Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106056
Yao Sun, Jiaxin Chen
In this paper, we propose a numerical formula to calculate time-harmonic electromagnetic field interacting with three-dimensional elastic body. The formula is based on the method of fundamental solutions. Firstly, we perform Helmholtz decomposition on the displacement field. The problem will transform into a coupled bounded problem including a scaler Helmholtz equation, a vector Helmholtz equation and a Maxwell equation. Then, we use the method of fundamental solutions to solve the new problem. Finally, we provide some examples to demonstrate the effectiveness of the proposed method. We construct the exact solutions for the boundary value problem to verify the accuracy and present a comparative study with the Galerkin scheme.
{"title":"A meshless method based on the method of fundamental solution for time harmonic electromagnetic field with a three-dimensional elastic body","authors":"Yao Sun, Jiaxin Chen","doi":"10.1016/j.enganabound.2024.106056","DOIUrl":"10.1016/j.enganabound.2024.106056","url":null,"abstract":"<div><div>In this paper, we propose a numerical formula to calculate time-harmonic electromagnetic field interacting with three-dimensional elastic body. The formula is based on the method of fundamental solutions. Firstly, we perform Helmholtz decomposition on the displacement field. The problem will transform into a coupled bounded problem including a scaler Helmholtz equation, a vector Helmholtz equation and a Maxwell equation. Then, we use the method of fundamental solutions to solve the new problem. Finally, we provide some examples to demonstrate the effectiveness of the proposed method. We construct the exact solutions for the boundary value problem to verify the accuracy and present a comparative study with the Galerkin scheme.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106056"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106059
Peng Yin , Xu-Chang Liu , Jin-Shui Yang , Yao-Yao Xu , Shuang Li , Xiao-Bin Lu , Lin-Zhi Wu
The submarine's sail, as the largest appendage structure, is more susceptible to turbulence induced vibrations during medium to high-speed navigation, making it a critical area for the generation of flow-induced noise, significantly impacting the stealth and safety of submarine. Considering the excellent mechanical properties and high damping characteristics of lightweight composite sandwich structures, by combining large eddy simulation with vibro-acoustic coupling methods based on boundary element method, under the premise of verifying the accuracy of the numerical methods, a series of three-dimensional dynamic numerical models are established to investigate the flow-induced noise response of the novel composite sandwich sail. The results indicate that the overall sound power level of composite sandwich sail is reduced by approximately 8.9 dB compared to steel structure. The maximum sound power level of composite sandwich sail is lower than the steel with equal areal density. The sound pressure of the sail with buoyant material is lower than that of foam and PVC with the same damping. This work can provide theoretical support for the design methods of new lightweight, multifunctional sail structures.
{"title":"Numerical study of flow-induced noise response of lightweight composite sandwich sail based on the boundary element method","authors":"Peng Yin , Xu-Chang Liu , Jin-Shui Yang , Yao-Yao Xu , Shuang Li , Xiao-Bin Lu , Lin-Zhi Wu","doi":"10.1016/j.enganabound.2024.106059","DOIUrl":"10.1016/j.enganabound.2024.106059","url":null,"abstract":"<div><div>The submarine's sail, as the largest appendage structure, is more susceptible to turbulence induced vibrations during medium to high-speed navigation, making it a critical area for the generation of flow-induced noise, significantly impacting the stealth and safety of submarine. Considering the excellent mechanical properties and high damping characteristics of lightweight composite sandwich structures, by combining large eddy simulation with vibro-acoustic coupling methods based on boundary element method, under the premise of verifying the accuracy of the numerical methods, a series of three-dimensional dynamic numerical models are established to investigate the flow-induced noise response of the novel composite sandwich sail. The results indicate that the overall sound power level of composite sandwich sail is reduced by approximately 8.9 dB compared to steel structure. The maximum sound power level of composite sandwich sail is lower than the steel with equal areal density. The sound pressure of the sail with buoyant material is lower than that of foam and PVC with the same damping. This work can provide theoretical support for the design methods of new lightweight, multifunctional sail structures.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106059"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106077
Gao-fei Su , Ying Gou , Bin Teng , Ming Zhao
A two-dimensional time domain coupled model is developed to analyze the interaction between fully nonlinear waves and floating bodies over variable topography. The whole calculation domain is divided into an inner domain close to the structure and two outer domains far away from the structure. The fully nonlinear free surface boundary conditions are used in each sub-domain. Irrotational Green-Naghdi (IGN) equations are applied to compute the wave motion in the outer domains, which are solved by the finite element method (FEM). The Laplace equation is solved by the boundary element method (BEM) in the inner domain. The outer and inner domains are coupled through the overlapping regions. The experimental data of waves propagating over a submerged breakwater and the interaction between shallow-water waves and a box fixed on the still-water surface are used to verify the rationality and accuracy of the coupled model. The coupled model is applied to compute the wave exciting force and the motion response of a barge over a sloping terrain. The influence of the terrain height on wave forces and barge motions is studied.
