Data obtained using direct numerical simulations (DNS) of pressure-driven turbulent channel flow are studied in the range 180 ≤Reτ≤ 10,000. Reynolds number effects on the mean velocity profile (MVP) and second order statistics are analyzed with a view of finding logarithmic behavior in the overlap region or even further from the wall, well in the boundary layer’s outer region. The values of the von Kármán constant for the MVPs and the Townsend–Perry constants for the streamwise and spanwise fluctuation variances are determined for the Reynolds numbers considered. A data-driven model of the MVP, proposed and validated for zero pressure-gradient flow over a flat plate, is employed for pressure-driven channel flow by appropriately adjusting Coles’ strength of the wake function parameter, Π. There is excellent agreement between the analytic model predictions of MVP and the DNS-computed MVP as well as of the Reynolds shear stress profile. The skin friction coefficient Cf is calculated analytically. The agreement between the analytical model predictions and the DNS-based computed discrete values of Cf is excellent.
在 180 ≤Reτ≤ 10,000 的范围内,研究了压力驱动湍流通道流直接数值模拟(DNS)获得的数据。分析了雷诺数对平均速度剖面(MVP)和二阶统计量的影响,以期在重叠区域甚至离壁更远的边界层外部区域找到对数行为。针对所考虑的雷诺数,确定了 MVP 的 von Kármán 常数以及流向和跨度波动方差的 Townsend-Perry 常数。针对平板上的零压力梯度流动提出并验证的 MVP 数据驱动模型,通过适当调整科尔斯的唤醒函数参数 Π 的强度,被用于压力驱动的通道流动。分析模型预测的 MVP 与 DNS 计算的 MVP 以及雷诺切应力剖面之间非常吻合。表皮摩擦系数 Cf 是通过分析计算得出的。分析模型预测值与基于 DNS 计算的 Cf 离散值之间的一致性非常好。
{"title":"Turbulent Channel Flow: Direct Numerical Simulation-Data-Driven Modeling","authors":"Antonios Liakopoulos, Apostolos Palasis","doi":"10.3390/fluids9030062","DOIUrl":"https://doi.org/10.3390/fluids9030062","url":null,"abstract":"Data obtained using direct numerical simulations (DNS) of pressure-driven turbulent channel flow are studied in the range 180 ≤Reτ≤ 10,000. Reynolds number effects on the mean velocity profile (MVP) and second order statistics are analyzed with a view of finding logarithmic behavior in the overlap region or even further from the wall, well in the boundary layer’s outer region. The values of the von Kármán constant for the MVPs and the Townsend–Perry constants for the streamwise and spanwise fluctuation variances are determined for the Reynolds numbers considered. A data-driven model of the MVP, proposed and validated for zero pressure-gradient flow over a flat plate, is employed for pressure-driven channel flow by appropriately adjusting Coles’ strength of the wake function parameter, Π. There is excellent agreement between the analytic model predictions of MVP and the DNS-computed MVP as well as of the Reynolds shear stress profile. The skin friction coefficient Cf is calculated analytically. The agreement between the analytical model predictions and the DNS-based computed discrete values of Cf is excellent.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140080977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Elfahem, Bastien Bouchet, B. Abbès, Fabien Legrand, G. Polidori, F. Beaumont
Whole-body cryotherapy (WBC) is a therapeutic practice involving brief exposure to extreme cold, typically lasting one to four minutes. Given that WBC sessions often occur in groups, there is a hypothesis that cumulative heat dissipation from the group significantly affects the thermo-aerodynamic conditions of the cryotherapy chamber. Computational fluid dynamics (CFD) is employed to investigate thermal exchanges between three subjects (one man, two women) and a cryotherapy chamber at −92 °C during a 3-minute session. The investigation reveals that collective body heat loss significantly influences temperature fields within the cabin, causing global modifications in aerodynamic and thermal conditions. For example, a temperature difference of 6.7 °C was calculated between the average temperature in a cryotherapy chamber with a single subject and that with three subjects. A notable finding is that, under an identical protocol, the thermal response varies among individuals based on their position in the chamber. The aerodynamic and thermal characteristics of the cryotherapy chamber impact the heat released at the body’s surface and the skin-cooling rate needed to achieve recommended analgesic thresholds. This study highlights the complexity of physiological responses in WBC and emphasizes the importance of considering individual positions within the chamber for optimizing therapeutic benefits.
