ce-SBA-15 Catalyst for NOx Reduction","authors":"Shyam Sunder Rao,&nbsp;Anjali Bharti,&nbsp;Vivek Kumar Patel,&nbsp;Sweta Sharma","doi":"10.1007/s10563-024-09438-x","DOIUrl":"10.1007/s10563-024-09438-x","url":null,"abstract":"<div><p>This research used hydrothermal technique to synthesize three different morphologies of SBA-15 supports, such as rod, hexagonal prism, and spherical. Afterward, it impregnated Pt/Ce metal on the SBA-15 supports via wet-impregnation methods and investigated their NO reduction activity using the H<sub>2</sub>-SCR technique in the temperature range of 50–450℃. The catalysts were characterized by Brunauer-Emmett-Teller (BET), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy, energy dispersive X-ray spectroscopy <b>(</b>SEM-EDS), Transmission electron microscopy (TEM), and Raman spectroscopy. Among the catalysts, Pt/Ce-SBA-15-rod exhibited the best performance with NO conversion of 52.23% and N<sub>2</sub> selectivity of more than 83.25% at 150℃. The Pt/Ce-SBA-15-rod catalysts’ activation energy (21.188 kJ-mol<sup>− 1</sup>) was the lowest of all the catalysts. The catalysts with the highest NO conversion have the highest BET properties, surface oxygen (30.33%), Ce<sup>3+</sup> (40.23%), Pt (0) (70.45%), and oxygen storage capacity.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"26 - 36"},"PeriodicalIF":2.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct CO2 Methylation to Value-Added Aromatics Through Tandem Catalysis 通过串联催化直接CO2甲基化生成增值芳烃
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-09-21 DOI: 10.1007/s10563-024-09436-z
Yong Yang, Yukun Li, Qiong Qin, Dongliang Wang, Huairong Zhou, Dongqiang Zhang

The direct CO2 methylation, coupling CO2 hydrogenation with benzene ring methylation, provides a promising strategy to synthesize value-added aromatics using green hydrogen and CO2 as C1 source. The tandem reaction promotes the conversion of CO2 due to the consumption of in situ formed methoxy or methanol over the tandem catalyst of metal oxide and acid zeolite. This review aims to present the thermodynamics advantage and mechanistic insights of direct CO2 methylation process. In practice, catalytic conversion and selectivity for typical tandem catalysts are still far below the thermodynamic equilibrium. The detail roles and proximity effects for metal oxide and acid zeolite are covered in order to give directions to the catalyst design and reaction condition optimization, which has been proposed to overcome the kinetic limitation for the direct CO2 methylation development in future.

二氧化碳直接甲基化,即二氧化碳加氢与苯环甲基化耦合,为以绿色氢和二氧化碳为C1源合成高附加值芳烃提供了一条有前景的途径。在金属氧化物和酸性沸石的串联催化剂上,由于消耗了原位形成的甲氧基或甲醇,串联反应促进了CO2的转化。本文综述了二氧化碳直接甲基化的热力学优势和机理。实际上,典型串联催化剂的催化转化率和选择性仍远低于热力学平衡。介绍了金属氧化物和酸性沸石的具体作用和邻近效应,为催化剂的设计和反应条件的优化提供了指导,为今后发展CO2直接甲基化提出了克服动力学限制的建议。
{"title":"Direct CO2 Methylation to Value-Added Aromatics Through Tandem Catalysis","authors":"Yong Yang,&nbsp;Yukun Li,&nbsp;Qiong Qin,&nbsp;Dongliang Wang,&nbsp;Huairong Zhou,&nbsp;Dongqiang Zhang","doi":"10.1007/s10563-024-09436-z","DOIUrl":"10.1007/s10563-024-09436-z","url":null,"abstract":"<div><p>The direct CO<sub>2</sub> methylation, coupling CO<sub>2</sub> hydrogenation with benzene ring methylation, provides a promising strategy to synthesize value-added aromatics using green hydrogen and CO<sub>2</sub> as C1 source. The tandem reaction promotes the conversion of CO<sub>2</sub> due to the consumption of in situ formed methoxy or methanol over the tandem catalyst of metal oxide and acid zeolite. This review aims to present the thermodynamics advantage and mechanistic insights of direct CO<sub>2</sub> methylation process. In practice, catalytic conversion and selectivity for typical tandem catalysts are still far below the thermodynamic equilibrium. The detail roles and proximity effects for metal oxide and acid zeolite are covered in order to give directions to the catalyst design and reaction condition optimization, which has been proposed to overcome the kinetic limitation for the direct CO<sub>2</sub> methylation development in future.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"1 - 10"},"PeriodicalIF":2.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents 改性蒙脱石催化超声辅助单锅合成新型 2,3-二氢异恶唑并[5,4-d] 嘧啶-4(7H)-酮作为潜在的抗癌剂
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-09-09 DOI: 10.1007/s10563-024-09435-0
Samika Anand, Sunaja Devi K. R., Santhosh Govindaraju, Sumaiya Tabassum

