首页 > 最新文献

Engineering Analysis with Boundary Elements最新文献

英文 中文
Integration of strength-reduction meshless numerical manifold method and unsupervised learning in stability analysis of heterogeneous slope 强度还原无网格数值流形法与无监督学习在异质斜坡稳定性分析中的融合
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-24 DOI: 10.1016/j.enganabound.2024.105906
Xitailang Cao , Shan Lin , Hongwei Guo , Lele Zheng , Hong Zheng

The rock-soil mass, subjected to complex and lengthy geological processes, exhibits heterogeneity which induces variations in mechanical properties, thereby affecting the overall stability of slopes. In this paper, a novel numerical model that incorporates the Weibull distribution function into the meshless numerical manifold method based on the strength reduction method (MNMM-SRM) to account for the slope soils heterogeneity and their influence on the factor of safety (Fs) and the critical sliding surface (CSS). Initially, the Weibull distribution is introduced into the MNMM-SRM model based on the complementary theory of subspace tracking, addressing the issue of multiple yield surface corners in the Mohr-Coulomb framework while simultaneously considering the heterogeneous nature of rock and soil formations. Subsequently, an intelligent method based on unsupervised learning is proposed to obtain reasonable CSS, utilizing the total displacement field at slope nodes and the equivalent plastic strain field as input variables. The results serve as criteria for terminating the strength reduction in the MNMM-SRM. The applicability of this method is verified through three typical examples, demonstrating its potential for widespread application in the assessment of heterogeneous slope stability.

岩土体在经历复杂而漫长的地质过程后,会呈现出异质性,从而引起力学性能的变化,进而影响斜坡的整体稳定性。本文采用一种新颖的数值模型,在基于强度折减方法的无网格数值流形方法(MNMM-SRM)中加入威布尔分布函数,以考虑边坡土体的异质性及其对安全系数(Fs)和临界滑动面(CSS)的影响。首先,基于子空间跟踪的互补理论,在 MNMM-SRM 模型中引入了 Weibull 分布,解决了莫尔-库仑框架中的多个屈服面拐角问题,同时考虑了岩土结构的异质性。随后,提出了一种基于无监督学习的智能方法,利用斜坡节点处的总位移场和等效塑性应变场作为输入变量,获得合理的 CSS。其结果可作为 MNMM-SRM 中终止强度降低的标准。通过三个典型案例验证了该方法的适用性,证明了其在异质边坡稳定性评估中的广泛应用潜力。
{"title":"Integration of strength-reduction meshless numerical manifold method and unsupervised learning in stability analysis of heterogeneous slope","authors":"Xitailang Cao ,&nbsp;Shan Lin ,&nbsp;Hongwei Guo ,&nbsp;Lele Zheng ,&nbsp;Hong Zheng","doi":"10.1016/j.enganabound.2024.105906","DOIUrl":"10.1016/j.enganabound.2024.105906","url":null,"abstract":"<div><p>The rock-soil mass, subjected to complex and lengthy geological processes, exhibits heterogeneity which induces variations in mechanical properties, thereby affecting the overall stability of slopes. In this paper, a novel numerical model that incorporates the Weibull distribution function into the meshless numerical manifold method based on the strength reduction method (MNMM-SRM) to account for the slope soils heterogeneity and their influence on the factor of safety (<em>F<sub>s</sub></em>) and the critical sliding surface (CSS). Initially, the Weibull distribution is introduced into the MNMM-SRM model based on the complementary theory of subspace tracking, addressing the issue of multiple yield surface corners in the Mohr-Coulomb framework while simultaneously considering the heterogeneous nature of rock and soil formations. Subsequently, an intelligent method based on unsupervised learning is proposed to obtain reasonable CSS, utilizing the total displacement field at slope nodes and the equivalent plastic strain field as input variables. The results serve as criteria for terminating the strength reduction in the MNMM-SRM. The applicability of this method is verified through three typical examples, demonstrating its potential for widespread application in the assessment of heterogeneous slope stability.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105906"},"PeriodicalIF":4.2,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isosurface-based marching cube algorithm for smooth geometric topology optimization within adaptive octree SBFE approach 自适应八叉树 SBFE 方法中基于等值面的平滑几何拓扑优化行进立方体算法
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-22 DOI: 10.1016/j.enganabound.2024.105920
Rut Su , Piyawat Boonlertnirun , Sawekchai Tangaramvong , Chongmin Song