{"title":"Investigating Heat Transfer in Whole-Body Cryotherapy: A 3D Thermodynamic Modeling Approach with Participant Variability","authors":"R. Elfahem, Bastien Bouchet, B. Abbès, Fabien Legrand, G. Polidori, F. Beaumont","doi":"10.3390/fluids9030061","DOIUrl":"https://doi.org/10.3390/fluids9030061","url":null,"abstract":"Whole-body cryotherapy (WBC) is a therapeutic practice involving brief exposure to extreme cold, typically lasting one to four minutes. Given that WBC sessions often occur in groups, there is a hypothesis that cumulative heat dissipation from the group significantly affects the thermo-aerodynamic conditions of the cryotherapy chamber. Computational fluid dynamics (CFD) is employed to investigate thermal exchanges between three subjects (one man, two women) and a cryotherapy chamber at −92 °C during a 3-minute session. The investigation reveals that collective body heat loss significantly influences temperature fields within the cabin, causing global modifications in aerodynamic and thermal conditions. For example, a temperature difference of 6.7 °C was calculated between the average temperature in a cryotherapy chamber with a single subject and that with three subjects. A notable finding is that, under an identical protocol, the thermal response varies among individuals based on their position in the chamber. The aerodynamic and thermal characteristics of the cryotherapy chamber impact the heat released at the body’s surface and the skin-cooling rate needed to achieve recommended analgesic thresholds. This study highlights the complexity of physiological responses in WBC and emphasizes the importance of considering individual positions within the chamber for optimizing therapeutic benefits.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"11 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140090935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Particle concentration is an important parameter for describing the state of gas–solid two-phase flow. This study compares the performance of three methods, namely, Back-Propagation Neural Networks (BPNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM), in handling gas–solid two-phase flow data. The experiment utilized seven parameters, including temperature, humidity, upstream and downstream sensor signals, delay, pressure difference, and particle concentration, as the dataset. The evaluation metrics, such as prediction accuracy, were used for comparative analysis by the experimenters. The experiment results indicate that the prediction accuracies of the RNN, LSTM, and BPNN experiments were 92.4%, 92.7%, and 92.5%, respectively. Future research can focus on further optimizing the performance of the BPNN, RNN, and LSTM to enhance the accuracy and efficiency of gas–solid two-phase flow data processing.
{"title":"Application of Deep Learning in Predicting Particle Concentration of Gas–Solid Two-Phase Flow","authors":"Zhiyong Wang, Bing Yan, Haoquan Wang","doi":"10.3390/fluids9030059","DOIUrl":"https://doi.org/10.3390/fluids9030059","url":null,"abstract":"Particle concentration is an important parameter for describing the state of gas–solid two-phase flow. This study compares the performance of three methods, namely, Back-Propagation Neural Networks (BPNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM), in handling gas–solid two-phase flow data. The experiment utilized seven parameters, including temperature, humidity, upstream and downstream sensor signals, delay, pressure difference, and particle concentration, as the dataset. The evaluation metrics, such as prediction accuracy, were used for comparative analysis by the experimenters. The experiment results indicate that the prediction accuracies of the RNN, LSTM, and BPNN experiments were 92.4%, 92.7%, and 92.5%, respectively. Future research can focus on further optimizing the performance of the BPNN, RNN, and LSTM to enhance the accuracy and efficiency of gas–solid two-phase flow data processing.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"44 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140424241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Safa A. Najim, Deepak Meerakaviyad, K. Pun, Paul Russell, P. Ganesan, D. Hughes, Faik A. Hamad
Accurate visualization of bubbles in multiphase flow is a crucial aspect of modeling heat transfer, mixing, and turbulence processes. It has many applications, including chemical processes, wastewater treatment, and aquaculture. A new software, Flow_Vis, based on experimental data visualization, has been developed to visualize the movement and size distribution of bubbles within multiphase flow. Images and videos recorded from an experimental rig designed to generate microbubbles were analyzed using the new software. The bubbles in the fluid were examined and found to move with different velocities due to their varying sizes. The software was used to measure bubble size distributions, and the obtained results were compared with experimental measurements, showing reasonable accuracy. The velocity measurements were also compared with literature values and found to be equally accurate.
