首页 > 最新文献

Brazilian Journal of Probability and Statistics最新文献

英文 中文
Longitudinal binary response models using alternative links for medical data 使用医疗数据替代链接的纵向二元响应模型
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.1214/23-bjps572
Alex de la Cruz Huayanay, Jorge L. Bazán, Carlos A. Ribeiro Diniz
{"title":"Longitudinal binary response models using alternative links for medical data","authors":"Alex de la Cruz Huayanay, Jorge L. Bazán, Carlos A. Ribeiro Diniz","doi":"10.1214/23-bjps572","DOIUrl":"https://doi.org/10.1214/23-bjps572","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47573500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dependent percolation on Z2 Z2依赖渗流
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.1214/23-bjps575
B. D. de Lima, V. Sidoravicius, M. Vares
{"title":"Dependent percolation on Z2","authors":"B. D. de Lima, V. Sidoravicius, M. Vares","doi":"10.1214/23-bjps575","DOIUrl":"https://doi.org/10.1214/23-bjps575","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45519426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Maximum likelihood estimation for the reflected stochastic linear system with a large signal 大信号反射随机线性系统的最大似然估计
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.1214/23-bjps571
Xuekang Zhang, H. Shu
{"title":"Maximum likelihood estimation for the reflected stochastic linear system with a large signal","authors":"Xuekang Zhang, H. Shu","doi":"10.1214/23-bjps571","DOIUrl":"https://doi.org/10.1214/23-bjps571","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47721772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the asymptotic distribution of sample autocovariance differences of long-memory processes 关于长记忆过程样本自协方差差的渐近分布
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.1214/23-bjps569
M. Zevallos
{"title":"On the asymptotic distribution of sample autocovariance differences of long-memory processes","authors":"M. Zevallos","doi":"10.1214/23-bjps569","DOIUrl":"https://doi.org/10.1214/23-bjps569","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45817297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new distance-based distribution: Detecting concentration in directional data 一种新的基于距离的分布:检测方向数据中的浓度
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.1214/23-bjps563
Saul A. Souza, G. Amaral, A. Nascimento
{"title":"A new distance-based distribution: Detecting concentration in directional data","authors":"Saul A. Souza, G. Amaral, A. Nascimento","doi":"10.1214/23-bjps563","DOIUrl":"https://doi.org/10.1214/23-bjps563","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41697167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the Samejima–Bolfarine–Bazán IRT models: New features and extensions 重温Samejima–Bolfarine–Bazán IRT车型:新功能和扩展
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.1214/22-bjps558
Jorge Luis Bazán, Sandra Elizabeth Flores Ari, C. Azevedo, D. Dey
. In 2010, the Samejima-Bolfarine-Bazán (SBB) Item Response Theory (IRT) models were introduced by Bolfarine and Bazán (2010) under a Bayesian approach. These models extend the regular Bayesian One and Two Parameter Logistic IRT models by incorporating a parameter accounting for asymmetry of the Item Characteristic Curve (ICC) which is named the complexity of the item. It includes the Logistic Positive Exponent (LPE) IRT model formulated initially by (Samejima, 2000) and the Reflection of the LPE (RLPE). In the present work, new properties of the SBB models are developed including a random effect for testlet structures with a Bayesian inference through a Markov chain Monte Carlo (MCMC) algorithm which includes the parameter estimation and model comparison. The asymmetric behavior of the Item Characteristic Curve (ICC) is detected using a marginal item information function and a mixture structure of the related prior distribution. Two simulation studies are developed to analyze the sensitiveness of the penalized parameter in the asymmetric behavior of the ICC and to evaluate the parameter recovery of the proposed model. A real data set, with a testlet structure and empirical evidence of asymmetric behavior of the ICCs, is used to apply the models.
