Pub Date : 2024-06-01DOI: 10.3390/separations11060172
J. Palá-Paúl, Rubén Abad-Calderón, M. Pérez-Alonso, J. Brophy, Ana C. Soria
The Eryngium L. genus belongs to the Apiaceae family and, with about 250 species, has a cosmopolitan distribution. Only fourteen of the twenty-six species described in Flora Europaea grow in the Iberian Peninsula. One of these is Eryngium galioides Lam., a small annual plant (2–30 cm) that grows in open dry places in the mid-west of the Iberian Peninsula. For this study, the whole plant (aerial parts and roots) of this species was gathered in Guadalajara (Spain). The essential oil of this population was extracted by hydro-distillation and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). It is worth noting that this species gave rise to a relatively high essential oil yield (0.48%) in comparison with other species of this genus. E. galioides oil consisted of a complex mixture of more than 70 compounds. The main constituents of this oil were identified as valencene (49.7%) and a phyllocladene isomer (23.7%), both representing more than the 70% of the total oil. Other representative compounds of this oil were found to be β-chamigrene (6.0%), γ-muurolene (3.4%), (E)-caryophyllene (3.0%) and β-elemene (1.6%). As far as we know, this is the first report about the chemical composition of E. galioides essential oils. With this work, we contribute to the knowledge of this genus and provide a chemical and botanical basis to promote the in vitro cultivation of E. galioides as a source of essential oils rich in bio-actives for application in different fields.
Eryngium L. 属属于 Apiaceae 科,约有 250 个物种,分布于世界各地。在《欧洲植物志》描述的 26 个物种中,只有 14 个生长在伊比利亚半岛。其中一种是 Eryngium galioides Lam,这是一种生长在伊比利亚半岛中西部开阔干燥地区的小型一年生植物(2-30 厘米)。在这项研究中,我们在瓜达拉哈拉(西班牙)采集了该物种的全株(气生部分和根)。通过水蒸馏法提取了该物种的精油,并用气相色谱法(GC)和气相色谱-质谱法(GC-MS)进行了分析。值得注意的是,与该属的其他物种相比,该物种的精油产量相对较高(0.48%)。E. galioides 精油由 70 多种化合物组成。经鉴定,这种精油的主要成分是缬草烯(49.7%)和一种phyllocladene异构体(23.7%),两者均占精油总量的 70% 以上。研究还发现,这种油的其他代表性化合物包括 β-千金子烯(6.0%)、γ-室烯(3.4%)、(E)-石竹烯(3.0%)和 β-榄香烯(1.6%)。据我们所知,这是第一份关于 E. galioides 精油化学成分的报告。通过这项工作,我们加深了对该属植物的了解,并为促进 E. galioides 的体外培养提供了化学和植物学基础,使其成为富含生物活性成分的精油来源,应用于不同领域。
{"title":"The Essential Oil Composition of Eryngium galioides Lam.—An Endemic Species of the Iberian Peninsula","authors":"J. Palá-Paúl, Rubén Abad-Calderón, M. Pérez-Alonso, J. Brophy, Ana C. Soria","doi":"10.3390/separations11060172","DOIUrl":"https://doi.org/10.3390/separations11060172","url":null,"abstract":"The Eryngium L. genus belongs to the Apiaceae family and, with about 250 species, has a cosmopolitan distribution. Only fourteen of the twenty-six species described in Flora Europaea grow in the Iberian Peninsula. One of these is Eryngium galioides Lam., a small annual plant (2–30 cm) that grows in open dry places in the mid-west of the Iberian Peninsula. For this study, the whole plant (aerial parts and roots) of this species was gathered in Guadalajara (Spain). The essential oil of this population was extracted by hydro-distillation and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). It is worth noting that this species gave rise to a relatively high essential oil yield (0.48%) in comparison with other species of this genus. E. galioides oil consisted of a complex mixture of more than 70 compounds. The main constituents of this oil were identified as valencene (49.7%) and a phyllocladene isomer (23.7%), both representing more than the 70% of the total oil. Other representative compounds of this oil were found to be β-chamigrene (6.0%), γ-muurolene (3.4%), (E)-caryophyllene (3.0%) and β-elemene (1.6%). As far as we know, this is the first report about the chemical composition of E. galioides essential oils. With this work, we contribute to the knowledge of this genus and provide a chemical and botanical basis to promote the in vitro cultivation of E. galioides as a source of essential oils rich in bio-actives for application in different fields.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"13 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.3390/separations11050158
Maja Dent, Regina Fuchs-Godec, S. Pedisić, Dorotea Grbin, Verica Dragović-Uzelac, Damir Ježek, T. Bosiljkov
Due to the diversity of organic molecular structures present in sage extract, sage extract is a promising potential source of a cheap and effective biodegradable green corrosion inhibitor for tinplate in 3% NaCl solution, which was evaluated in this study. HHP proved to be a new and emerging technology for the useful extraction of polyphenols from sage as a functional ingredient from natural sources. Analysis of variance among all tested independent factors (ethanol concentration, HHP parameters and temperature) revealed significant differences (p < 0.05) in total polyphenol content as well as for rosmarinic acid as the major phenolic compound in sage extract, while extraction time had no effect (p ˃ 0.05). The optimum HHP conditions (600 MPa, 30% ethanol, 60 °C and 5 min) gave a maximum extraction yield of total polyphenols of 3811.84 mg/100 g. Sage-leaf extracts were found to be a mixture of phenolic acids, namely rosmarinic and salvianolic acid K, epicatechin and luteolin-7-O-glucuronide glycoside. The corrosion results show that the sage extract at a concentration of 0.6 g/L in 3% NaCl is an effective corrosion inhibitor (93%), forming a passivation layer of sage extract consisting of organic compounds such as polyphenols on the surface of tinplate.