{"title":"Visualizing and Evaluating Microbubbles in Multiphase Flow Applications","authors":"Safa A. Najim, Deepak Meerakaviyad, K. Pun, Paul Russell, P. Ganesan, D. Hughes, Faik A. Hamad","doi":"10.3390/fluids9030058","DOIUrl":"https://doi.org/10.3390/fluids9030058","url":null,"abstract":"Accurate visualization of bubbles in multiphase flow is a crucial aspect of modeling heat transfer, mixing, and turbulence processes. It has many applications, including chemical processes, wastewater treatment, and aquaculture. A new software, Flow_Vis, based on experimental data visualization, has been developed to visualize the movement and size distribution of bubbles within multiphase flow. Images and videos recorded from an experimental rig designed to generate microbubbles were analyzed using the new software. The bubbles in the fluid were examined and found to move with different velocities due to their varying sizes. The software was used to measure bubble size distributions, and the obtained results were compared with experimental measurements, showing reasonable accuracy. The velocity measurements were also compared with literature values and found to be equally accurate.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"34 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140426279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The work and life of Ippolit Stepanovich Gromeka is reviewed. Gromeka authored a classical set of eleven papers on fluid dynamics in just ten years before a tragic illness ended his life. Sadly, he is not well known to the western scientific community because all his publications were written in Russian. He is one of the three authors who independently derived an analytical solution for accelerating laminar pipe flow. He was the first to eliminate the contradiction between the theories of Young and Laplace on capillary phenomena. He initiated the theoretical basis of helical (Beltrami) flow, and he studied the movement of cyclones and anticyclones seventeen years before Zermelo (whose work is considered as pioneering). He is also the first to analyse wave propagation in liquid-filled hoses, thereby including fluid–structure interaction.
{"title":"Ten Years of Passion: I.S. Gromeka’s Contribution to Science","authors":"K. Urbanowicz, A. Tijsseling","doi":"10.3390/fluids9030057","DOIUrl":"https://doi.org/10.3390/fluids9030057","url":null,"abstract":"The work and life of Ippolit Stepanovich Gromeka is reviewed. Gromeka authored a classical set of eleven papers on fluid dynamics in just ten years before a tragic illness ended his life. Sadly, he is not well known to the western scientific community because all his publications were written in Russian. He is one of the three authors who independently derived an analytical solution for accelerating laminar pipe flow. He was the first to eliminate the contradiction between the theories of Young and Laplace on capillary phenomena. He initiated the theoretical basis of helical (Beltrami) flow, and he studied the movement of cyclones and anticyclones seventeen years before Zermelo (whose work is considered as pioneering). He is also the first to analyse wave propagation in liquid-filled hoses, thereby including fluid–structure interaction.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"142 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140438041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maximilian Thormann, Janneck Stahl, Laurel M M Marsh, S. Saalfeld, Nele Sillis, Andreas Ding, Anastasios Mpotsaris, P. Berg, Daniel Behme
Due to their effect on aneurysm hemodynamics, flow diverters (FD) have become a routine endovascular therapy for intracranial aneurysms. Since over- and undersizing affect the device’s hemodynamic abilities, selecting the correct device diameter and accurately simulating FD placement can improve patient-specific outcomes. The purpose of this study was to validate the accuracy of virtual flow diverter deployments in the novel Derivo® 2 device. We retrospectively analyzed blood flows in ten FD placements for which 3D DSA datasets were available pre- and post-intervention. All patients were treated with a second-generation FD Derivo® 2 (Acandis GmbH, Pforzheim, Germany) and post-interventional datasets were compared to virtual FD deployment at the implanted position for implanted stent length, stent diameters, and curvature analysis using ANKYRAS (Galgo Medical, Barcelona, Spain). Image-based blood flow simulations of pre- and post-interventional configurations were conducted. The mean length of implanted FD was 32.61 (±11.18 mm). Overall, ANKYRAS prediction was good with an average deviation of 8.4% (±5.8%) with a mean absolute difference in stent length of 3.13 mm. There was a difference of 0.24 mm in stent diameter amplitude toward ANKYRAS simulation. In vessels exhibiting a high degree of curvature, however, relevant differences between simulated and real-patient data were observed. The intrasaccular blood flow activity represented by the wall shear stress was qualitatively reduced in all cases. Inflow velocity decreased and the pulsatility over the cardiac cycle was weakened. Virtual stenting is an accurate tool for FD positioning, which may help facilitate flow FDs’ individualization and assess their hemodynamic impact. Challenges posed by complex vessel anatomy and high curvatures must be addressed.