In the era of Industry 4.0, the prominence of 3D printing as a pivotal manufacturing technology has greatly expanded, particularly within the domain of additive manufacturing (AM). Among the thriving research applications tailored for integration with AM, topology optimization (TO) has emerged as a resounding success. Given the prerequisite of TO for high-resolution meshing to ensure visual clarity in result depiction, researchers have been consistently driven to develop advanced techniques to refine optimal designs, thus elevating the challenge and popularity within this research realm. This paper presents a novel approach integrating an adaptive image-based octree mesh scaled boundary finite element (SBFE) framework with an evolutionary methodology that can effectively address the persistent challenges inherent to TO. A novel hierarchical SBFE mesh analysis not only facilitates efficient and precise TO but also substantially reduces computational resource demands. Furthermore, the pre-conditioned conjugated gradient (PCG) method is adopted to process practical-scale problems, minimizing computer memory resources. Additionally, the proposed work incorporates a post-processing technique utilizing the isosurface function based on a marching cube algorithm, thereby smoothing the boundaries of optimal results. Consequently, this research extends the horizons of design possibilities, particularly in the creation of intricate 3D structures, which can be seamlessly realized through additive manufacturing and 3D printing.

在工业 4.0 时代,3D 打印作为一种重要的制造技术,尤其是在增材制造(AM)领域,其地位已大大提高。在与增材制造相结合的蓬勃发展的研究应用中,拓扑优化(TO)取得了巨大成功。由于拓扑优化的前提条件是高分辨率网格划分,以确保结果描述的视觉清晰度,因此研究人员一直致力于开发先进技术来完善优化设计,从而提升了这一研究领域的挑战性和受欢迎程度。本文提出了一种新方法,它将基于图像的自适应八叉网格缩放边界有限元(SBFE)框架与进化方法相结合,能有效解决 TO 固有的长期挑战。新颖的分层 SBFE 网格分析不仅有助于高效、精确的 TO,还能大幅降低计算资源需求。此外,还采用了预条件共轭梯度(PCG)方法来处理实际规模的问题,最大限度地减少了计算机内存资源。此外,该研究还采用了基于行进立方体算法的等值面函数后处理技术,从而平滑了最优结果的边界。因此,这项研究拓展了设计的可能性,特别是在创建复杂的三维结构方面,可以通过增材制造和三维打印技术无缝实现。
{"title":"Isosurface-based marching cube algorithm for smooth geometric topology optimization within adaptive octree SBFE approach","authors":"Rut Su ,&nbsp;Piyawat Boonlertnirun ,&nbsp;Sawekchai Tangaramvong ,&nbsp;Chongmin Song","doi":"10.1016/j.enganabound.2024.105920","DOIUrl":"10.1016/j.enganabound.2024.105920","url":null,"abstract":"<div><p>In the era of Industry 4.0, the prominence of 3D printing as a pivotal manufacturing technology has greatly expanded, particularly within the domain of additive manufacturing (AM). Among the thriving research applications tailored for integration with AM, topology optimization (TO) has emerged as a resounding success. Given the prerequisite of TO for high-resolution meshing to ensure visual clarity in result depiction, researchers have been consistently driven to develop advanced techniques to refine optimal designs, thus elevating the challenge and popularity within this research realm. This paper presents a novel approach integrating an adaptive image-based octree mesh scaled boundary finite element (SBFE) framework with an evolutionary methodology that can effectively address the persistent challenges inherent to TO. A novel hierarchical SBFE mesh analysis not only facilitates efficient and precise TO but also substantially reduces computational resource demands. Furthermore, the pre-conditioned conjugated gradient (PCG) method is adopted to process practical-scale problems, minimizing computer memory resources. Additionally, the proposed work incorporates a post-processing technique utilizing the isosurface function based on a marching cube algorithm, thereby smoothing the boundaries of optimal results. Consequently, this research extends the horizons of design possibilities, particularly in the creation of intricate 3D structures, which can be seamlessly realized through additive manufacturing and 3D printing.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105920"},"PeriodicalIF":4.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A frequency domain hybrid Green function method for seakeeping and added resistance performance of ships advancing in waves 频域混合绿色函数法:船舶在波浪中前进时的适航性能和附加阻力性能
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-21 DOI: 10.1016/j.enganabound.2024.105913
Guohua Dong , Chaobang Yao , Jiawei Yu , Xiaoshuai Sun , Dakui Feng