{"title":"The IGN-BEM coupled model for the interaction between fully nonlinear waves and 2D floating bodies over variable topography","authors":"Gao-fei Su , Ying Gou , Bin Teng , Ming Zhao","doi":"10.1016/j.enganabound.2024.106077","DOIUrl":"10.1016/j.enganabound.2024.106077","url":null,"abstract":"<div><div>A two-dimensional time domain coupled model is developed to analyze the interaction between fully nonlinear waves and floating bodies over variable topography. The whole calculation domain is divided into an inner domain close to the structure and two outer domains far away from the structure. The fully nonlinear free surface boundary conditions are used in each sub-domain. Irrotational Green-Naghdi (IGN) equations are applied to compute the wave motion in the outer domains, which are solved by the finite element method (FEM). The Laplace equation is solved by the boundary element method (BEM) in the inner domain. The outer and inner domains are coupled through the overlapping regions. The experimental data of waves propagating over a submerged breakwater and the interaction between shallow-water waves and a box fixed on the still-water surface are used to verify the rationality and accuracy of the coupled model. The coupled model is applied to compute the wave exciting force and the motion response of a barge over a sloping terrain. The influence of the terrain height on wave forces and barge motions is studied.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106077"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106083
Longkui Chen , Zhanming Wang , Shenghong Huang
The smooth particle hydrodynamics (SPH) method possesses inherent advantages in simulating large deformations, fractures and crack propagations in solids. However, challenging issues, including tensile instability and numerical oscillations, persist. Total Lagrangian smooth particle hydrodynamics (TLSPH) was proposed to eliminate tensile instability by applying the kernel approximation consistently in the reference configuration; however, the artificial viscosity model has to be added to reduce the numerical oscillation induced by shock and other contact discontinuity simulations, which severely decreases its accuracy and robustness. Motivated by the advantages of both TLSPH and Riemann-SPH of the ULSPH frame, a second-order solid Riemann scheme is constructed on the basis of the Monotone Upwind-Centered Scheme for Conservation Laws (MUSCL) reconstruction and incorporated into the total Lagrangian SPH (TLSPH) framework. The resulting MUSCL-TLSPH method is designed for solving dynamic elastic‒plastic structural impact problems, including large deformations and fractures. This method effectively overcomes the challenges faced by traditional SPH approaches, eliminating the need to introduce artificial stresses related to tunable parameters to maintain computational stability. Finally, the accuracy and robustness of the MUSCL-TLSPH method presented in this paper are verified through a series of numerical validations.
{"title":"A total Lagrangian‒Riemann SPH method with MUSCL reconstruction for large elastic‒plastic deformation and fracture simulation","authors":"Longkui Chen , Zhanming Wang , Shenghong Huang","doi":"10.1016/j.enganabound.2024.106083","DOIUrl":"10.1016/j.enganabound.2024.106083","url":null,"abstract":"<div><div>The smooth particle hydrodynamics (SPH) method possesses inherent advantages in simulating large deformations, fractures and crack propagations in solids. However, challenging issues, including tensile instability and numerical oscillations, persist. Total Lagrangian smooth particle hydrodynamics (TLSPH) was proposed to eliminate tensile instability by applying the kernel approximation consistently in the reference configuration; however, the artificial viscosity model has to be added to reduce the numerical oscillation induced by shock and other contact discontinuity simulations, which severely decreases its accuracy and robustness. Motivated by the advantages of both TLSPH and Riemann-SPH of the ULSPH frame, a second-order solid Riemann scheme is constructed on the basis of the Monotone Upwind-Centered Scheme for Conservation Laws (MUSCL) reconstruction and incorporated into the total Lagrangian SPH (TLSPH) framework. The resulting MUSCL-TLSPH method is designed for solving dynamic elastic‒plastic structural impact problems, including large deformations and fractures. This method effectively overcomes the challenges faced by traditional SPH approaches, eliminating the need to introduce artificial stresses related to tunable parameters to maintain computational stability. Finally, the accuracy and robustness of the MUSCL-TLSPH method presented in this paper are verified through a series of numerical validations.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106083"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106100
Limei Zhang , Yueping Yin , Hong Zheng , Sainan Zhu , Nan Zhang
The numerical manifold method (NMM) is proposed for analysis of the two-dimensional transient confined seepage flow problems with singular corner points. To deal with the singularity of corner points, the asymptotic expansion of the solution in the vicinity of corner points is incorporated into the local approximations of the relevant physical patches of the NMM, while the constant local approximation is assigned to the other patches far from the singularity points. Then, the NMM discrete formulation for the initial – boundary value problem for transient seepage flow is deduced based on the Galerkin approximation. For time integration, the backward time integration scheme is adopted. The accuracy and effectiveness of the proposed method are demonstrated in typical examples involving homogeneous, heterogeneous, and anisotropic material. Comparing with constant local approximations to all the patches, the proposed method can better reflect the strong singularity of corner points.