The development of novel compounds with potential anticancer activity is imperative for combating the challenges posed by cancer. In this study, a modified montmorillonite based catalyst is employed for the synthesis of 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7 H)-ones, which are promising candidates for anticancer agents. Montmorillonite is modified using mixed metal oxides, typically Al2O3 and CeO2, by a facile approach followed by standard spectroscopic and electron microscopic characterizations. It is then employed for the one-pot synthesis of a series of 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7 H)-ones. The synthesis protocol, mediated by ultrasound, is simple, efficient, and environment friendly. The mixed metal oxide pillared montmorillonite catalyst exhibits high catalytic activity and selectivity, facilitating the formation of the desired compounds in good to excellent yields. The synthesized compounds are characterized using various spectroscopic techniques such as 1H NMR, 13C NMR and mass spectrometry. Furthermore, the anticancer activity of the synthesized compounds is evaluated against a series of cancer cell lines, revealing promising cytotoxic effects. The findings of this study highlight the potential of novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7 H)-ones as promising anticancer agent, warranting further investigation for their therapeutic potential.

开发具有潜在抗癌活性的新型化合物是应对癌症挑战的当务之急。在本研究中,使用了一种基于改性蒙脱石的催化剂来合成 2,3-二氢异恶唑并[5,4-d] 嘧啶-4(7H)-酮,它们是很有希望的候选抗癌剂。使用混合金属氧化物(通常是 Al2O3 和 CeO2)对蒙脱石进行改性是一种简便的方法,然后进行标准的光谱和电子显微镜表征。然后利用它进行一系列 2,3-二氢异恶唑并[5,4-d] 嘧啶-4(7H)-酮的一锅合成。该合成方案以超声为介导,简单、高效、环保。混合金属氧化物柱状蒙脱石催化剂表现出很高的催化活性和选择性,促进了所需化合物的生成,而且产率从良好到极佳。合成的化合物通过各种光谱技术(如 1H、13C、NMR 和质谱)进行了表征。此外,还评估了合成化合物对一系列癌细胞系的抗癌活性,结果显示这些化合物具有良好的细胞毒性作用。本研究的结果凸显了新型 2,3-二氢异恶唑并[5,4-d] 嘧啶-4(7H)-酮作为抗癌剂的潜力,值得进一步研究其治疗潜力。
{"title":"Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents","authors":"Samika Anand,&nbsp;Sunaja Devi K. R.,&nbsp;Santhosh Govindaraju,&nbsp;Sumaiya Tabassum","doi":"10.1007/s10563-024-09435-0","DOIUrl":"10.1007/s10563-024-09435-0","url":null,"abstract":"<div><p>The development of novel compounds with potential anticancer activity is imperative for combating the challenges posed by cancer. In this study, a modified montmorillonite based catalyst is employed for the synthesis of 2,3-dihydroisoxazolo[5,4-<i>d</i>] pyrimidin-4(7 H)-ones, which are promising candidates for anticancer agents. Montmorillonite is modified using mixed metal oxides, typically Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub>, by a facile approach followed by standard spectroscopic and electron microscopic characterizations. It is then employed for the one-pot synthesis of a series of 2,3-dihydroisoxazolo[5,4-<i>d</i>] pyrimidin-4(7 H)-ones. The synthesis protocol, mediated by ultrasound, is simple, efficient, and environment friendly. The mixed metal oxide pillared montmorillonite catalyst exhibits high catalytic activity and selectivity, facilitating the formation of the desired compounds in good to excellent yields. The synthesized compounds are characterized using various spectroscopic techniques such as <sup>1</sup>H NMR, <sup>13</sup>C NMR and mass spectrometry. Furthermore, the anticancer activity of the synthesized compounds is evaluated against a series of cancer cell lines, revealing promising cytotoxic effects. The findings of this study highlight the potential of novel 2,3-dihydroisoxazolo[5,4-<i>d</i>] pyrimidin-4(7 H)-ones as promising anticancer agent, warranting further investigation for their therapeutic potential.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"435 - 451"},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide 氧化硫装饰的二维卟啉钴共价有机框架作为光催化剂以及硫代酰胺氧化环化的作用验证研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-30 DOI: 10.1007/s10563-024-09433-2
Hitanshu Vats, Rehana Shahin, Rajesh Kumar Yadav, Alok Kumar Singh, Atresh Kumar Singh, David G. Churchill, Atul Pratap Singh