{"title":"Computational Flow Diverter Implantation—A Comparative Study on Pre-Interventional Simulation and Post-Interventional Device Positioning for a Novel Blood Flow Modulator","authors":"Maximilian Thormann, Janneck Stahl, Laurel M M Marsh, S. Saalfeld, Nele Sillis, Andreas Ding, Anastasios Mpotsaris, P. Berg, Daniel Behme","doi":"10.3390/fluids9030055","DOIUrl":"https://doi.org/10.3390/fluids9030055","url":null,"abstract":"Due to their effect on aneurysm hemodynamics, flow diverters (FD) have become a routine endovascular therapy for intracranial aneurysms. Since over- and undersizing affect the device’s hemodynamic abilities, selecting the correct device diameter and accurately simulating FD placement can improve patient-specific outcomes. The purpose of this study was to validate the accuracy of virtual flow diverter deployments in the novel Derivo® 2 device. We retrospectively analyzed blood flows in ten FD placements for which 3D DSA datasets were available pre- and post-intervention. All patients were treated with a second-generation FD Derivo® 2 (Acandis GmbH, Pforzheim, Germany) and post-interventional datasets were compared to virtual FD deployment at the implanted position for implanted stent length, stent diameters, and curvature analysis using ANKYRAS (Galgo Medical, Barcelona, Spain). Image-based blood flow simulations of pre- and post-interventional configurations were conducted. The mean length of implanted FD was 32.61 (±11.18 mm). Overall, ANKYRAS prediction was good with an average deviation of 8.4% (±5.8%) with a mean absolute difference in stent length of 3.13 mm. There was a difference of 0.24 mm in stent diameter amplitude toward ANKYRAS simulation. In vessels exhibiting a high degree of curvature, however, relevant differences between simulated and real-patient data were observed. The intrasaccular blood flow activity represented by the wall shear stress was qualitatively reduced in all cases. Inflow velocity decreased and the pulsatility over the cardiac cycle was weakened. Virtual stenting is an accurate tool for FD positioning, which may help facilitate flow FDs’ individualization and assess their hemodynamic impact. Challenges posed by complex vessel anatomy and high curvatures must be addressed.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"36 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bussière, G. Bessa, Charles R. Koch, David S. Nobes
To investigate the vortical wake pattern generated by water flow past an oscillating symmetric airfoil, using experimental velocity fields from particle image velocimetry (PIV), a novel combinatorial vortex detection (CVD) algorithm is developed. The primary goal is to identify and characterize vortices within the wake. Experimental flows introduce complexities not present in numerical simulations, posing challenges for vortex detection. The proposed CVD approach offers a more robust alternative, excelling in both vortex detection and quantification of essential parameters, unlike widely-used methods such as Q-criterion, λ2-criterion, and Δ-criterion, which rely on subjective and arbitrary thresholds resulting in uncertainty. The CVD algorithm effectively characterizes the airfoil wake, identifying and analyzing vortices aligning with the Burgers model. This research enhances understanding of wake phenomena and showcases the algorithm’s potential as a valuable tool for vortex detection and characterization, particularly for experimental fluid dynamics. It provides a comprehensive, robust, and non-arbitrary approach, overcoming limitations of traditional methods and opening new avenues for studying complex flows.