. 2010年,Bolfarine和Bazán(2010)在贝叶斯方法下引入了Samejima-Bolfarine-Bazán (SBB)项目反应理论(IRT)模型。这些模型扩展了常规贝叶斯一参数和二参数Logistic IRT模型,通过加入一个参数来说明项目特征曲线(ICC)的不对称性,即项目的复杂性。它包括(Samejima, 2000)最初提出的Logistic正指数(LPE) IRT模型和LPE的反映(RLPE)。在本工作中,通过马尔可夫链蒙特卡罗(MCMC)算法,包括参数估计和模型比较,开发了SBB模型的新性质,包括测试结构的随机效应和贝叶斯推理。利用边际项目信息函数和相关先验分布的混合结构检测项目特征曲线的不对称行为。通过两个仿真研究,分析了ICC不对称行为中惩罚参数的敏感性,并对所提出模型的参数恢复进行了评估。一个真实的数据集,具有测试结构和经验证据的不对称行为的icc,被用来应用模型。
{"title":"Revisiting the Samejima–Bolfarine–Bazán IRT models: New features and extensions","authors":"Jorge Luis Bazán, Sandra Elizabeth Flores Ari, C. Azevedo, D. Dey","doi":"10.1214/22-bjps558","DOIUrl":"https://doi.org/10.1214/22-bjps558","url":null,"abstract":". In 2010, the Samejima-Bolfarine-Bazán (SBB) Item Response Theory (IRT) models were introduced by Bolfarine and Bazán (2010) under a Bayesian approach. These models extend the regular Bayesian One and Two Parameter Logistic IRT models by incorporating a parameter accounting for asymmetry of the Item Characteristic Curve (ICC) which is named the complexity of the item. It includes the Logistic Positive Exponent (LPE) IRT model formulated initially by (Samejima, 2000) and the Reflection of the LPE (RLPE). In the present work, new properties of the SBB models are developed including a random effect for testlet structures with a Bayesian inference through a Markov chain Monte Carlo (MCMC) algorithm which includes the parameter estimation and model comparison. The asymmetric behavior of the Item Characteristic Curve (ICC) is detected using a marginal item information function and a mixture structure of the related prior distribution. Two simulation studies are developed to analyze the sensitiveness of the penalized parameter in the asymmetric behavior of the ICC and to evaluate the parameter recovery of the proposed model. A real data set, with a testlet structure and empirical evidence of asymmetric behavior of the ICCs, is used to apply the models.","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48099145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A new class of bivariate Sushila distributions in presence of right-censored and cure fraction 一类新的右截和治愈分数存在下的二元Sushila分布
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.1214/22-bjps560
R. P. de Oliveira, Marcos Vinicius de Oliveira Peres, J. Achcar, Edson Z Martinez
. The present study introduces a new bivariate distribution based on the Sushila distribution to model bivariate lifetime data in presence of a cure fraction, right- censored data and covariates. The new bivariate probability distribution was obtained using a methodology used in the reliability theory based on fatal shocks, usually used to build new bivariate models. Additionally, the cure rate was introduced in the model based on a generalization of standard mixture models extensively used for the univariate lifetime case. The inferences of interest for the model parameters are obtained under a Bayesian approach using MCMC (Markov Chain Monte Carlo) simulation methods to generate samples of the joint posterior distribution for all parameters of the model. A simulation study was developed to study the inferential properties of the new methodology.The proposed methodology also was applied to analyze a set of real medical data obtained from a retrospective cohort study that aimed to assess specific clinical conditions that affect the lives of patients with diabetic retinopathy. For the discrimination of the proposed model with other usual models used in the analysis of bivariate survival data, some Bayesian techniques of model discrimination were used and the model validation was verified from usual Cox-Snell residuals, which allowed us to identify the adequacy of the proposed bivariate cure rate model.