A three-dimensional hybrid Green function method is proposed to investigate the seakeeping and added resistance performance of ships advancing in waves. As for the method, the whole fluid domain is divided into two subdomains by introducing a regular virtual control surface. In the inner domain, the first order Taylor Expansion Boundary Element Method (TEBEM) based on simple Green function (Rankine source) is applied. Meanwhile, three-dimensional panel method based on the translating-pulsating panel source (3DTP-PS) Green function is adopted in the outer domain, to overcome the difficulty in proposing a proper boundary condition of the control surface for the Rankine source panel method. With respect to the coupled solutions in the two subdomains, the continuous conditions of velocity potential and its normal derivative are imposed on the virtual control surface. Different treatments of linearization of the free surface and the corresponding ship hull conditions in the inner domain are discussed. Furthermore, six ship models are selected to investigate: the Wigley III, Slender Wigley, Blunt Wigley, S-60, SCb-84 and RIOS ship models (which include different ship types, such as slender, blunt, with bulbous bow, and without bulbous bow). Firstly, through the calculations of radiation and diffraction forces on two modified Wigley hulls and S-60 with block coefficient equals to 0.7, the present method is proved to have good mesh convergence, and satisfactory results can be obtained. Then, the present numerical method is applied to evaluate the hydrodynamic responses of ships sailing in head and oblique waves. Finally, the ship motions and the wave‑induced mean second order wave forces are calculated, including multiple wave directions. Good agreement between the experimental measurements and the numerical results is obtained in all cases, indicating that the present hybrid Green function method is useful and applicable. For present hybrid Green function method, TEBEM is used instead of the traditional constant panel method, which has the advantages of accuracy, and provides a new way for ship hydrodynamic calculation.

本文提出了一种三维混合格林函数方法,用于研究船舶在波浪中前进时的适航性能和附加阻力性能。该方法通过引入规则虚拟控制面将整个流体域划分为两个子域。在内域中,采用基于简单格林函数(朗肯源)的一阶泰勒膨胀边界元法(TEBEM)。同时,在外域采用了基于平移-脉动面板源(3DTP-PS)格林函数的三维面板法,以克服为朗金源面板法提出适当控制面边界条件的困难。对于两个子域中的耦合解,在虚拟控制面上施加了速度势及其法导数的连续条件。讨论了自由表面线性化的不同处理方法以及内域中相应的船体条件。此外,还选择了六种船模进行研究:Wigley III、Slender Wigley、Blunt Wigley、S-60、SCb-84 和 RIOS 船模(包括不同的船型,如细长型、钝型、带球首和无球首)。首先,通过对两艘改进型 Wigley 船体和块系数等于 0.7 的 S-60 的辐射力和衍射力的计算,证明本方法具有良好的网格收敛性,可获得令人满意的结果。然后,应用本数值方法评估了船舶在迎面波和斜波中的水动力响应。最后,计算了船舶运动和波浪引起的平均二阶波力,包括多个波浪方向。在所有情况下,实验测量结果和数值结果之间都获得了良好的一致性,表明本混合格林函数方法是有用和适用的。本混合绿函数方法采用 TEBEM 代替传统的恒定面板法,具有精度高的优点,为船舶水动力计算提供了一种新的方法。
{"title":"A frequency domain hybrid Green function method for seakeeping and added resistance performance of ships advancing in waves","authors":"Guohua Dong ,&nbsp;Chaobang Yao ,&nbsp;Jiawei Yu ,&nbsp;Xiaoshuai Sun ,&nbsp;Dakui Feng","doi":"10.1016/j.enganabound.2024.105913","DOIUrl":"10.1016/j.enganabound.2024.105913","url":null,"abstract":"<div><p>A three-dimensional hybrid Green function method is proposed to investigate the seakeeping and added resistance performance of ships advancing in waves. As for the method, the whole fluid domain is divided into two subdomains by introducing a regular virtual control surface. In the inner domain, the first order Taylor Expansion Boundary Element Method (TEBEM) based on simple Green function (Rankine source) is applied. Meanwhile, three-dimensional panel method based on the translating-pulsating panel source (3DTP-PS) Green function is adopted in the outer domain, to overcome the difficulty in proposing a proper boundary condition of the control surface for the Rankine source panel method. With respect to the coupled solutions in the two subdomains, the continuous conditions of velocity potential and its normal derivative are imposed on the virtual control surface. Different treatments of linearization of the free surface and the corresponding ship hull conditions in the inner domain are discussed. Furthermore, six ship models are selected to investigate: the Wigley III, Slender Wigley, Blunt Wigley, S-60, SCb-84 and RIOS ship models (which include different ship types, such as slender, blunt, with bulbous bow, and without bulbous bow). Firstly, through the calculations of radiation and diffraction forces on two modified Wigley hulls and S-60 with block coefficient equals to 0.7, the present method is proved to have good mesh convergence, and satisfactory results can be obtained. Then, the present numerical method is applied to evaluate the hydrodynamic responses of ships sailing in head and oblique waves. Finally, the ship motions and the wave‑induced mean second order wave forces are calculated, including multiple wave directions. Good agreement between the experimental measurements and the numerical results is obtained in all cases, indicating that the present hybrid Green function method is useful and applicable. For present hybrid Green function method, TEBEM is used instead of the traditional constant panel method, which has the advantages of accuracy, and provides a new way for ship hydrodynamic calculation.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105913"},"PeriodicalIF":4.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stable localized weak strong form radial basis function method for modelling variably saturated groundwater flow induced by pumping and injection 用于模拟抽水和注水诱导的可变饱和地下水流的稳定局部弱强形式径向基函数方法
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-19 DOI: 10.1016/j.enganabound.2024.105922
Jiayu Fang , Mohammad Z. Al-Hamdan , Andrew M. O'Reilly , Yavuz Ozeren