{"title":"Application of a Combinatorial Vortex Detection Algorithm on 2 Component 2 Dimensional Particle Image Velocimetry Data to Characterize the Wake of an Oscillating Wing","authors":"M. Bussière, G. Bessa, Charles R. Koch, David S. Nobes","doi":"10.3390/fluids9030053","DOIUrl":"https://doi.org/10.3390/fluids9030053","url":null,"abstract":"To investigate the vortical wake pattern generated by water flow past an oscillating symmetric airfoil, using experimental velocity fields from particle image velocimetry (PIV), a novel combinatorial vortex detection (CVD) algorithm is developed. The primary goal is to identify and characterize vortices within the wake. Experimental flows introduce complexities not present in numerical simulations, posing challenges for vortex detection. The proposed CVD approach offers a more robust alternative, excelling in both vortex detection and quantification of essential parameters, unlike widely-used methods such as Q-criterion, λ2-criterion, and Δ-criterion, which rely on subjective and arbitrary thresholds resulting in uncertainty. The CVD algorithm effectively characterizes the airfoil wake, identifying and analyzing vortices aligning with the Burgers model. This research enhances understanding of wake phenomena and showcases the algorithm’s potential as a valuable tool for vortex detection and characterization, particularly for experimental fluid dynamics. It provides a comprehensive, robust, and non-arbitrary approach, overcoming limitations of traditional methods and opening new avenues for studying complex flows.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"19 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140441617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelvin–Helmholtz instability has been studied extensively in 2D. This study attempts to address the influence of turbulent flow and cross perturbation on the growth rate of the instability and the development of mixing layers in 3D by means of direct numerical simulation. Two perfect gases are considered to be working fluids moving as opposite streams, inducing shear instability at the interface between the fluids and resulting in Kelvin–Helmholtz instability. The results show that cross perturbation affects the instability by increasing the amplitude growth while adding turbulence has almost no effect on the amplitude growth. Furthermore, by increasing the turbulence intensity, a more distinct presence of the inner flow can be seen in the mixing layer of the two phases, and the presence of turbulence expands the range of high-frequency motion significantly due to turbulence structures. The results give a basis for which 3D Kelvin–Helmholtz phenomena should be further investigated using numerical simulation for predictive modeling, beyond the use of simplified 2D theoretical models.
{"title":"Influence of Cross Perturbations on Turbulent Kelvin–Helmholtz Instability","authors":"Mae L. Sementilli, Rozie Zangeneh, James Chen","doi":"10.3390/fluids9030052","DOIUrl":"https://doi.org/10.3390/fluids9030052","url":null,"abstract":"Kelvin–Helmholtz instability has been studied extensively in 2D. This study attempts to address the influence of turbulent flow and cross perturbation on the growth rate of the instability and the development of mixing layers in 3D by means of direct numerical simulation. Two perfect gases are considered to be working fluids moving as opposite streams, inducing shear instability at the interface between the fluids and resulting in Kelvin–Helmholtz instability. The results show that cross perturbation affects the instability by increasing the amplitude growth while adding turbulence has almost no effect on the amplitude growth. Furthermore, by increasing the turbulence intensity, a more distinct presence of the inner flow can be seen in the mixing layer of the two phases, and the presence of turbulence expands the range of high-frequency motion significantly due to turbulence structures. The results give a basis for which 3D Kelvin–Helmholtz phenomena should be further investigated using numerical simulation for predictive modeling, beyond the use of simplified 2D theoretical models.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"200 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140448284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Saha, Isabella Francis, Goutam Saha, Xinlei Huang, M. Molla