The 1,2,4-thiadiazoles are an important class of heterocyclic compounds with a wide scope as a pesticide, fungicide, and in drug development including antimicrobial, anti-inflammatory, antituberculosis, anticancer, antihypertensive, and antifungal drugs, etc. Here, an oxidized-sulfur (sulfone) bridged two-dimensional cobalt (II) tetraphenylporphyrin covalent organic framework (Co-P) has been generated through a hydrothermal method on reacting of 5,10,15,20-Tetrakis-(4-bromophenyl)-porphyrin-Co(II) with sulfur powder in catalytic condition. The Co-P shows a favorable optical (1.98 eV) and electrochemical band gap (2.05 eV) for photocatalytic study. In a proof-on action study, the Co-P has been investigated in the oxidative cyclization of thioamide to 1,2,4-thiadiazole (yield = 93–97%) along with excellent regioselectivity, photostability as well as good recyclability (5 times). The excellent photocatalytic activity can be attributed to the presence of infused-sulfone functionality in the Co-P which is well known for its light-harvesting capability as well as the presence of a uniform microporous structure (pore size < 2 nm) with an average pore diameter of 1.80 nm and a surface area of approximately 4.23 m2g− 1.

1,2,4-噻二唑是一类重要的杂环化合物,可作为杀虫剂、杀真菌剂,在抗菌、消炎、抗结核、抗癌、降压和抗真菌等药物开发方面具有广泛的应用前景。在此,我们通过水热法将 5,10,15,20-四-(4-溴苯基)卟啉-Co(II)与硫磺粉在催化条件下反应,生成了一种氧化硫(砜)桥接的二维四苯基卟啉钴共价有机框架(Co-P)。Co-P 在光催化研究中显示出良好的光学(1.98 eV)和电化学带隙(2.05 eV)。在行动验证研究中,研究人员考察了 Co-P 在硫代酰胺氧化环化成 1,2,4-噻二唑(产率 = 93-97%)的过程中表现出的优异区域选择性、光稳定性和良好的可回收性(5 次)。卓越的光催化活性可归因于 Co-P 中存在注入的砜官能团(众所周知,砜官能团具有光收集能力)以及均匀的微孔结构(孔径为 2 nm)(平均孔径为 1.80 nm,表面积约为 4.23 m2g-1)。
{"title":"Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide","authors":"Hitanshu Vats,&nbsp;Rehana Shahin,&nbsp;Rajesh Kumar Yadav,&nbsp;Alok Kumar Singh,&nbsp;Atresh Kumar Singh,&nbsp;David G. Churchill,&nbsp;Atul Pratap Singh","doi":"10.1007/s10563-024-09433-2","DOIUrl":"10.1007/s10563-024-09433-2","url":null,"abstract":"<div><p>The 1,2,4-thiadiazoles are an important class of heterocyclic compounds with a wide scope as a pesticide, fungicide, and in drug development including antimicrobial, anti-inflammatory, antituberculosis, anticancer, antihypertensive, and antifungal drugs, etc. Here, an oxidized-sulfur (sulfone) bridged two-dimensional cobalt (II) tetraphenylporphyrin covalent organic framework (Co-P) has been generated through a hydrothermal method on reacting of 5,10,15,20-Tetrakis-(4-bromophenyl)-porphyrin-Co(II) with sulfur powder in catalytic condition. The Co-P shows a favorable optical (1.98 eV) and electrochemical band gap (2.05 eV) for photocatalytic study. In a proof-on action study, the Co-P has been investigated in the oxidative cyclization of thioamide to 1,2,4-thiadiazole (yield = 93–97%) along with excellent regioselectivity, photostability as well as good recyclability (5 times). The excellent photocatalytic activity can be attributed to the presence of infused-sulfone functionality in the Co-P which is well known for its light-harvesting capability as well as the presence of a uniform microporous structure (pore size &lt; 2 nm) with an average pore diameter of 1.80 nm and a surface area of approximately 4.23 m<sup>2</sup>g<sup>− 1</sup>.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"425 - 434"},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts 铁参与的氢氧化金属基 OER 电催化剂的原位/过场莫索鲍尔光谱研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-30 DOI: 10.1007/s10563-024-09432-3
Peijia Liu, Sumbal Farid, Min Liu, Junhu Wang

Creating cost-effective and efficient electrocatalysts for the sluggish oxygen evolution reaction (OER) is crucial for practical implementation of hydrogen production via water electrolysis, advancing metal-air batteries, and converting CO2 into value-added chemicals. Transition metal hydroxides, particularly those containing iron (Fe), show promise as OER catalysts, yet the relationship between material properties and catalysis remains unclear. Recent advances in in-situ/operando approaches, notably 57Fe Mössbauer spectroscopy, enable real-time monitoring of catalysts and reveal structural characteristics of Fe species. This review highlights case studies involving in-situ/operando 57Fe Mössbauer techniques in Fe-involved metal hydroxide OER electrocatalysis, providing insights into Fe’s role, active sites, and catalytic mechanisms. The investigation aims to assess opportunities and challenges linked to the use of in-situ/operando Mössbauer spectroscopy, shedding light on potential advancements in this critical research area.