{"title":"Polyphenols from Sage Leaves (Salvia officinalis L.): Environmentally Friendly Extraction under High Hydrostatic Pressure and Application as a Corrosion Inhibitor for Tinplate","authors":"Maja Dent, Regina Fuchs-Godec, S. Pedisić, Dorotea Grbin, Verica Dragović-Uzelac, Damir Ježek, T. Bosiljkov","doi":"10.3390/separations11050158","DOIUrl":"https://doi.org/10.3390/separations11050158","url":null,"abstract":"Due to the diversity of organic molecular structures present in sage extract, sage extract is a promising potential source of a cheap and effective biodegradable green corrosion inhibitor for tinplate in 3% NaCl solution, which was evaluated in this study. HHP proved to be a new and emerging technology for the useful extraction of polyphenols from sage as a functional ingredient from natural sources. Analysis of variance among all tested independent factors (ethanol concentration, HHP parameters and temperature) revealed significant differences (p < 0.05) in total polyphenol content as well as for rosmarinic acid as the major phenolic compound in sage extract, while extraction time had no effect (p ˃ 0.05). The optimum HHP conditions (600 MPa, 30% ethanol, 60 °C and 5 min) gave a maximum extraction yield of total polyphenols of 3811.84 mg/100 g. Sage-leaf extracts were found to be a mixture of phenolic acids, namely rosmarinic and salvianolic acid K, epicatechin and luteolin-7-O-glucuronide glycoside. The corrosion results show that the sage extract at a concentration of 0.6 g/L in 3% NaCl is an effective corrosion inhibitor (93%), forming a passivation layer of sage extract consisting of organic compounds such as polyphenols on the surface of tinplate.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"40 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/separations11050154
Francesca Romana Mammone, Daniele Sadutto, Giulia D’Ettorre, A. Mosca, R. Cirilli
Atorvastatin (ATV) is a well-established lipid-lowering agent. ATV has two stereogenic centers, and of the four possible stereoisomers, only the (3R,5R) form is used therapeutically. The European Pharmacopoeia (EP) monograph 2022 for ATV calcium salt describes a normal-phase high-performance liquid chromatography (HPLC) method for the determination of enantiomeric purity in both drug substance and working standard samples, based on a 150 mm × 4.6 mm Chiralpak AD-H column. The main problems with this method are the very long analysis time and the high solvent consumption. Here, an alternative chromatographic protocol was developed using the Chiralpak AD-3 column (250 mm × 4.6 mm) packed with 3 μm silica particles instead of the 5 μm silica particles of the Chiralpak AD-H chiral stationary phase and characterized by the same polysaccharide selector, amylose-tris(3,5-dimethylphenylcarbamate). Using a mobile phase consisting of a mixture of n-hexane-ethanol-formic acid 90:10:0.1 (v/v/v) as the mobile phase and setting the flow rate and column temperature to 1.0 mL min−1 and 35 °C, respectively, a simultaneous stereo-selective separation was achieved within 35 min without observing any overlap between the enantiomeric impurity peak and peaks related to other ATV impurities. Compared to HPLC EP conditions, the analysis time to elute all the potentially related substances was faster and significantly less mobile phase volume was required. The linearity of the method has been demonstrated in the range of 4.4 μg mL−1 to 1000 μg mL−1 (R2 > 0.999). At a concentration of 4.4 μg mL−1, which is 0.075% of the test solution (5.8 mg mL−1, as ATV free acid), the signal-to-noise ratio was found to be 20.