Background: Abdominal aortic aneurysms (AAAs) present a formidable public health concern due to their propensity for localized, anomalous expansion of the abdominal aorta. These insidious dilations, often in their early stages, mask the life-threatening potential for rupture, which carries a grave prognosis. Understanding the hemodynamic intricacies governing AAAs is paramount for predicting aneurysmal growth and the imminent risk of rupture. Objective: Our extensive investigation delves into this complex hemodynamic environment intrinsic to AAAs, utilizing comprehensive numerical analyses of the physiological pulsatile blood flow and realistic boundary conditions to explore the multifaceted dynamics influencing aneurysm rupture risk. Our study introduces novel elements by integrating these parameters into the overall context of aneurysm pathophysiology, thus advancing our understanding of the intricate mechanics governing their evolution and rupture. Methods: Conservation of mass and momentum equations are used to model the blood flow in an AAAs, and these equations are solved using a finite volume-based ANSYS Fluent solver. Resistance pressure outlets following a three-element Windkessel model were imposed at each outlet to accurately model the blood flow and the AAAs’ shear stress. Results: Our results uncover elevated blood flow velocities within an aneurysm, suggesting an augmented risk of future rupture due to increased stress in the aneurysm wall. During the systole phase, high wall shear stress (WSS) was observed, typically associated with a lower risk of rupture, while a low oscillatory shear index (OSI) was noted, correlating with a decreased risk of aneurysm expansion. Conversely, during the diastole phase, low WSS and a high OSI were identified, potentially weakening the aneurysm wall, thereby promoting expansion and rupture. Conclusion: Our study underscores the indispensable role of computational fluid dynamic (CFD) techniques in the diagnostic, therapeutic, and monitoring realms of AAAs. This body of research significantly advances our understanding of aneurysm pathophysiology, thus offering pivotal insights into the intricate mechanics underpinning their progression and rupture, informing clinical interventions and enhancing patient care.
{"title":"Hemodynamic Insights into Abdominal Aortic Aneurysms: Bridging the Knowledge Gap for Improved Patient Care","authors":"S. Saha, Isabella Francis, Goutam Saha, Xinlei Huang, M. Molla","doi":"10.3390/fluids9020050","DOIUrl":"https://doi.org/10.3390/fluids9020050","url":null,"abstract":"Background: Abdominal aortic aneurysms (AAAs) present a formidable public health concern due to their propensity for localized, anomalous expansion of the abdominal aorta. These insidious dilations, often in their early stages, mask the life-threatening potential for rupture, which carries a grave prognosis. Understanding the hemodynamic intricacies governing AAAs is paramount for predicting aneurysmal growth and the imminent risk of rupture. Objective: Our extensive investigation delves into this complex hemodynamic environment intrinsic to AAAs, utilizing comprehensive numerical analyses of the physiological pulsatile blood flow and realistic boundary conditions to explore the multifaceted dynamics influencing aneurysm rupture risk. Our study introduces novel elements by integrating these parameters into the overall context of aneurysm pathophysiology, thus advancing our understanding of the intricate mechanics governing their evolution and rupture. Methods: Conservation of mass and momentum equations are used to model the blood flow in an AAAs, and these equations are solved using a finite volume-based ANSYS Fluent solver. Resistance pressure outlets following a three-element Windkessel model were imposed at each outlet to accurately model the blood flow and the AAAs’ shear stress. Results: Our results uncover elevated blood flow velocities within an aneurysm, suggesting an augmented risk of future rupture due to increased stress in the aneurysm wall. During the systole phase, high wall shear stress (WSS) was observed, typically associated with a lower risk of rupture, while a low oscillatory shear index (OSI) was noted, correlating with a decreased risk of aneurysm expansion. Conversely, during the diastole phase, low WSS and a high OSI were identified, potentially weakening the aneurysm wall, thereby promoting expansion and rupture. Conclusion: Our study underscores the indispensable role of computational fluid dynamic (CFD) techniques in the diagnostic, therapeutic, and monitoring realms of AAAs. This body of research significantly advances our understanding of aneurysm pathophysiology, thus offering pivotal insights into the intricate mechanics underpinning their progression and rupture, informing clinical interventions and enhancing patient care.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"690 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139835437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Saha, Isabella Francis, Goutam Saha, Xinlei Huang, M. Molla