为迟缓的氧进化反应(OER)创造具有成本效益的高效电催化剂,对于通过电解水制氢、推进金属-空气电池以及将二氧化碳转化为高附加值化学品的实际应用至关重要。过渡金属氢氧化物,尤其是含铁(Fe)的氢氧化物,有望成为氧进化反应催化剂,但材料特性与催化作用之间的关系仍不清楚。原位/操作方法的最新进展,特别是 57Fe 莫斯鲍尔光谱法,实现了对催化剂的实时监测,并揭示了铁物种的结构特征。本综述重点介绍了涉及铁参与金属氢氧化物 OER 电催化的原位/操作 57Fe Mössbauer 技术的案例研究,深入探讨了铁的作用、活性位点和催化机理。调查旨在评估与使用原位/操作莫斯鲍尔光谱有关的机遇和挑战,揭示这一关键研究领域的潜在进展。
{"title":"In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts","authors":"Peijia Liu,&nbsp;Sumbal Farid,&nbsp;Min Liu,&nbsp;Junhu Wang","doi":"10.1007/s10563-024-09432-3","DOIUrl":"10.1007/s10563-024-09432-3","url":null,"abstract":"<div><p>Creating cost-effective and efficient electrocatalysts for the sluggish oxygen evolution reaction (OER) is crucial for practical implementation of hydrogen production via water electrolysis, advancing metal-air batteries, and converting CO<sub>2</sub> into value-added chemicals. Transition metal hydroxides, particularly those containing iron (Fe), show promise as OER catalysts, yet the relationship between material properties and catalysis remains unclear. Recent advances in in-situ/<i>operando</i> approaches, notably <sup>57</sup>Fe Mössbauer spectroscopy, enable real-time monitoring of catalysts and reveal structural characteristics of Fe species. This review highlights case studies involving in-situ/<i>operando </i><sup>57</sup>Fe Mössbauer techniques in Fe-involved metal hydroxide OER electrocatalysis, providing insights into Fe’s role, active sites, and catalytic mechanisms. The investigation aims to assess opportunities and challenges linked to the use of in-situ/<i>operando</i> Mössbauer spectroscopy, shedding light on potential advancements in this critical research area.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"361 - 374"},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications 催化应用中的氧化石墨烯基铁氧体纳米复合材料综述
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-25 DOI: 10.1007/s10563-024-09434-1
Vaibhav K. Kashte, Nilkanth N. Kapse, Vishal Ashok Pandit, Bhagwan G. Toksha

This review discusses the synthesis, characterization, catalytic applications, mechanisms, current advances, challenges, and environmental consequences of Graphene oxide-based ferrite nanocomposites. The synthesis described the strategies used to synthesize these nanocomposites. The structural characterization was discussed using XRD, FTIR, and Raman spectroscopy techniques and how it could learn about their chemical composition and bonding. Morphological characterization said the results obtained on the nanostructure of these nanocomposites. The catalytic application phase is concerned with their use in photocatalysis, electrocatalysis, and magnetic catalysis, as well as the synergistic