The unsaturated zone profoundly affects groundwater (GW) flow induced by pumping and injection due to the capillary forces. However, current radial basis function (RBF) numerical models for GW pumping and injection mostly ignore the unsaturated zone. To bridge this gap, we developed a new three-dimensional weak strong form RBF model in this study, called CCHE3D-GW-RBF. Flow processes were modelled by the mixed-form Richards equation which was iteratively solved by the modified Picard iteration. Soil-water characteristic curves were represented by the widely applicable formulas, the van Genuchten (1980) model. Differential operators were approximated by the localized Gaussian RBF, and the weighted singular value decomposition method was used to construct stable bases. The injection/pumping wells and the flux boundaries were handled by the weak formulation using Meshless Local Petrov Galerkin method, and the strong-form equation using the collocation RBF method was enforced on the other points. Good agreement was found between the simulation results from our numerical model and the well-accepted solutions in all three verification cases, demonstrating the accuracy and applicability of this model. In addition, a smaller RBF shape parameter was found to produce a more accurate modelling resulting, indicating the necessity of implementing stable bases for RBF models.

由于毛细力的作用,非饱和带对抽水和注水引起的地下水(GW)流动有深刻影响。然而,目前用于地下水抽注的径向基函数(RBF)数值模型大多忽略了非饱和带。为了弥补这一缺陷,我们在本研究中开发了一种新的三维弱强形式 RBF 模型,称为 CCHE3D-GW-RBF。流动过程采用混合形式的理查兹方程建模,并通过改进的皮卡尔迭代法迭代求解。土壤水特征曲线采用广泛应用的公式 van Genuchten(1980 年)模型。微分算子由局部高斯 RBF 逼近,并使用加权奇异值分解法构建稳定基。注水井/抽水井和通量边界采用无网格局部 Petrov Galerkin 方法的弱式方程处理,其他点采用 RBF 方法的强式方程处理。在所有三个验证案例中,我们的数值模型模拟结果与公认的解之间都有很好的一致性,这证明了该模型的准确性和适用性。此外,研究还发现,较小的 RBF 形状参数会产生更精确的建模结果,这表明有必要为 RBF 模型实施稳定的基础。
{"title":"A stable localized weak strong form radial basis function method for modelling variably saturated groundwater flow induced by pumping and injection","authors":"Jiayu Fang ,&nbsp;Mohammad Z. Al-Hamdan ,&nbsp;Andrew M. O'Reilly ,&nbsp;Yavuz Ozeren","doi":"10.1016/j.enganabound.2024.105922","DOIUrl":"10.1016/j.enganabound.2024.105922","url":null,"abstract":"<div><p>The unsaturated zone profoundly affects groundwater (GW) flow induced by pumping and injection due to the capillary forces. However, current radial basis function (RBF) numerical models for GW pumping and injection mostly ignore the unsaturated zone. To bridge this gap, we developed a new three-dimensional weak strong form RBF model in this study, called CCHE3D-GW-RBF. Flow processes were modelled by the mixed-form Richards equation which was iteratively solved by the modified Picard iteration. Soil-water characteristic curves were represented by the widely applicable formulas, the van Genuchten (1980) model. Differential operators were approximated by the localized Gaussian RBF, and the weighted singular value decomposition method was used to construct stable bases. The injection/pumping wells and the flux boundaries were handled by the weak formulation using Meshless Local Petrov Galerkin method, and the strong-form equation using the collocation RBF method was enforced on the other points. Good agreement was found between the simulation results from our numerical model and the well-accepted solutions in all three verification cases, demonstrating the accuracy and applicability of this model. In addition, a smaller RBF shape parameter was found to produce a more accurate modelling resulting, indicating the necessity of implementing stable bases for RBF models.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105922"},"PeriodicalIF":4.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic analysis of cracked thick composite shells by the Boundary Element Method 用边界元素法对开裂厚复合材料壳体进行动态分析
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-19 DOI: 10.1016/j.enganabound.2024.105923
J. Useche

This article presents a numerical formulation based on the Boundary Element Method for the transient dynamic analysis of cracked thick symmetrical composite shells. The integral formulation uses the static fundamental solutions for thick orthotropic symmetric plates and the anisotropic plain elasticity fundamental solution. Domain integrals associated to distributed loads, curvature and inertial terms are evaluated employing the Radial Integration Method. The crack was modeled using the sub-region method. The developed formulation is implemented computationally and validated through the analysis of several proposed examples. The obtained results demonstrate the validity and robustness of the developed formulation.