{"title":"Improving the Current European Pharmacopoeia Enantio-Selective HPLC Method for the Determination of Enantiomeric Purity in Atorvastatin Calcium Salt Drug Substance","authors":"Francesca Romana Mammone, Daniele Sadutto, Giulia D’Ettorre, A. Mosca, R. Cirilli","doi":"10.3390/separations11050154","DOIUrl":"https://doi.org/10.3390/separations11050154","url":null,"abstract":"Atorvastatin (ATV) is a well-established lipid-lowering agent. ATV has two stereogenic centers, and of the four possible stereoisomers, only the (3R,5R) form is used therapeutically. The European Pharmacopoeia (EP) monograph 2022 for ATV calcium salt describes a normal-phase high-performance liquid chromatography (HPLC) method for the determination of enantiomeric purity in both drug substance and working standard samples, based on a 150 mm × 4.6 mm Chiralpak AD-H column. The main problems with this method are the very long analysis time and the high solvent consumption. Here, an alternative chromatographic protocol was developed using the Chiralpak AD-3 column (250 mm × 4.6 mm) packed with 3 μm silica particles instead of the 5 μm silica particles of the Chiralpak AD-H chiral stationary phase and characterized by the same polysaccharide selector, amylose-tris(3,5-dimethylphenylcarbamate). Using a mobile phase consisting of a mixture of n-hexane-ethanol-formic acid 90:10:0.1 (v/v/v) as the mobile phase and setting the flow rate and column temperature to 1.0 mL min−1 and 35 °C, respectively, a simultaneous stereo-selective separation was achieved within 35 min without observing any overlap between the enantiomeric impurity peak and peaks related to other ATV impurities. Compared to HPLC EP conditions, the analysis time to elute all the potentially related substances was faster and significantly less mobile phase volume was required. The linearity of the method has been demonstrated in the range of 4.4 μg mL−1 to 1000 μg mL−1 (R2 > 0.999). At a concentration of 4.4 μg mL−1, which is 0.075% of the test solution (5.8 mg mL−1, as ATV free acid), the signal-to-noise ratio was found to be 20.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"17 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/separations11050155
Azamat Temerdashev, E. Gashimova, A. Azaryan, Yu-Qi Feng, Sanka N. Atapattu
In this article, a comparison of ionization techniques is provided and discussed. Conventional liquid chromatography with an electrospray ionization source shows higher robustness and repeatability in comparison with liquid chromatography coupled with a coordination ion spray (CIS-MS) source using silver nitrate as the dopant. However, the higher sensitivity and possibility to collect more data in untargeted applications mean CIS-MS is emerging as an instrument used in specific applications. During this research, the limit of detection (LOD) for GHRP-2 and GHRP-6 was established at 0.2 ng/mL, and the lower limit of quantification (LLOQ) was 0.5 ng/mL for CIS-MS. For conventional ESI-MS combined with solid-phase extraction on weak cation exchange columns, the limit of detection was found to be 1 ng/mL, and the lower limit of quantification was 2 ng/mL.