{"title":"Singularity treatments in transient confined seepage using numerical manifold method","authors":"Limei Zhang , Yueping Yin , Hong Zheng , Sainan Zhu , Nan Zhang","doi":"10.1016/j.enganabound.2024.106100","DOIUrl":"10.1016/j.enganabound.2024.106100","url":null,"abstract":"<div><div>The numerical manifold method (NMM) is proposed for analysis of the two-dimensional transient confined seepage flow problems with singular corner points. To deal with the singularity of corner points, the asymptotic expansion of the solution in the vicinity of corner points is incorporated into the local approximations of the relevant physical patches of the NMM, while the constant local approximation is assigned to the other patches far from the singularity points. Then, the NMM discrete formulation for the initial – boundary value problem for transient seepage flow is deduced based on the Galerkin approximation. For time integration, the backward time integration scheme is adopted. The accuracy and effectiveness of the proposed method are demonstrated in typical examples involving homogeneous, heterogeneous, and anisotropic material. Comparing with constant local approximations to all the patches, the proposed method can better reflect the strong singularity of corner points.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106100"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a comprehensive multiscale and multiphysical numerical approach for analyzing sandwich three-phase nanocomposite plate with multiferroic facesheets in its upper and lower surfaces. The proposed research investigates the zigzag effect and quasi-3D sinusoidal shear deformation, capturing the complex interactions between the core and multiferroic facesheets across multiple physical fields. A distinct feature of the three-phase polymer/CNT/fiber material is the embedding of Carbon Nanotube (CNT) nanofiller within the matrix phase, enhancing the overall properties of the carbon fiber composite. Micromechanical models for three-phase systems are employed to determine the effective elastic properties of the composite core. A unified numerical approach is developed to address the global and local behavior of the structure, capturing the mechanical, electrical, and magnetic coupling effects inherent in multiferroic materials. This model utilizes isogeometric analysis for high-fidelity representation, ensuring precise geometric accuracy and smooth continuity, and incorporates Eringen’s nonlocal strain gradient multiferroic theory to account for size effects. The zigzag effect is characterized by a multiscale kinematic description, where the displacement field is represented by the superposition of coarse and fine contributions. Numerical simulations validate the model, demonstrating its effectiveness in predicting the mechanical, electrical, and magnetic responses of the smart composite plates. This work offers a robust tool for the design and optimization of advanced composite structures in engineering applications.