本文提出了一种基于边界元法的数值计算方法,用于对开裂的厚对称复合材料壳体进行瞬态动力学分析。积分公式使用了正交对称厚板的静态基本解法和各向异性平弹性基本解法。与分布载荷、曲率和惯性项相关的域积分采用径向积分法进行评估。裂缝采用子区域法建模。通过计算实现了所开发的公式,并通过对几个拟议实例的分析进行了验证。所获得的结果证明了所开发公式的有效性和稳健性。
{"title":"Dynamic analysis of cracked thick composite shells by the Boundary Element Method","authors":"J. Useche","doi":"10.1016/j.enganabound.2024.105923","DOIUrl":"10.1016/j.enganabound.2024.105923","url":null,"abstract":"<div><p>This article presents a numerical formulation based on the Boundary Element Method for the transient dynamic analysis of cracked thick symmetrical composite shells. The integral formulation uses the static fundamental solutions for thick orthotropic symmetric plates and the anisotropic plain elasticity fundamental solution. Domain integrals associated to distributed loads, curvature and inertial terms are evaluated employing the Radial Integration Method. The crack was modeled using the sub-region method. The developed formulation is implemented computationally and validated through the analysis of several proposed examples. The obtained results demonstrate the validity and robustness of the developed formulation.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105923"},"PeriodicalIF":4.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irregular domains: Special coordinates for a pseudospectral method 不规则域伪谱法的特殊坐标
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-19 DOI: 10.1016/j.enganabound.2024.105921
O. Guimarães, Leandro Cunha, José R.C. Piqueira

Working with a special coordinate system, this study demonstrates how to obtain numerical solutions with geometric convergence for the eigenstates of a Laplacian operator in irregular prismatic domains (both annular and single) that are simply connected. An appropriate coordinate system, which defines a tightly bounded domain, allows for a fair mesh for series approximation nodes. Three independent criteria were used to verify the consistency of the solutions: the Rayleigh quotient, the divergence theorem, and a partial derivative equation (PDE) transformed from an eigenvalue problem to a boundary value problem with Robin conditions. Supporting the proposed method, examples show a few hundred eigenstates obtained in a single computation, with at least 10 significant figures and a low computational cost.

本研究利用一个特殊坐标系,演示了如何在简单连接的不规则棱柱域(包括环形域和单一域)中获得具有几何收敛性的拉普拉斯算子特征状态数值解。适当的坐标系定义了一个边界紧密的域,可以为系列逼近节点提供公平的网格。我们使用了三个独立的标准来验证解的一致性:瑞利商、发散定理以及从特征值问题转换为具有罗宾条件的边界值问题的偏导数方程(PDE)。实例显示,一次计算就能获得数百个特征状态,且至少有 10 位有效数字,计算成本较低,从而证明了所提出的方法。
{"title":"Irregular domains: Special coordinates for a pseudospectral method","authors":"O. Guimarães,&nbsp;Leandro Cunha,&nbsp;José R.C. Piqueira","doi":"10.1016/j.enganabound.2024.105921","DOIUrl":"10.1016/j.enganabound.2024.105921","url":null,"abstract":"<div><p>Working with a special coordinate system, this study demonstrates how to obtain numerical solutions with geometric convergence for the eigenstates of a Laplacian operator in irregular prismatic domains (both annular and single) that are simply connected. An appropriate coordinate system, which defines a tightly bounded domain, allows for a fair mesh for series approximation nodes. Three independent criteria were used to verify the consistency of the solutions: the Rayleigh quotient, the divergence theorem, and a partial derivative equation (PDE) transformed from an eigenvalue problem to a boundary value problem with Robin conditions. Supporting the proposed method, examples show a few hundred eigenstates obtained in a single computation, with at least 10 significant figures and a low computational cost.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105921"},"PeriodicalIF":4.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties and failure behavior of heterogeneous granite: Insights from a new Weibull-based FDEM numerical model 异质花岗岩的力学特性和破坏行为:基于 Weibull 的新型 FDEM 数值模型的启示
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-18 DOI: 10.1016/j.enganabound.2024.105924
Penghai Deng , Quansheng Liu , Haifeng Lu , Yuexiu Wu