{"title":"Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study","authors":"Azamat Temerdashev, E. Gashimova, A. Azaryan, Yu-Qi Feng, Sanka N. Atapattu","doi":"10.3390/separations11050155","DOIUrl":"https://doi.org/10.3390/separations11050155","url":null,"abstract":"In this article, a comparison of ionization techniques is provided and discussed. Conventional liquid chromatography with an electrospray ionization source shows higher robustness and repeatability in comparison with liquid chromatography coupled with a coordination ion spray (CIS-MS) source using silver nitrate as the dopant. However, the higher sensitivity and possibility to collect more data in untargeted applications mean CIS-MS is emerging as an instrument used in specific applications. During this research, the limit of detection (LOD) for GHRP-2 and GHRP-6 was established at 0.2 ng/mL, and the lower limit of quantification (LLOQ) was 0.5 ng/mL for CIS-MS. For conventional ESI-MS combined with solid-phase extraction on weak cation exchange columns, the limit of detection was found to be 1 ng/mL, and the lower limit of quantification was 2 ng/mL.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"19 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/separations11050153
Lanlan Wei, Xuejun Kang
Exercise reduces the risk of inflammatory diseases by modulating different tissue and cell types, including those within the gastrointestinal tract. Obtaining a more comprehensive understanding of pathophysiology requires monitoring of dynamic changes in cometabolites. This study aimed to develop a method for determining gut microbiota–host cometabolites and indoleamines in human urine. Four key gut microbiota–host cometabolites were chromatographically separated by isocratic elution, with a running time of 10 min. The linearity of this method was confirmed over different concentration ranges: 1.0–400 ng/mL for melatonin (MEL), indole-3-propionic acid (3-IPA), indole (IND), and skatole (SKT). This method was extremely sensitive and stable and hence could be successfully applied to characterize the changes in gut microbiota–host cometabolites in human before- and after-running urine. The concentrations of MEL, 3-IPA, IND, and SKT in after-running urine were 84.0 ± 9.69, 25.9 ± 3.39, 343.7 ± 36.8, and 14.6 ± 1.36 ng/mL, respectively. Moreover, the concentrations in before-running urine were 54.2 ± 5.10, 14.4 ± 1.30, 250.8 ± 14.1, and 9.43 ± 1.07 ng/mL, respectively, which showed significantly less difference in concentrations (p < 0.05) in before- than after-running urine. Overall, the established method could simultaneously monitor gut microbiota–host cometabolites and hence can be further applied to clinical and comprehensive pathophysiological studies.
{"title":"Packed-Nanofiber Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence for Determining Gut Microbiota–Host Cometabolites and Indoleamines in Human Urine","authors":"Lanlan Wei, Xuejun Kang","doi":"10.3390/separations11050153","DOIUrl":"https://doi.org/10.3390/separations11050153","url":null,"abstract":"Exercise reduces the risk of inflammatory diseases by modulating different tissue and cell types, including those within the gastrointestinal tract. Obtaining a more comprehensive understanding of pathophysiology requires monitoring of dynamic changes in cometabolites. This study aimed to develop a method for determining gut microbiota–host cometabolites and indoleamines in human urine. Four key gut microbiota–host cometabolites were chromatographically separated by isocratic elution, with a running time of 10 min. The linearity of this method was confirmed over different concentration ranges: 1.0–400 ng/mL for melatonin (MEL), indole-3-propionic acid (3-IPA), indole (IND), and skatole (SKT). This method was extremely sensitive and stable and hence could be successfully applied to characterize the changes in gut microbiota–host cometabolites in human before- and after-running urine. The concentrations of MEL, 3-IPA, IND, and SKT in after-running urine were 84.0 ± 9.69, 25.9 ± 3.39, 343.7 ± 36.8, and 14.6 ± 1.36 ng/mL, respectively. Moreover, the concentrations in before-running urine were 54.2 ± 5.10, 14.4 ± 1.30, 250.8 ± 14.1, and 9.43 ± 1.07 ng/mL, respectively, which showed significantly less difference in concentrations (p < 0.05) in before- than after-running urine. Overall, the established method could simultaneously monitor gut microbiota–host cometabolites and hence can be further applied to clinical and comprehensive pathophysiological studies.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"20 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/separations11050157
Philipp Hopfstock, Pitumpe Appuhamilage Nimal Punyasiri, Mats Kiene, Jeevan Dananjava Kottawa-Arachchi, Recep Gök, Peter Winterhalter
Tea leaves are rich in diverse bioactive compounds. The tea accession TRI 2043 is unique due to its pigmented leaves caused by anthocyanins, clonal origin, resistance to blister blight disease, and high pubescence density. Because of its peculiarity, TRI 2043 is used to produce high-quality silver tip tea, a premium type of tea that commands high prices. This study was carried out to clarify and elucidate the types of anthocyanins in this particular accession. Four different anthocyanin species were identified and quantitated as cyanidin-3-O-β-d-galactoside and delphinidin-3-O-β-d-galactoside equivalents for leaf blades and stems of the cultivar TRI 2043. The characterization was performed by comparison with commercially available reference substances and further confirmed using ion mobility high-resolution time-of-flight-mass spectrometry (IMS-HRTOF-MS). Quantitation was carried out using ultra-high-performance liquid chromatography ultraviolet–visible detection (UHPLC-UV-vis) with cyanidin-3-O-β-d-glucoside as an internal standard. E- and Z-geometric isomers of 6-p-coumaroyl derivates of delphinidin and cyanidin-3-O-β-d-galactopyranosides were observed, and collision cross section (CCS) values were determined for all four different anthocyanidin species. The content of anthocyanins in leaf blades of cultivar TRI 2043 was 856.32 ± 41.56 µg/g dry weight, with cyanidin being the more abundant anthocyanin (69.8%). Conversely, the stem material contained an anthocyanin amount of 459.5 ± 44.7 µg/g dry weight, with a higher content of delphinidin (69.6%). In summary, an enrichment strategy using analytical membrane chromatography was established to fully elucidate and quantify the anthocyanin profile of plant samples such as the special tea variety TRI 2043.