Background: Abdominal aortic aneurysms (AAAs) present a formidable public health concern due to their propensity for localized, anomalous expansion of the abdominal aorta. These insidious dilations, often in their early stages, mask the life-threatening potential for rupture, which carries a grave prognosis. Understanding the hemodynamic intricacies governing AAAs is paramount for predicting aneurysmal growth and the imminent risk of rupture. Objective: Our extensive investigation delves into this complex hemodynamic environment intrinsic to AAAs, utilizing comprehensive numerical analyses of the physiological pulsatile blood flow and realistic boundary conditions to explore the multifaceted dynamics influencing aneurysm rupture risk. Our study introduces novel elements by integrating these parameters into the overall context of aneurysm pathophysiology, thus advancing our understanding of the intricate mechanics governing their evolution and rupture. Methods: Conservation of mass and momentum equations are used to model the blood flow in an AAAs, and these equations are solved using a finite volume-based ANSYS Fluent solver. Resistance pressure outlets following a three-element Windkessel model were imposed at each outlet to accurately model the blood flow and the AAAs’ shear stress. Results: Our results uncover elevated blood flow velocities within an aneurysm, suggesting an augmented risk of future rupture due to increased stress in the aneurysm wall. During the systole phase, high wall shear stress (WSS) was observed, typically associated with a lower risk of rupture, while a low oscillatory shear index (OSI) was noted, correlating with a decreased risk of aneurysm expansion. Conversely, during the diastole phase, low WSS and a high OSI were identified, potentially weakening the aneurysm wall, thereby promoting expansion and rupture. Conclusion: Our study underscores the indispensable role of computational fluid dynamic (CFD) techniques in the diagnostic, therapeutic, and monitoring realms of AAAs. This body of research significantly advances our understanding of aneurysm pathophysiology, thus offering pivotal insights into the intricate mechanics underpinning their progression and rupture, informing clinical interventions and enhancing patient care.
{"title":"Hemodynamic Insights into Abdominal Aortic Aneurysms: Bridging the Knowledge Gap for Improved Patient Care","authors":"S. Saha, Isabella Francis, Goutam Saha, Xinlei Huang, M. Molla","doi":"10.3390/fluids9020050","DOIUrl":"https://doi.org/10.3390/fluids9020050","url":null,"abstract":"Background: Abdominal aortic aneurysms (AAAs) present a formidable public health concern due to their propensity for localized, anomalous expansion of the abdominal aorta. These insidious dilations, often in their early stages, mask the life-threatening potential for rupture, which carries a grave prognosis. Understanding the hemodynamic intricacies governing AAAs is paramount for predicting aneurysmal growth and the imminent risk of rupture. Objective: Our extensive investigation delves into this complex hemodynamic environment intrinsic to AAAs, utilizing comprehensive numerical analyses of the physiological pulsatile blood flow and realistic boundary conditions to explore the multifaceted dynamics influencing aneurysm rupture risk. Our study introduces novel elements by integrating these parameters into the overall context of aneurysm pathophysiology, thus advancing our understanding of the intricate mechanics governing their evolution and rupture. Methods: Conservation of mass and momentum equations are used to model the blood flow in an AAAs, and these equations are solved using a finite volume-based ANSYS Fluent solver. Resistance pressure outlets following a three-element Windkessel model were imposed at each outlet to accurately model the blood flow and the AAAs’ shear stress. Results: Our results uncover elevated blood flow velocities within an aneurysm, suggesting an augmented risk of future rupture due to increased stress in the aneurysm wall. During the systole phase, high wall shear stress (WSS) was observed, typically associated with a lower risk of rupture, while a low oscillatory shear index (OSI) was noted, correlating with a decreased risk of aneurysm expansion. Conversely, during the diastole phase, low WSS and a high OSI were identified, potentially weakening the aneurysm wall, thereby promoting expansion and rupture. Conclusion: Our study underscores the indispensable role of computational fluid dynamic (CFD) techniques in the diagnostic, therapeutic, and monitoring realms of AAAs. This body of research significantly advances our understanding of aneurysm pathophysiology, thus offering pivotal insights into the intricate mechanics underpinning their progression and rupture, informing clinical interventions and enhancing patient care.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"39 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139775808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}