{"title":"A multiscale and multiphysical numerical approach for sandwich multiphase hybrid fiber plates with smart composite facesheets","authors":"Duy-Khuong Ly , Huy-Cuong Vu-Do , Chanachai Thongchom , T. Nguyen-Thoi","doi":"10.1016/j.enganabound.2025.106134","DOIUrl":"10.1016/j.enganabound.2025.106134","url":null,"abstract":"<div><div>This study introduces a comprehensive multiscale and multiphysical numerical approach for analyzing sandwich three-phase nanocomposite plate with multiferroic facesheets in its upper and lower surfaces. The proposed research investigates the zigzag effect and quasi-3D sinusoidal shear deformation, capturing the complex interactions between the core and multiferroic facesheets across multiple physical fields. A distinct feature of the three-phase polymer/CNT/fiber material is the embedding of Carbon Nanotube (CNT) nanofiller within the matrix phase, enhancing the overall properties of the carbon fiber composite. Micromechanical models for three-phase systems are employed to determine the effective elastic properties of the composite core. A unified numerical approach is developed to address the global and local behavior of the structure, capturing the mechanical, electrical, and magnetic coupling effects inherent in multiferroic materials. This model utilizes isogeometric analysis for high-fidelity representation, ensuring precise geometric accuracy and smooth continuity, and incorporates Eringen’s nonlocal strain gradient multiferroic theory to account for size effects. The zigzag effect is characterized by a multiscale kinematic description, where the displacement field is represented by the superposition of coarse and fine contributions. Numerical simulations validate the model, demonstrating its effectiveness in predicting the mechanical, electrical, and magnetic responses of the smart composite plates. This work offers a robust tool for the design and optimization of advanced composite structures in engineering applications.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"173 ","pages":"Article 106134"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a series of novel sphere elements are proposed in the boundary element method (BEM). These elements are designed as isoparametric closure elements to simulate spherical geometries with greater accuracy and fewer nodes than conventional boundary elements. Constructed similarly to multi-dimensional Lagrange elements, these sphere elements utilize trigonometric bases for each dimension. To avoid zero Jacobians at polar nodes, poleless sphere elements combined with triangular elements are employed to approximate spheres. The evaluation methods of boundary integrals over these elements, including singular and nearly singular integrals, are derived using degenerated element techniques and adaptive subdivision techniques, respectively. Three numerical examples are employed to underscore the advantages of the proposed elements, showing that with only 50 nodes per sphere, results align closely with those obtained using 290 nodes per sphere with conventional boundary elements, effectively reducing degrees of freedom without sacrificing accuracy.
{"title":"Sphere elements in the BEM for the analysis of elastic bodies with spherical voids or inclusions","authors":"Yong-Tong Zheng , Yijun Liu , Xiao-Wei Gao , Wei-Zhe Feng","doi":"10.1016/j.enganabound.2024.106057","DOIUrl":"10.1016/j.enganabound.2024.106057","url":null,"abstract":"<div><div>In this paper, a series of novel sphere elements are proposed in the boundary element method (BEM). These elements are designed as isoparametric closure elements to simulate spherical geometries with greater accuracy and fewer nodes than conventional boundary elements. Constructed similarly to multi-dimensional Lagrange elements, these sphere elements utilize trigonometric bases for each dimension. To avoid zero Jacobians at polar nodes, poleless sphere elements combined with triangular elements are employed to approximate spheres. The evaluation methods of boundary integrals over these elements, including singular and nearly singular integrals, are derived using degenerated element techniques and adaptive subdivision techniques, respectively. Three numerical examples are employed to underscore the advantages of the proposed elements, showing that with only 50 nodes per sphere, results align closely with those obtained using 290 nodes per sphere with conventional boundary elements, effectively reducing degrees of freedom without sacrificing accuracy.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106057"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106105
Alexandre Tachibana dos Santos, José Antonio Marques Carrer
This paper presents a novel simplified approach to achieving smooth boundaries on structural shape optimizations when combining Genetic Algorithms (GA) with the Boundary Element Method (BEM) by applying a simple polynomial fitting technique for boundary smoothing. The methodology focuses on the challenges of reducing material usage while maintaining constructability. The integration of polynomial fitting for boundary smoothing mitigates the complexity often resulting from GA-based optimizations, while keeping the complexity of implementation low when compared to other boundary smoothing techniques. Case studies are used to demonstrate the effectiveness of this approach in reducing material usage while following stress and displacement constraints. Comparative analysis with existing methods, such as Isogeometric Analysis-BEM with Particle Swarm Optimization, highlights the efficiency and implementation simplicity of the proposed technique. The results show significant improvements in structural performance and material reduction, demonstrating that the method can be used as a valid tool for structural shape optimization.