茶叶富含多种生物活性化合物。茶叶品种 TRI 2043 因其花青素引起的叶片色素沉着、克隆原产地、对水泡病的抗性和较高的短柔毛密度而独树一帜。由于其特殊性,TRI 2043 被用来生产高品质的银尖茶,这是一种价格高昂的优质茶叶。本研究旨在澄清和阐明这一特殊品种的花青素类型。在 TRI 2043 栽培品种的叶片和茎中,以氰苷-3-O-β-d-半乳糖苷和鹅膏素-3-O-β-d-半乳糖苷当量的形式对四种不同的花青素进行了鉴定和定量。通过与市售参考物质进行比较,并使用离子迁移高分辨飞行时间质谱法(IMS-HRTOF-MS)进一步确认了其特征。以氰苷-3-O-β-d-葡萄糖苷为内标,采用超高效液相色谱紫外可见检测法(UHPLC-UV-vis)进行定量。观察到了花翠素和花青素-3-O-β-d-吡喃半乳糖苷的 6-对香豆酰衍生物的 E- 和 Z-几何异构体,并测定了所有四种不同花色苷的碰撞截面(CCS)值。TRI 2043 栽培品种叶片中的花青素含量为 856.32 ± 41.56 µg/g 干重,其中花青素含量最高(69.8%)。相反,茎干材料中的花青素含量为 459.5 ± 44.7 µg/g 干重,其中花翠素含量较高(69.6%)。总之,利用分析膜色谱法建立了一种富集策略,以全面阐明和量化植物样品(如特殊茶叶品种 TRI 2043)的花青素特征。
{"title":"Characterization and Quantitation of Anthocyanins of the Pigmented Tea Cultivar TRI 2043 (Camellia sinensis L.) from Sri Lanka","authors":"Philipp Hopfstock, Pitumpe Appuhamilage Nimal Punyasiri, Mats Kiene, Jeevan Dananjava Kottawa-Arachchi, Recep Gök, Peter Winterhalter","doi":"10.3390/separations11050157","DOIUrl":"https://doi.org/10.3390/separations11050157","url":null,"abstract":"Tea leaves are rich in diverse bioactive compounds. The tea accession TRI 2043 is unique due to its pigmented leaves caused by anthocyanins, clonal origin, resistance to blister blight disease, and high pubescence density. Because of its peculiarity, TRI 2043 is used to produce high-quality silver tip tea, a premium type of tea that commands high prices. This study was carried out to clarify and elucidate the types of anthocyanins in this particular accession. Four different anthocyanin species were identified and quantitated as cyanidin-3-O-β-d-galactoside and delphinidin-3-O-β-d-galactoside equivalents for leaf blades and stems of the cultivar TRI 2043. The characterization was performed by comparison with commercially available reference substances and further confirmed using ion mobility high-resolution time-of-flight-mass spectrometry (IMS-HRTOF-MS). Quantitation was carried out using ultra-high-performance liquid chromatography ultraviolet–visible detection (UHPLC-UV-vis) with cyanidin-3-O-β-d-glucoside as an internal standard. E- and Z-geometric isomers of 6-p-coumaroyl derivates of delphinidin and cyanidin-3-O-β-d-galactopyranosides were observed, and collision cross section (CCS) values were determined for all four different anthocyanidin species. The content of anthocyanins in leaf blades of cultivar TRI 2043 was 856.32 ± 41.56 µg/g dry weight, with cyanidin being the more abundant anthocyanin (69.8%). Conversely, the stem material contained an anthocyanin amount of 459.5 ± 44.7 µg/g dry weight, with a higher content of delphinidin (69.6%). In summary, an enrichment strategy using analytical membrane chromatography was established to fully elucidate and quantify the anthocyanin profile of plant samples such as the special tea variety TRI 2043.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"11 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/separations11050156
Gaby Bosc-Bierne, Shireen Ewald, Oliver J. Kreuzer, Michael G. Weller
Peptide pools consist of short amino acid sequences and have proven to be versatile tools in various research areas in immunology and clinical applications. They are commercially available in many different compositions and variants. However, unlike other reagents that consist of only one or a few compounds, peptide pools are highly complex products which makes their quality control a major challenge. Quantitative peptide analysis usually requires sophisticated methods, in most cases isotope-labeled standards and reference materials. Usually, this would be prohibitively laborious and expensive. Therefore, an approach is needed to provide a practical and feasible method for quality control of peptide pools. With insufficient quality control, the use of such products could lead to incorrect experimental results, worsening the well-known reproducibility crisis in the biomedical sciences. Here we propose the use of ultra-high performance liquid chromatography (UHPLC) with two detectors, a standard UV detector at 214 nm for quantitative analysis and a high-resolution mass spectrometer (HRMS) for identity confirmation. To be cost-efficient and fast, quantification and identification are performed in one chromatographic run. An optimized protocol is shown, and different peak integration methods are compared and discussed. This work was performed using a peptide pool known as CEF advanced, which consists of 32 peptides derived from cytomegalovirus (CMV), Epstein–Barr virus (EBV) and influenza virus, ranging from 8 to 12 amino acids in length.