。本研究在Sushila分布的基础上引入了一种新的二元分布来对存在固定分数、右截尾数据和协变量的二元寿命数据进行建模。新的二元概率分布是用基于致命冲击的可靠性理论的方法得到的,这种方法通常用于建立新的二元模型。此外,根据广泛用于单变量寿命情况的标准混合模型的推广,在模型中引入了治愈率。利用MCMC(马尔可夫链蒙特卡罗)模拟方法生成模型所有参数的联合后验分布样本,在贝叶斯方法下获得模型参数的感兴趣推论。为了研究新方法的推理特性,进行了仿真研究。该方法还被用于分析一项回顾性队列研究中获得的一组真实医疗数据,该研究旨在评估影响糖尿病视网膜病变患者生活的特定临床条件。为了将所提出的模型与双变量生存数据分析中使用的其他常用模型区分开来,我们使用了一些贝叶斯模型区分技术,并从通常的Cox-Snell残差中验证了模型的有效性,这使我们能够确定所提出的双变量治愈率模型的充分性。
{"title":"A new class of bivariate Sushila distributions in presence of right-censored and cure fraction","authors":"R. P. de Oliveira, Marcos Vinicius de Oliveira Peres, J. Achcar, Edson Z Martinez","doi":"10.1214/22-bjps560","DOIUrl":"https://doi.org/10.1214/22-bjps560","url":null,"abstract":". The present study introduces a new bivariate distribution based on the Sushila distribution to model bivariate lifetime data in presence of a cure fraction, right- censored data and covariates. The new bivariate probability distribution was obtained using a methodology used in the reliability theory based on fatal shocks, usually used to build new bivariate models. Additionally, the cure rate was introduced in the model based on a generalization of standard mixture models extensively used for the univariate lifetime case. The inferences of interest for the model parameters are obtained under a Bayesian approach using MCMC (Markov Chain Monte Carlo) simulation methods to generate samples of the joint posterior distribution for all parameters of the model. A simulation study was developed to study the inferential properties of the new methodology.The proposed methodology also was applied to analyze a set of real medical data obtained from a retrospective cohort study that aimed to assess specific clinical conditions that affect the lives of patients with diabetic retinopathy. For the discrimination of the proposed model with other usual models used in the analysis of bivariate survival data, some Bayesian techniques of model discrimination were used and the model validation was verified from usual Cox-Snell residuals, which allowed us to identify the adequacy of the proposed bivariate cure rate model.","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42005169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-step estimation procedure for locally stationary ARMA processes with tempered stable innovations 具有缓变稳定创新的局部平稳ARMA过程的两步估计方法
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.1214/23-bjps565
S. Chou-Chen, P. Morettin
{"title":"A two-step estimation procedure for locally stationary ARMA processes with tempered stable innovations","authors":"S. Chou-Chen, P. Morettin","doi":"10.1214/23-bjps565","DOIUrl":"https://doi.org/10.1214/23-bjps565","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47303426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expansions for posterior distributions 后验分布的展开式
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.1214/22-bjps561
C. Withers, S. Nadarajah
: Suppose that X n is a sample of size n with log likelihood nl ( θ ), where θ is an unknown parameter in R p having a prior distribution ξ ( θ ). We need not assume that the sample values are independent or even stationary. Let (cid:98) θ be the maximum likelihood estimate (MLE). We show that θ | X n is asymptotically normal with mean (cid:98) θ and covariance − n − 1 l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) − 1 , where l (cid:5) , (cid:5) ( θ ) = ∂ 2 l ( θ ) /∂θ∂θ ′ . In contrast (cid:98) θ | θ is asymptotically normal with mean θ and covariance n − 1 [ I ( θ )] − 1 , where I ( θ ) = − E (cid:104) l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ (cid:105) is Fisher’s information. So, frequentist inference conditional on θ cannot be used to approximate Bayesian inference, except for exponential families. However, under mild conditions − l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ → I ( θ ) in probability. So, Bayesian inference (that is, conditional on X n ) can be used to approximate frequentist inference. For t ( θ ) any smooth function, we obtain posterior cumulant expansions, posterior Edgeworth-Cornish-Fisher (ECF) expansions and posterior tilted Edgeworth expansions for L t ( θ ) | X n , as well as confidence regions for t ( θ ) | X n of high accuracy. We also give expansions for the Bayes estimate (estimator) of t ( θ ) about t (cid:16)(cid:98) θ (cid:17) , and for the maximum a posteriori estimate about (cid:98) θ , as well as their relative efficiencies with respect to squared error loss.