{"title":"Integrating GA-BEM and polynomial fitting for efficient structural shape optimization","authors":"Alexandre Tachibana dos Santos, José Antonio Marques Carrer","doi":"10.1016/j.enganabound.2024.106105","DOIUrl":"10.1016/j.enganabound.2024.106105","url":null,"abstract":"<div><div>This paper presents a novel simplified approach to achieving smooth boundaries on structural shape optimizations when combining Genetic Algorithms (GA) with the Boundary Element Method (BEM) by applying a simple polynomial fitting technique for boundary smoothing. The methodology focuses on the challenges of reducing material usage while maintaining constructability. The integration of polynomial fitting for boundary smoothing mitigates the complexity often resulting from GA-based optimizations, while keeping the complexity of implementation low when compared to other boundary smoothing techniques. Case studies are used to demonstrate the effectiveness of this approach in reducing material usage while following stress and displacement constraints. Comparative analysis with existing methods, such as Isogeometric Analysis-BEM with Particle Swarm Optimization, highlights the efficiency and implementation simplicity of the proposed technique. The results show significant improvements in structural performance and material reduction, demonstrating that the method can be used as a valid tool for structural shape optimization.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106105"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, adhesively bonded joints are widely used in high-end industries due to their valuable advantages over traditional joining techniques. Nevertheless, predicting the mechanical behaviour of adhesively bonded joints with accuracy and efficiency still represents a major challenge reducing structure weight, material usage, and computational cost. In this work, a fracture propagation algorithm based on the meshless Radial Point Interpolation Method (RPIM) is extended to adhesively bonded Single Lap Joints (SLJ). Separated stress intensity factors are calculated using the interaction integral, allowing to predict crack initiation considering a mixed-mode energy release rate criterion. The numerical solutions predict with accuracy the experimental data and commercial FEM simulations.
{"title":"The radial point interpolation method and mixed-mode energy release rate criterion for crack growth in single lap joints","authors":"D.C. Gonçalves , L.D.C. Ramalho , R.D.S.G. Campilho , J. Belinha","doi":"10.1016/j.enganabound.2024.106095","DOIUrl":"10.1016/j.enganabound.2024.106095","url":null,"abstract":"<div><div>Nowadays, adhesively bonded joints are widely used in high-end industries due to their valuable advantages over traditional joining techniques. Nevertheless, predicting the mechanical behaviour of adhesively bonded joints with accuracy and efficiency still represents a major challenge reducing structure weight, material usage, and computational cost. In this work, a fracture propagation algorithm based on the meshless Radial Point Interpolation Method (RPIM) is extended to adhesively bonded Single Lap Joints (SLJ). Separated stress intensity factors are calculated using the interaction integral, allowing to predict crack initiation considering a mixed-mode energy release rate criterion. The numerical solutions predict with accuracy the experimental data and commercial FEM simulations.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106095"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.enganabound.2024.106091
Xueliang Liu , Haijun Wu
This paper presents a fast multipole boundary element method (FMBEM) for acoustic problems in a non-uniform potential flow. Different from the BEM for acoustic problems in a quiescent medium, the non-uniform flow field has a dramatic effect on the propagation of sound. In the developed algorithm, only the Mach number of the flow field at infinity needs to be given, and both the non-uniform flow field and the sound field around the vibrating model are calculated by using the BEM. First, the FMBEM for the steady non-uniform potential flow is developed. The exponential expansions of the multipole translation and recurrence calculations of the solid harmonic functions are employed to accelerate the computation. The calculated physical quantity of the non-uniform flow can serve as the computational input for the subsequent sound field. Then, the boundary integral formulae for acoustic problems in non-uniform potential flows are derived. The convected Green's function is also derived by using the Taylor-Lorentz transformation and its inverse transformation. The formulae of fast multipole translations are derived in detail. Finally, several numerical experiments are performed to validate the accuracy and efficiency of the algorithm, demonstrating its capability for accurate and fast computation of large-scale sound fields in non-uniform flows.
{"title":"A fast multipole boundary element method for acoustic problems in a non-uniform potential flow","authors":"Xueliang Liu , Haijun Wu","doi":"10.1016/j.enganabound.2024.106091","DOIUrl":"10.1016/j.enganabound.2024.106091","url":null,"abstract":"<div><div>This paper presents a fast multipole boundary element method (FMBEM) for acoustic problems in a non-uniform potential flow. Different from the BEM for acoustic problems in a quiescent medium, the non-uniform flow field has a dramatic effect on the propagation of sound. In the developed algorithm, only the Mach number of the flow field at infinity needs to be given, and both the non-uniform flow field and the sound field around the vibrating model are calculated by using the BEM. First, the FMBEM for the steady non-uniform potential flow is developed. The exponential expansions of the multipole translation and recurrence calculations of the solid harmonic functions are employed to accelerate the computation. The calculated physical quantity of the non-uniform flow can serve as the computational input for the subsequent sound field. Then, the boundary integral formulae for acoustic problems in non-uniform potential flows are derived. The convected Green's function is also derived by using the Taylor-Lorentz transformation and its inverse transformation. The formulae of fast multipole translations are derived in detail. Finally, several numerical experiments are performed to validate the accuracy and efficiency of the algorithm, demonstrating its capability for accurate and fast computation of large-scale sound fields in non-uniform flows.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106091"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}