impact and the extra suitable electron switch pathways. The assessment also highlighted emerging developments in synthesis, novel catalytic applications, and capacity applications. The challenges and destiny directions discussed the importance of particular synthesis, management, balance, enhancement, and scalability. Compared to the sustainability, economic viability, and ecological effect, the environmental and monetary issues section underlined the significance of environmentally pleasant manufacturing and massive-scale viability.

本综述讨论了基于氧化石墨烯的铁氧体纳米复合材料的合成、表征、催化应用、机理、当前进展、挑战和环境影响。合成方面介绍了合成这些纳米复合材料的策略。使用 XRD、傅立叶变换红外光谱和拉曼光谱技术讨论了结构表征,以及如何了解它们的化学成分和结合情况。形态特征描述了这些纳米复合材料的纳米结构。催化应用阶段涉及它们在光催化、电催化和磁催化中的应用,以及协同影响和额外合适的电子转换途径。评估还强调了合成、新型催化应用和能力应用方面的新兴发展。挑战和未来方向讨论了特定合成、管理、平衡、增强和可扩展性的重要性。与可持续性、经济可行性和生态效应相比,环境和货币问题部分强调了环保生产和大规模可行性的重要性。
{"title":"A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications","authors":"Vaibhav K. Kashte,&nbsp;Nilkanth N. Kapse,&nbsp;Vishal Ashok Pandit,&nbsp;Bhagwan G. Toksha","doi":"10.1007/s10563-024-09434-1","DOIUrl":"10.1007/s10563-024-09434-1","url":null,"abstract":"<div><p>This review discusses the synthesis, characterization, catalytic applications, mechanisms, current advances, challenges, and environmental consequences of Graphene oxide-based ferrite nanocomposites. The synthesis described the strategies used to synthesize these nanocomposites. The structural characterization was discussed using XRD, FTIR, and Raman spectroscopy techniques and how it could learn about their chemical composition and bonding. Morphological characterization said the results obtained on the nanostructure of these nanocomposites. The catalytic application phase is concerned with their use in photocatalysis, electrocatalysis, and magnetic catalysis, as well as the synergistic impact and the extra suitable electron switch pathways. The assessment also highlighted emerging developments in synthesis, novel catalytic applications, and capacity applications. The challenges and destiny directions discussed the importance of particular synthesis, management, balance, enhancement, and scalability. Compared to the sustainability, economic viability, and ecological effect, the environmental and monetary issues section underlined the significance of environmentally pleasant manufacturing and massive-scale viability.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"375 - 391"},"PeriodicalIF":2.1,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO 从亚硝酸甲酯和二氧化碳气相羰基化合成碳酸二甲酯催化剂的研究进展
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-16 DOI: 10.1007/s10563-024-09431-4
Yating Li, Yan Hu, Tian Jiang, Huawei Liu