{"title":"Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection","authors":"Gaby Bosc-Bierne, Shireen Ewald, Oliver J. Kreuzer, Michael G. Weller","doi":"10.3390/separations11050156","DOIUrl":"https://doi.org/10.3390/separations11050156","url":null,"abstract":"Peptide pools consist of short amino acid sequences and have proven to be versatile tools in various research areas in immunology and clinical applications. They are commercially available in many different compositions and variants. However, unlike other reagents that consist of only one or a few compounds, peptide pools are highly complex products which makes their quality control a major challenge. Quantitative peptide analysis usually requires sophisticated methods, in most cases isotope-labeled standards and reference materials. Usually, this would be prohibitively laborious and expensive. Therefore, an approach is needed to provide a practical and feasible method for quality control of peptide pools. With insufficient quality control, the use of such products could lead to incorrect experimental results, worsening the well-known reproducibility crisis in the biomedical sciences. Here we propose the use of ultra-high performance liquid chromatography (UHPLC) with two detectors, a standard UV detector at 214 nm for quantitative analysis and a high-resolution mass spectrometer (HRMS) for identity confirmation. To be cost-efficient and fast, quantification and identification are performed in one chromatographic run. An optimized protocol is shown, and different peak integration methods are compared and discussed. This work was performed using a peptide pool known as CEF advanced, which consists of 32 peptides derived from cytomegalovirus (CMV), Epstein–Barr virus (EBV) and influenza virus, ranging from 8 to 12 amino acids in length.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"8 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3390/separations11050151
Aleksandra Sander, Ana Petračić, Marko Rogošić, Mirela Župan, Leonarda Frljak, Matija Cvetnić
Conventional distillation methods cannot effectively separate the components of an azeotropic mixture since both phases have the same composition, thereby preventing further separation. Additional techniques such as pressure swing distillation or distillation with entrainers are often employed to overcome this limitation and achieve separation. The aim of this investigation was to select the most effective method for separating n-hexane and ethanol. The feasibility of three methods was analyzed: reduced pressure distillation, extractive distillation, and liquid–liquid extraction. The mutual solubility of n-hexane and prepared deep eutectic solvents (DESs) (nine hydrophilic: choline chloride with glycerol, ethylene glycol, or carboxylic acid (malic, citric, glycolic); tetramethylammonium chloride with glycolic acid; lactic acid with glycerol; K2CO3 with glycerol or ethylene glycol; two hydrophobic: menthol with decanoic or dodecanoic acid) was experimentally determined. Extraction experiments were conducted to test the solubility of DESs in the feed mixture. The effect of changing DES-to-feed mass ratio was further investigated with choline chloride–glycerol (1:2). The same DES and both hydrophobic DESs were able to increase the relative volatility and enhance the separation of ethanol and n-hexane. Based on the obtained results, extraction was selected as the most effective method for the separation of n-hexane and ethanol.