Granite is often encountered in underground engineering, and its mechanical properties and failure behavior directly determine its stability and seepage characteristics. Unlike other rocks, granite is usually considered heterogeneous. Based on the Weibull distribution, this paper proposes a novel modeling method for heterogeneous granite via the combined finite-discrete element method (FDEM), and the mechanical properties and failure behavior of granite under uniaxial and triaxial compression, Brazilian splitting, and direct tension, as well as the influence of the loading rate, were investigated. The research results indicate that (1) the new modeling method can be used to construct a heterogeneous granite numerical model that includes three types of randomness (mineral spatial distribution randomness, mineral size randomness, and mineral shape randomness) and can quantitatively change the mineral composition; (2) uniaxial and triaxial compression simulation tests reveal that as the content of weak minerals (biotite) increases, the uniaxial compressive strength and equivalent cohesion decrease as a power function, and Young's modulus decreases as a linear function, while the equivalent internal friction angle decreases as an exponential function; (3) heterogeneous granite exhibits different mechanical properties and failure behaviors under Brazilian splitting and direct tension due to their different failure modes; typically, the tensile strength obtained from direct tension testing is lower than the value obtained from Brazilian splitting testing; and (4) as the loading rate increases, the strength, stiffness, and number of cracks of the specimen first stabilize and then increase as a power function, with a critical rate of v=1 m/s.

在地下工程中经常会遇到花岗岩,其机械特性和破坏行为直接决定了其稳定性和渗流特性。与其他岩石不同,花岗岩通常被视为异质岩。本文基于威布尔分布,通过有限元-离散元组合法(FDEM)提出了一种新型的异质花岗岩建模方法,研究了花岗岩在单轴和三轴压缩、巴西劈裂、直接拉伸下的力学性能和破坏行为,以及加载速率的影响。研究结果表明:(1)新建模方法可用于构建包含三种随机性(矿物空间分布随机性、矿物尺寸随机性和矿物形状随机性)的异质花岗岩数值模型,并可定量改变矿物组成;(2)单轴和三轴压缩模拟试验表明,随着弱矿物(斜长石)含量的增加,单轴压缩强度和等效内聚力呈幂函数下降,杨氏模量呈线性下降,等效内摩擦角呈指数函数下降;(3) 由于失效模式不同,异质花岗岩在巴西劈裂和直接拉伸下表现出不同的力学性能和失效行为;通常,直接拉伸试验获得的抗拉强度低于巴西劈裂试验获得的值;以及 (4) 随着加载速率的增加,试样的强度、刚度和裂缝数量先趋于稳定,然后以幂函数形式增加,临界速率为 v=1 m/s。
{"title":"Mechanical properties and failure behavior of heterogeneous granite: Insights from a new Weibull-based FDEM numerical model","authors":"Penghai Deng ,&nbsp;Quansheng Liu ,&nbsp;Haifeng Lu ,&nbsp;Yuexiu Wu","doi":"10.1016/j.enganabound.2024.105924","DOIUrl":"10.1016/j.enganabound.2024.105924","url":null,"abstract":"<div><p>Granite is often encountered in underground engineering, and its mechanical properties and failure behavior directly determine its stability and seepage characteristics. Unlike other rocks, granite is usually considered heterogeneous. Based on the Weibull distribution, this paper proposes a novel modeling method for heterogeneous granite via the combined finite-discrete element method (FDEM), and the mechanical properties and failure behavior of granite under uniaxial and triaxial compression, Brazilian splitting, and direct tension, as well as the influence of the loading rate, were investigated. The research results indicate that (1) the new modeling method can be used to construct a heterogeneous granite numerical model that includes three types of randomness (mineral spatial distribution randomness, mineral size randomness, and mineral shape randomness) and can quantitatively change the mineral composition; (2) uniaxial and triaxial compression simulation tests reveal that as the content of weak minerals (biotite) increases, the uniaxial compressive strength and equivalent cohesion decrease as a power function, and Young's modulus decreases as a linear function, while the equivalent internal friction angle decreases as an exponential function; (3) heterogeneous granite exhibits different mechanical properties and failure behaviors under Brazilian splitting and direct tension due to their different failure modes; typically, the tensile strength obtained from direct tension testing is lower than the value obtained from Brazilian splitting testing; and (4) as the loading rate increases, the strength, stiffness, and number of cracks of the specimen first stabilize and then increase as a power function, with a critical rate of <em>v</em>=1 m/s.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105924"},"PeriodicalIF":4.2,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DAL-PINNs: Physics-informed neural networks based on D'Alembert principle for generalized electromagnetic field model computation DAL-PINNs:基于达朗贝尔原理的物理信息神经网络,用于广义电磁场模型计算
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-17 DOI: 10.1016/j.enganabound.2024.105914
Xinheng Li , Pengbo Wang , Fan Yang , Xing Li , Yuxin Fang , Jie Tong

Physics-Informed Neural Networks (PINNs) have been extensively used as solvers for partial differential equations (PDEs) and have been widely referenced in the field of physical field simulations. However, compared to traditional numerical methods, PINNs do not demonstrate significant advantages in terms of training accuracy. In addition, electromagnetic field computation involves various governing equations, which necessitate the construction of specific PINN loss functions for training, which limits their applicability in computational electromagnetics. To address these issues, this paper proposes a general algorithm for multi-scenario electromagnetic field calculation called DAL-PINN. By reformulating Maxwell's equations into a general PDE with variable parameters, different electromagnetic field problems can be solved by simply adjusting the source and material parameters. Based on D'Alembert's principle and fixed-point sampling, the algorithm is effectively improved by replacing interpolation functions with random variables (virtual displacements). The performance of the proposed algorithm is validated through the electromagnetic field calculation in static, diffusion, and wave scenarios.