The gas-phase carbonylation synthesis of Dimethyl carbonate (DMC) from carbon monoxide (CO) and methyl nitrite (MN) has the advantages of good availability of raw materials, high purity of DMC product, and no adverse impact on catalyst activity from the byproduct of water. The key to this method is to develop an efficient and stable carbonylation catalyst suitable for the reaction between CO and MN. The reaction mechanism and research progress of the catalysts are reviewed, including chlorine-containing system and chlorine-free system catalysts. The chlorine-containing system is mainly Wacker-type catalyst, and the research focus is how to avoid the loss of Cl-. The chlorine-free system catalyst is mainly Pd/NaY zeolite catalyst, the challenge of this system catalyst is to stabilize the structure and chemical state of the active component to achieve high activity and selectivity. In the future, it is equally important to study the deactivation mechanism of the above-mentioned carbonyl catalysts.

以一氧化碳(CO)和亚硝酸甲酯(MN)为原料气相羰基化合成碳酸二甲酯(DMC)具有原料易得、DMC 产品纯度高、副产物水不会对催化剂活性产生不良影响等优点。该方法的关键是开发一种适合 CO 和 MN 反应的高效稳定的羰基化催化剂。本文综述了催化剂的反应机理和研究进展,包括含氯体系和无氯体系催化剂。含氯体系主要是 Wacker 型催化剂,研究重点是如何避免 Cl- 的损失。无氯体系催化剂主要是 Pd/NaY 沸石催化剂,该体系催化剂的难点在于如何稳定活性组分的结构和化学状态,以获得高活性和高选择性。今后,研究上述羰基催化剂的失活机理同样重要。
{"title":"Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO","authors":"Yating Li,&nbsp;Yan Hu,&nbsp;Tian Jiang,&nbsp;Huawei Liu","doi":"10.1007/s10563-024-09431-4","DOIUrl":"10.1007/s10563-024-09431-4","url":null,"abstract":"<div><p>The gas-phase carbonylation synthesis of Dimethyl carbonate (DMC) from carbon monoxide (CO) and methyl nitrite (MN) has the advantages of good availability of raw materials, high purity of DMC product, and no adverse impact on catalyst activity from the byproduct of water. The key to this method is to develop an efficient and stable carbonylation catalyst suitable for the reaction between CO and MN. The reaction mechanism and research progress of the catalysts are reviewed, including chlorine-containing system and chlorine-free system catalysts. The chlorine-containing system is mainly Wacker-type catalyst, and the research focus is how to avoid the loss of Cl<sup>-</sup>. The chlorine-free system catalyst is mainly Pd/NaY zeolite catalyst, the challenge of this system catalyst is to stabilize the structure and chemical state of the active component to achieve high activity and selectivity. In the future, it is equally important to study the deactivation mechanism of the above-mentioned carbonyl catalysts.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"350 - 360"},"PeriodicalIF":2.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Catalysis Surveys from Asia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1