传统的蒸馏方法无法有效分离共沸混合物中的成分,因为两相的成分相同,因此无法进一步分离。为了克服这一限制并实现分离,通常会采用其他技术,如变压蒸馏或带有夹带器的蒸馏。这项研究的目的是选择最有效的方法来分离正己烷和乙醇。分析了三种方法的可行性:减压蒸馏法、萃取蒸馏法和液液萃取法。实验测定了正己烷与制备的深共晶溶剂(DES)(九种亲水性溶剂:氯化胆碱与甘油、乙二醇或羧酸(苹果酸、柠檬酸、乙醇酸);四甲基氯化铵与乙醇酸;乳酸与甘油;K2CO3与甘油或乙二醇;两种疏水性溶剂:薄荷醇与癸酸或十二酸)的互溶性。进行了萃取实验,以测试 DES 在进料混合物中的溶解度。使用氯化胆碱-甘油(1:2)进一步研究了改变 DES 与进料质量比的影响。同一种 DES 和两种疏水性 DES 都能增加相对挥发性,提高乙醇和正己烷的分离度。根据所得结果,萃取被选为分离正己烷和乙醇的最有效方法。
{"title":"Feasibility of Different Methods for Separating n-Hexane and Ethanol","authors":"Aleksandra Sander, Ana Petračić, Marko Rogošić, Mirela Župan, Leonarda Frljak, Matija Cvetnić","doi":"10.3390/separations11050151","DOIUrl":"https://doi.org/10.3390/separations11050151","url":null,"abstract":"Conventional distillation methods cannot effectively separate the components of an azeotropic mixture since both phases have the same composition, thereby preventing further separation. Additional techniques such as pressure swing distillation or distillation with entrainers are often employed to overcome this limitation and achieve separation. The aim of this investigation was to select the most effective method for separating n-hexane and ethanol. The feasibility of three methods was analyzed: reduced pressure distillation, extractive distillation, and liquid–liquid extraction. The mutual solubility of n-hexane and prepared deep eutectic solvents (DESs) (nine hydrophilic: choline chloride with glycerol, ethylene glycol, or carboxylic acid (malic, citric, glycolic); tetramethylammonium chloride with glycolic acid; lactic acid with glycerol; K2CO3 with glycerol or ethylene glycol; two hydrophobic: menthol with decanoic or dodecanoic acid) was experimentally determined. Extraction experiments were conducted to test the solubility of DESs in the feed mixture. The effect of changing DES-to-feed mass ratio was further investigated with choline chloride–glycerol (1:2). The same DES and both hydrophobic DESs were able to increase the relative volatility and enhance the separation of ethanol and n-hexane. Based on the obtained results, extraction was selected as the most effective method for the separation of n-hexane and ethanol.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"143 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.3390/separations11050150
David J. Mager, Yoni E. van Dijk, Özgü Varan, S. Vijverberg, Suzanne W J Terheggen-Lagro, Anke H. Maitland-van der Zee, H. Janssens, Paul Brinkman
Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological standardization, we developed the SPIRITAS (Standardized Product for Inexpensive Respiratory InvesTigation: A breath Sampler), a low-cost, disposable breath sampler. This study evaluates the SPIRITAS’s effectiveness in detecting targeted VOCs. We tested the SPIRITAS using the Peppermint Experiment, a standardized protocol that allows for comparison between different breath sampling and analytical practices by assessing the ability to detect five peppermint-specific VOCs after ingestion of a 200-milligram peppermint oil capsule. We included ten subjects and performed six breath samples per participant, including a baseline measurement taken before ingestion. We used the Wilcoxon signed-rank test to evaluate whether baseline values were significantly lower than the peak values of the targeted VOCs. Additionally, we conducted an experiment utilizing humidified medical-grade air to identify any VOCs attributable to the SPIRITAS setup itself. Results showed successful detection of four out of five targeted “peppermint-associated” VOCs: alpha-pinene (p ≤ 0.01), beta-pinene (p ≤ 0.01), menthone (p = 0.01), and menthol (p = 0.02), indicating significant differences between the baseline and peak values in the volunteers’ breath. However, detection of eucalyptol was inconsistent. In addition, we identified 16 VOCs that were released by the SPIRITAS, one of which remains unidentified. Our findings underscore the SPIRITAS’s potential for clinical applications, paving the way for broader biomarker research. The combination of ease of use, low cost, reduced risk of contamination, and standardization makes SPIRITAS very suitable for large-scale international studies. Furthermore, we have demonstrated the SPIRITAS’s effectiveness in detecting specific VOCs and identified 16 compounds originating from the SPIRITAS, ensuring that these compounds would not be mis-qualified as potential biomarkers in future clinical studies.