:设X n是一个大小为n的具有对数似然nl (θ)的样本,其中θ是R p中具有先验分布ξ (θ)的未知参数。我们不需要假设样本值是独立的,甚至是平稳的。设(cid:98) θ为最大似然估计(MLE)。我们证明了θ | X n是渐近正态的,具有均值(cid:98) θ和协方差- n−1 l (cid:5), (cid:5) (cid:16)(cid:98) θ (cid:17)−1,其中l (cid:5), (cid:5) (θ) =∂2 l (θ) /∂θ∂θ '。相反,(cid:98) θ | θ渐近正态,均值θ和协方差n−1 [I (θ)]−1,其中I (θ) =−E (cid:104) l (cid:5), (cid:5) (cid:16)(cid:98) θ (cid:17) | θ (cid:105)为Fisher信息。所以,以θ为条件的频率推理不能用来近似贝叶斯推理,除了指数族。然而,在温和条件下,−1 (cid:5), (cid:5) (cid:16)(cid:98) θ (cid:17) | θ→I (θ)的概率。因此,贝叶斯推理(即以X n为条件)可以用来近似频率推理。对于t (θ)任意光滑函数,我们得到了L t (θ) |xn的后向累积展开式、后向Edgeworth- cornish - fisher (ECF)展开式和后向倾斜Edgeworth展开式,以及t (θ) |xn高精度的置信区域。我们还给出了t (θ)关于t (cid:16)(cid:98) θ (cid:17)的贝叶斯估计(估计量)的展开式,以及关于(cid:98) θ的最大后验估计,以及它们相对于平方误差损失的相对效率。
{"title":"Expansions for posterior distributions","authors":"C. Withers, S. Nadarajah","doi":"10.1214/22-bjps561","DOIUrl":"https://doi.org/10.1214/22-bjps561","url":null,"abstract":": Suppose that X n is a sample of size n with log likelihood nl ( θ ), where θ is an unknown parameter in R p having a prior distribution ξ ( θ ). We need not assume that the sample values are independent or even stationary. Let (cid:98) θ be the maximum likelihood estimate (MLE). We show that θ | X n is asymptotically normal with mean (cid:98) θ and covariance − n − 1 l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) − 1 , where l (cid:5) , (cid:5) ( θ ) = ∂ 2 l ( θ ) /∂θ∂θ ′ . In contrast (cid:98) θ | θ is asymptotically normal with mean θ and covariance n − 1 [ I ( θ )] − 1 , where I ( θ ) = − E (cid:104) l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ (cid:105) is Fisher’s information. So, frequentist inference conditional on θ cannot be used to approximate Bayesian inference, except for exponential families. However, under mild conditions − l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ → I ( θ ) in probability. So, Bayesian inference (that is, conditional on X n ) can be used to approximate frequentist inference. For t ( θ ) any smooth function, we obtain posterior cumulant expansions, posterior Edgeworth-Cornish-Fisher (ECF) expansions and posterior tilted Edgeworth expansions for L t ( θ ) | X n , as well as confidence regions for t ( θ ) | X n of high accuracy. We also give expansions for the Bayes estimate (estimator) of t ( θ ) about t (cid:16)(cid:98) θ (cid:17) , and for the maximum a posteriori estimate about (cid:98) θ , as well as their relative efficiencies with respect to squared error loss.","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44239360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extension of the partially linear Rice regression model for bimodal and correlated data 双模态和相关数据的部分线性Rice回归模型的推广
IF 1 4区 数学 Q4 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.1214/23-bjps566
J. S. Vasconcelos, E. M. Ortega, R. Vila, V. Cancho
{"title":"An extension of the partially linear Rice regression model for bimodal and correlated data","authors":"J. S. Vasconcelos, E. M. Ortega, R. Vila, V. Cancho","doi":"10.1214/23-bjps566","DOIUrl":"https://doi.org/10.1214/23-bjps566","url":null,"abstract":"","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46290807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Brazilian Journal of Probability and Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1