物理信息神经网络(PINNs)已被广泛用作偏微分方程(PDEs)的求解器,并在物理场模拟领域被广泛引用。然而,与传统的数值方法相比,PINN 在训练精度方面并没有表现出明显的优势。此外,电磁场计算涉及多种治理方程,需要构建特定的 PINN 损耗函数进行训练,这限制了其在计算电磁学中的应用。针对这些问题,本文提出了一种用于多场景电磁场计算的通用算法,称为 DAL-PINN。通过将麦克斯韦方程重新表述为具有可变参数的一般 PDE,只需调整源和材料参数即可解决不同的电磁场问题。基于达朗贝尔原理和定点采样,用随机变量(虚拟位移)代替插值函数,有效地改进了算法。通过静态、扩散和波浪情况下的电磁场计算,验证了所提算法的性能。
{"title":"DAL-PINNs: Physics-informed neural networks based on D'Alembert principle for generalized electromagnetic field model computation","authors":"Xinheng Li ,&nbsp;Pengbo Wang ,&nbsp;Fan Yang ,&nbsp;Xing Li ,&nbsp;Yuxin Fang ,&nbsp;Jie Tong","doi":"10.1016/j.enganabound.2024.105914","DOIUrl":"10.1016/j.enganabound.2024.105914","url":null,"abstract":"<div><p>Physics-Informed Neural Networks (PINNs) have been extensively used as solvers for partial differential equations (PDEs) and have been widely referenced in the field of physical field simulations. However, compared to traditional numerical methods, PINNs do not demonstrate significant advantages in terms of training accuracy. In addition, electromagnetic field computation involves various governing equations, which necessitate the construction of specific PINN loss functions for training, which limits their applicability in computational electromagnetics. To address these issues, this paper proposes a general algorithm for multi-scenario electromagnetic field calculation called DAL-PINN. By reformulating Maxwell's equations into a general PDE with variable parameters, different electromagnetic field problems can be solved by simply adjusting the source and material parameters. Based on D'Alembert's principle and fixed-point sampling, the algorithm is effectively improved by replacing interpolation functions with random variables (virtual displacements). The performance of the proposed algorithm is validated through the electromagnetic field calculation in static, diffusion, and wave scenarios.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105914"},"PeriodicalIF":4.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Interface Alternation Method (DIAM) based on domain decomposition for solving elliptic interface problems 基于域分解的深层界面交替法 (DIAM) 用于解决椭圆界面问题
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-16 DOI: 10.1016/j.enganabound.2024.105905
Lingxiao Zhang , Xinxiang Li

The interface problem is highly challenging due to its non-smoothness, discontinuity, and interface complexity. In this paper, a new and simple Deep Interface Alternation Method (DIAM) is developed to solve elliptic interface problems to avoid dealing with interfaces. It combines the ideas of domain decomposition methods and deep learning methods. Specifically, we first transform the interface problem with discontinuous derivatives into multiple continuous subproblems based on the Dirichlet–Dirichlet algorithm of domain decomposition. Then, we establish different fully connected neural networks for each subproblem to approximate parallelly the continuous solutions in the subdomain. The interface information is especially exchanged among the different loss functions of each subdomain neural network while minimizing the loss functions of each subdomain separately to obtain solutions to the entire interface problem. Numerical experiments were conducted on two-dimensional and three-dimensional elliptical interface problems with different coefficient contrasts and interface complexity. The results indicate that the Deep Interface Alternation Method has effectiveness and accuracy.