{"title":"Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis","authors":"David J. Mager, Yoni E. van Dijk, Özgü Varan, S. Vijverberg, Suzanne W J Terheggen-Lagro, Anke H. Maitland-van der Zee, H. Janssens, Paul Brinkman","doi":"10.3390/separations11050150","DOIUrl":"https://doi.org/10.3390/separations11050150","url":null,"abstract":"Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological standardization, we developed the SPIRITAS (Standardized Product for Inexpensive Respiratory InvesTigation: A breath Sampler), a low-cost, disposable breath sampler. This study evaluates the SPIRITAS’s effectiveness in detecting targeted VOCs. We tested the SPIRITAS using the Peppermint Experiment, a standardized protocol that allows for comparison between different breath sampling and analytical practices by assessing the ability to detect five peppermint-specific VOCs after ingestion of a 200-milligram peppermint oil capsule. We included ten subjects and performed six breath samples per participant, including a baseline measurement taken before ingestion. We used the Wilcoxon signed-rank test to evaluate whether baseline values were significantly lower than the peak values of the targeted VOCs. Additionally, we conducted an experiment utilizing humidified medical-grade air to identify any VOCs attributable to the SPIRITAS setup itself. Results showed successful detection of four out of five targeted “peppermint-associated” VOCs: alpha-pinene (p ≤ 0.01), beta-pinene (p ≤ 0.01), menthone (p = 0.01), and menthol (p = 0.02), indicating significant differences between the baseline and peak values in the volunteers’ breath. However, detection of eucalyptol was inconsistent. In addition, we identified 16 VOCs that were released by the SPIRITAS, one of which remains unidentified. Our findings underscore the SPIRITAS’s potential for clinical applications, paving the way for broader biomarker research. The combination of ease of use, low cost, reduced risk of contamination, and standardization makes SPIRITAS very suitable for large-scale international studies. Furthermore, we have demonstrated the SPIRITAS’s effectiveness in detecting specific VOCs and identified 16 compounds originating from the SPIRITAS, ensuring that these compounds would not be mis-qualified as potential biomarkers in future clinical studies.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"98 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140978540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.3390/separations11050149
Yaoyao Zhu, Jian Li, Dongyue Xie, Hui Zhang, Man Li, Binfeng Xu, Xuxia Zhang, Yangyang Xie, Tao Qi
Due to the coexistence of Al3+ and RE3+ and their similar properties, the separation of aluminum from rare earths is difficult. In this study, selective precipitation was used to separate aluminum from rare earth chloride solution via electrochemical regulated hydrolysis. By controlling the current density and electrolytic time, the rate of hydroxyl ion production was regulated, and the selective separation of rare earth and aluminum was realized according to the different precipitation sequences. By altering the temperature, current density, pH value, and other parameters, the separation performance of aluminum from rare earth in mixed rare earth chloride systems was systematically investigated. The removal rate of aluminum reached 88.35%, and the loss rate of rare earth was only 5.99% under optimized conditions. Compared with traditional neutralization hydrolysis, the new process showed higher efficiency and lower rare earth loss rate. Furthermore, a kinetic analysis of aluminum precipitation revealed that the reaction adhered to pseudo-first order kinetics. Additionally, the precipitate obtained via separation and filtration was amorphous alumina hydroxide with a small amount of rare earth attached. No reagent was consumed for the new process, which was more efficient and cleaner, providing a new idea for removing aluminum impurities from rare earth solutions.
{"title":"Aluminum Removal from Rare Earth Chloride Solution through Regulated Hydrolysis via Electrochemical Method","authors":"Yaoyao Zhu, Jian Li, Dongyue Xie, Hui Zhang, Man Li, Binfeng Xu, Xuxia Zhang, Yangyang Xie, Tao Qi","doi":"10.3390/separations11050149","DOIUrl":"https://doi.org/10.3390/separations11050149","url":null,"abstract":"Due to the coexistence of Al3+ and RE3+ and their similar properties, the separation of aluminum from rare earths is difficult. In this study, selective precipitation was used to separate aluminum from rare earth chloride solution via electrochemical regulated hydrolysis. By controlling the current density and electrolytic time, the rate of hydroxyl ion production was regulated, and the selective separation of rare earth and aluminum was realized according to the different precipitation sequences. By altering the temperature, current density, pH value, and other parameters, the separation performance of aluminum from rare earth in mixed rare earth chloride systems was systematically investigated. The removal rate of aluminum reached 88.35%, and the loss rate of rare earth was only 5.99% under optimized conditions. Compared with traditional neutralization hydrolysis, the new process showed higher efficiency and lower rare earth loss rate. Furthermore, a kinetic analysis of aluminum precipitation revealed that the reaction adhered to pseudo-first order kinetics. Additionally, the precipitate obtained via separation and filtration was amorphous alumina hydroxide with a small amount of rare earth attached. No reagent was consumed for the new process, which was more efficient and cleaner, providing a new idea for removing aluminum impurities from rare earth solutions.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"104 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}