界面问题因其非光滑性、不连续性和界面复杂性而极具挑战性。本文开发了一种新的、简单的深度界面交替法(DIAM)来解决椭圆界面问题,以避免处理界面。它结合了领域分解方法和深度学习方法的思想。具体来说,我们首先基于域分解的 Dirichlet-Dirichlet 算法,将具有不连续导数的接口问题转化为多个连续子问题。然后,我们为每个子问题建立不同的全连接神经网络,并行逼近子域中的连续解。在分别最小化各子域损失函数的同时,特别在各子域神经网络的不同损失函数之间交换接口信息,从而获得整个接口问题的解。对不同系数对比度和界面复杂度的二维和三维椭圆界面问题进行了数值实验。结果表明,深度界面交替法具有有效性和准确性。
{"title":"Deep Interface Alternation Method (DIAM) based on domain decomposition for solving elliptic interface problems","authors":"Lingxiao Zhang ,&nbsp;Xinxiang Li","doi":"10.1016/j.enganabound.2024.105905","DOIUrl":"10.1016/j.enganabound.2024.105905","url":null,"abstract":"<div><p>The interface problem is highly challenging due to its non-smoothness, discontinuity, and interface complexity. In this paper, a new and simple Deep Interface Alternation Method (DIAM) is developed to solve elliptic interface problems to avoid dealing with interfaces. It combines the ideas of domain decomposition methods and deep learning methods. Specifically, we first transform the interface problem with discontinuous derivatives into multiple continuous subproblems based on the Dirichlet–Dirichlet algorithm of domain decomposition. Then, we establish different fully connected neural networks for each subproblem to approximate parallelly the continuous solutions in the subdomain. The interface information is especially exchanged among the different loss functions of each subdomain neural network while minimizing the loss functions of each subdomain separately to obtain solutions to the entire interface problem. Numerical experiments were conducted on two-dimensional and three-dimensional elliptical interface problems with different coefficient contrasts and interface complexity. The results indicate that the Deep Interface Alternation Method has effectiveness and accuracy.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105905"},"PeriodicalIF":4.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamentals of a null field method-surface equivalence principle approach for scattering by dielectric cylinders 电介质圆柱体散射的空场法-表面等价原理方法的基本原理
IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-16 DOI: 10.1016/j.enganabound.2024.105911
Minas Kouroublakis , Nikolaos L. Tsitsas , George Fikioris

The null-field method (NFM) and the method of auxiliary sources (MAS) have been both used extensively for the numerical solution of boundary-value problems arising in diverse applications involving propagation and scattering of waves. It has been shown that, under certain conditions, the applicability of MAS may be restricted by issues concerning the divergence of the auxiliary currents, manifested by the appearance of exponentially large oscillations. In this work, we combine the NFM with the surface equivalence principle (SEP) and investigate analytically the convergence properties of the combined NFM-SEP with reference to the problem of (internal or external) line-source excitation of a dielectric cylinder. Our main purpose is to prove that (contrary to the MAS) the discrete NFM-SEP currents, when properly normalized, always converge to the corresponding continuous current densities, and thus no divergence and oscillations phenomena appear. The theoretical analysis of the NFM-SEP is accompanied by detailed comparisons with the MAS as well as with representative numerical results illustrating the conclusions.

空场法(NFM)和辅助源法(MAS)都被广泛用于对涉及波的传播和散射的各种应用中出现的边界值问题进行数值求解。研究表明,在某些条件下,MAS 的适用性可能会受到辅助电流发散问题的限制,表现为出现指数级的大振荡。在这项工作中,我们结合了 NFM 和表面等效原理 (SEP),并参照介电圆柱体的(内部或外部)线源激励问题,分析研究了 NFM-SEP 组合的收敛特性。我们的主要目的是证明(与 MAS 相反)离散 NFM-SEP 电流在适当归一化后总是收敛于相应的连续电流密度,因此不会出现发散和振荡现象。在对 NFM-SEP 进行理论分析的同时,还与 MAS 进行了详细比较,并用具有代表性的数值结果对结论进行了说明。
{"title":"Fundamentals of a null field method-surface equivalence principle approach for scattering by dielectric cylinders","authors":"Minas Kouroublakis ,&nbsp;Nikolaos L. Tsitsas ,&nbsp;George Fikioris","doi":"10.1016/j.enganabound.2024.105911","DOIUrl":"10.1016/j.enganabound.2024.105911","url":null,"abstract":"<div><p>The null-field method (NFM) and the method of auxiliary sources (MAS) have been both used extensively for the numerical solution of boundary-value problems arising in diverse applications involving propagation and scattering of waves. It has been shown that, under certain conditions, the applicability of MAS may be restricted by issues concerning the divergence of the auxiliary currents, manifested by the appearance of exponentially large oscillations. In this work, we combine the NFM with the surface equivalence principle (SEP) and investigate analytically the convergence properties of the combined NFM-SEP with reference to the problem of (internal or external) line-source excitation of a dielectric cylinder. Our main purpose is to prove that (contrary to the MAS) the discrete NFM-SEP currents, when properly normalized, always converge to the corresponding continuous current densities, and thus no divergence and oscillations phenomena appear. The theoretical analysis of the NFM-SEP is accompanied by detailed comparisons with the MAS as well as with representative numerical results illustrating the conclusions.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105911"},"PeriodicalIF":4.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Engineering Analysis with Boundary Elements
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1